Iftikhar, Nazish; Saeed, Syed Tauseef; Riaz, Muhammad Bilal Fractional study on heat and mass transfer of MHD Oldroyd-B fluid with ramped velocity and temperature. (English) Zbl 07527950 Comput. Methods Differ. Equ. 10, No. 2, 372-395 (2022). MSC: 65L05 34K06 34K28 PDF BibTeX XML Cite \textit{N. Iftikhar} et al., Comput. Methods Differ. Equ. 10, No. 2, 372--395 (2022; Zbl 07527950) Full Text: DOI OpenURL
Liu, Shuai; Wang, Yuzhu Time-decay rate of global solutions to the generalized incompressible Oldroyd-B model with fractional dissipation. (English) Zbl 07523657 Appl. Math. Lett. 131, Article ID 108032, 9 p. (2022). MSC: 35B40 35Q35 35R11 PDF BibTeX XML Cite \textit{S. Liu} and \textit{Y. Wang}, Appl. Math. Lett. 131, Article ID 108032, 9 p. (2022; Zbl 07523657) Full Text: DOI OpenURL
Chen, Zhi; Liu, Lvqiao; Qin, Dongdong; Ye, Weikui Global regularity for the incompressible Oldroyd-B model with only stress tensor dissipation in critical \(L^p\) framework. (English) Zbl 07514305 J. Math. Fluid Mech. 24, No. 2, Paper No. 54, 25 p. (2022). MSC: 35Q35 35A01 35A02 35B45 PDF BibTeX XML Cite \textit{Z. Chen} et al., J. Math. Fluid Mech. 24, No. 2, Paper No. 54, 25 p. (2022; Zbl 07514305) Full Text: DOI OpenURL
Liu, Yanqin; Yin, Xiuling; Liu, Fawang; Xin, Xiaoyi; Shen, Yanfeng; Feng, Libo An alternating direction implicit Legendre spectral method for simulating a 2D multi-term time-fractional Oldroyd-B fluid type diffusion equation. (English) Zbl 07504646 Comput. Math. Appl. 113, 160-173 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{Y. Liu} et al., Comput. Math. Appl. 113, 160--173 (2022; Zbl 07504646) Full Text: DOI OpenURL
Lin, Hongxia; Wei, Youhua; Wu, Jiahong Global well-posedness and time decay for 2D Oldroyd-B-type fluids in periodic domains with dissipation in the velocity equation only. (English) Zbl 07488968 Nonlinear Anal., Real World Appl. 66, Article ID 103513, 20 p. (2022). MSC: 76A10 35Q35 PDF BibTeX XML Cite \textit{H. Lin} et al., Nonlinear Anal., Real World Appl. 66, Article ID 103513, 20 p. (2022; Zbl 07488968) Full Text: DOI OpenURL
Wang, Peixin; Wu, Jiahong; Xu, Xiaojing; Zhong, Yueyuan Sharp decay estimates for Oldroyd-B model with only fractional stress tensor diffusion. (English) Zbl 1481.35345 J. Funct. Anal. 282, No. 4, Article ID 109332, 55 p. (2022). MSC: 35Q35 35Q86 42A38 76D03 76A05 76D50 PDF BibTeX XML Cite \textit{P. Wang} et al., J. Funct. Anal. 282, No. 4, Article ID 109332, 55 p. (2022; Zbl 1481.35345) Full Text: DOI OpenURL
Zhai, Xiaoping; Dan, Yuanyuan; Li, Yongsheng Global well-posedness and inviscid limits of the generalized Oldroyd type models. (English) Zbl 07446127 Nonlinear Anal., Real World Appl. 63, Article ID 103414, 17 p. (2022). MSC: 35Qxx 76Axx 35Bxx PDF BibTeX XML Cite \textit{X. Zhai} et al., Nonlinear Anal., Real World Appl. 63, Article ID 103414, 17 p. (2022; Zbl 07446127) Full Text: DOI arXiv OpenURL
Huang, Jinrui; Wang, Yinghui; Wen, Huanyao; Zi, Ruizhao Optimal time-decay estimates for an Oldroyd-B model with zero viscosity. (English) Zbl 1477.35166 J. Differ. Equations 306, 456-491 (2022). MSC: 35Q35 76A10 35B45 35A01 35A02 PDF BibTeX XML Cite \textit{J. Huang} et al., J. Differ. Equations 306, 456--491 (2022; Zbl 1477.35166) Full Text: DOI arXiv OpenURL
Qasim, Foukeea; Sun, Tian-Chuan; Abbas, S. Z.; Khan, W. A.; Malik, M. Y. Numerical analysis of time-dependent stagnation point flow of Oldroyd-B fluid subject to modified Fourier’s law. (English) Zbl 07502275 Int. J. Mod. Phys. B 35, No. 18, Article ID 2150187, 14 p. (2021). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{F. Qasim} et al., Int. J. Mod. Phys. B 35, No. 18, Article ID 2150187, 14 p. (2021; Zbl 07502275) Full Text: DOI OpenURL
Constantin, Peter; Wu, Jiahong; Zhao, Jiefeng; Zhu, Yi High Reynolds number and high Weissenberg number Oldroyd-B model with dissipation. (English) Zbl 1481.35321 J. Evol. Equ. 21, No. 3, 2787-2806 (2021). MSC: 35Q35 76A10 76T20 35B35 35A01 35A02 26A33 35R11 PDF BibTeX XML Cite \textit{P. Constantin} et al., J. Evol. Equ. 21, No. 3, 2787--2806 (2021; Zbl 1481.35321) Full Text: DOI arXiv OpenURL
Yu, Bo High-order efficient numerical method for solving a generalized fractional Oldroyd-B fluid model. (English) Zbl 1475.65087 J. Appl. Math. Comput. 66, No. 1-2, 749-768 (2021). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{B. Yu}, J. Appl. Math. Comput. 66, No. 1--2, 749--768 (2021; Zbl 1475.65087) Full Text: DOI OpenURL
Guan, Zhen; Wang, Xiaodong; Ouyang, Jie An improved finite difference/finite element method for the fractional Rayleigh-Stokes problem with a nonlinear source term. (English) Zbl 1481.76152 J. Appl. Math. Comput. 65, No. 1-2, 451-479 (2021). MSC: 76M20 76M10 76A10 26A33 65M12 PDF BibTeX XML Cite \textit{Z. Guan} et al., J. Appl. Math. Comput. 65, No. 1--2, 451--479 (2021; Zbl 1481.76152) Full Text: DOI OpenURL
Chi, Xiaoqing; Jiang, Xiaoyun Finite difference Laguerre-Legendre spectral method for the two-dimensional generalized Oldroyd-B fluid on a semi-infinite domain. (English) Zbl 07423591 Appl. Math. Comput. 402, Article ID 126138, 15 p. (2021). MSC: 26-XX 26Axx 74-XX 35Qxx PDF BibTeX XML Cite \textit{X. Chi} and \textit{X. Jiang}, Appl. Math. Comput. 402, Article ID 126138, 15 p. (2021; Zbl 07423591) Full Text: DOI OpenURL
Zi, Ruizhao Vanishing viscosity limit of the 3D incompressible Oldroyd-B model. (English) Zbl 07411900 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 6, 1841-1867 (2021). Reviewer: Sebastien Boyabal (Rueil Malmaison) MSC: 76A10 35Q35 PDF BibTeX XML Cite \textit{R. Zi}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 6, 1841--1867 (2021; Zbl 07411900) Full Text: DOI OpenURL
Xie, Qianqian; Zhai, Xiaoping; Dong, Boqing Optimal decay for the \(N\)-dimensional incompressible Oldroyd-B model without damping mechanism. (Chinese. English summary) Zbl 07403560 Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 3, 762-769 (2021). MSC: 35Q35 76A05 76B03 PDF BibTeX XML Cite \textit{Q. Xie} et al., Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 3, 762--769 (2021; Zbl 07403560) OpenURL
Ghosh, Uddipta; Mukherjee, Siddhartha; Chakraborty, Suman Electrophoretic motion of a non-uniformly charged particle in a viscoelastic medium in thin electrical double layer limit. (English) Zbl 1473.76076 J. Fluid Mech. 924, Paper No. A41, 45 p. (2021). MSC: 76W05 76A10 PDF BibTeX XML Cite \textit{U. Ghosh} et al., J. Fluid Mech. 924, Paper No. A41, 45 p. (2021; Zbl 1473.76076) Full Text: DOI OpenURL
Riaz, Muhammad Bilal; Saeed, Syed Tauseef Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. (English) Zbl 1480.76008 Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3719-3746 (2021). MSC: 76A10 76W05 76M99 26A33 PDF BibTeX XML Cite \textit{M. B. Riaz} and \textit{S. T. Saeed}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3719--3746 (2021; Zbl 1480.76008) Full Text: DOI OpenURL
Codina, Ramon; Moreno, Laura Analysis of a stabilized finite element approximation for a linearized logarithmic reformulation of the viscoelastic flow problem. (English) Zbl 07395671 ESAIM, Math. Model. Numer. Anal. 55, Suppl., 279-300 (2021). MSC: 65N12 76A10 76M10 PDF BibTeX XML Cite \textit{R. Codina} and \textit{L. Moreno}, ESAIM, Math. Model. Numer. Anal. 55, 279--300 (2021; Zbl 07395671) Full Text: DOI OpenURL
Liu, Sili; Chen, Yingshan Asymptotic behavior for an Oldroyd-B model in two dimensions. (English) Zbl 1468.35141 Acta Appl. Math. 172, Paper No. 12, 14 p. (2021). MSC: 35Q35 35Q84 35B40 76A05 76N06 35D30 35D35 PDF BibTeX XML Cite \textit{S. Liu} and \textit{Y. Chen}, Acta Appl. Math. 172, Paper No. 12, 14 p. (2021; Zbl 1468.35141) Full Text: DOI OpenURL
Yang, Jiaqi Global well-posedness of mild solution to the 3D Boussinesq system with damping. (English) Zbl 1473.35461 J. Math. Anal. Appl. 503, No. 1, Article ID 125305, 12 p. (2021). MSC: 35Q35 76A10 35A01 35A02 PDF BibTeX XML Cite \textit{J. Yang}, J. Math. Anal. Appl. 503, No. 1, Article ID 125305, 12 p. (2021; Zbl 1473.35461) Full Text: DOI OpenURL
Zhai, Xiaoping; Li, Yongsheng Global wellposedness and large time behavior of solutions to the \(N\)-dimensional compressible Oldroyd-B model. (English) Zbl 1472.35057 J. Differ. Equations 290, 116-146 (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35B40 35K57 42B37 35Q84 35Q35 PDF BibTeX XML Cite \textit{X. Zhai} and \textit{Y. Li}, J. Differ. Equations 290, 116--146 (2021; Zbl 1472.35057) Full Text: DOI arXiv OpenURL
Ding, Zhaodong; Jian, Yongjun Electrokinetic oscillatory flow and energy conversion of viscoelastic fluids in microchannels: a linear analysis. (English) Zbl 07359196 J. Fluid Mech. 919, Paper No. A20, 31 p. (2021). MSC: 76W05 76A10 PDF BibTeX XML Cite \textit{Z. Ding} and \textit{Y. Jian}, J. Fluid Mech. 919, Paper No. A20, 31 p. (2021; Zbl 07359196) Full Text: DOI arXiv OpenURL
Bathory, Michal; Bulíček, Miroslav; Málek, Josef Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion. (English) Zbl 1464.35207 Adv. Nonlinear Anal. 10, 501-521 (2021). MSC: 35Q35 76A05 76A10 35D30 35B65 35A01 PDF BibTeX XML Cite \textit{M. Bathory} et al., Adv. Nonlinear Anal. 10, 501--521 (2021; Zbl 1464.35207) Full Text: DOI arXiv OpenURL
Manna, Utpal; Mukherjee, Debopriya Weak solutions and invariant measures of stochastic Oldroyd-B type model driven by jump noise. (English) Zbl 1468.60085 J. Differ. Equations 272, 760-818 (2021). MSC: 60H30 35Q35 35R60 76A10 PDF BibTeX XML Cite \textit{U. Manna} and \textit{D. Mukherjee}, J. Differ. Equations 272, 760--818 (2021; Zbl 1468.60085) Full Text: DOI OpenURL
Zhao, Youyi; Wang, Weiwei On the Rayleigh-Taylor instability in compressible viscoelastic fluids under \(L^1\)-norm. (English) Zbl 1447.76015 J. Comput. Appl. Math. 383, Article ID 113130, 21 p. (2021). MSC: 76E17 76E30 76A10 35Q35 PDF BibTeX XML Cite \textit{Y. Zhao} and \textit{W. Wang}, J. Comput. Appl. Math. 383, Article ID 113130, 21 p. (2021; Zbl 1447.76015) Full Text: DOI OpenURL
Jiang, Tao; Ren, Jinlian; Yuan, Jinyun; Zhou, Wen; Wang, Deng-Shan A least-squares particle model with other techniques for 2D viscoelastic fluid/free surface flow. (English) Zbl 07504722 J. Comput. Phys. 407, Article ID 109255, 23 p. (2020). MSC: 76-XX 74-XX PDF BibTeX XML Cite \textit{T. Jiang} et al., J. Comput. Phys. 407, Article ID 109255, 23 p. (2020; Zbl 07504722) Full Text: DOI OpenURL
Cooper, Laura J.; Sprittles, James E. A computational study of fluctuating viscoelastic forces on trapped interfaces in porous media. (English) Zbl 1478.76061 Eur. J. Mech., B, Fluids 84, 496-506 (2020). MSC: 76S05 76T06 76A10 76M10 PDF BibTeX XML Cite \textit{L. J. Cooper} and \textit{J. E. Sprittles}, Eur. J. Mech., B, Fluids 84, 496--506 (2020; Zbl 1478.76061) Full Text: DOI OpenURL
Lu, Yong; Pokorny, Milan Global existence of large data weak solutions for a simplified compressible Oldroyd-B model without stress diffusion. (English) Zbl 1474.35203 Anal. Theory Appl. 36, No. 3, 348-372 (2020). MSC: 35D30 35Q35 76N10 PDF BibTeX XML Cite \textit{Y. Lu} and \textit{M. Pokorny}, Anal. Theory Appl. 36, No. 3, 348--372 (2020; Zbl 1474.35203) Full Text: DOI arXiv OpenURL
Shivakumara, I. S.; Raghunatha, K. R.; Pallavi, G. Intricacies of coupled molecular diffusion on double diffusive viscoelastic porous convection. (English) Zbl 1462.76068 Results Appl. Math. 7, Article ID 100124, 13 p. (2020). MSC: 76E06 76R50 76A10 76S05 80A19 PDF BibTeX XML Cite \textit{I. S. Shivakumara} et al., Results Appl. Math. 7, Article ID 100124, 13 p. (2020; Zbl 1462.76068) Full Text: DOI OpenURL
Waqas, Hassan; Imran, Muhammad; Hussain, Sajjad; Ahmad, Farooq; Khan, Ilyas; Nisar, Kottakkaran Sooppy; Almatroud, A. Othman Numerical simulation for bioconvection effects on MHD flow of Oldroyd-B nanofluids in a rotating frame stretching horizontally. (English) Zbl 07318134 Math. Comput. Simul. 178, 166-182 (2020). MSC: 76Dxx 76Wxx 80Axx PDF BibTeX XML Cite \textit{H. Waqas} et al., Math. Comput. Simul. 178, 166--182 (2020; Zbl 07318134) Full Text: DOI OpenURL
De Anna, Francesco; Paicu, Marius The Fujita-Kato theorem for some Oldroyd-B model. (English) Zbl 1448.35389 J. Funct. Anal. 279, No. 11, Article ID 108761, 64 p. (2020). MSC: 35Q35 35B65 76D05 76A10 35A01 35A02 35A09 76U05 PDF BibTeX XML Cite \textit{F. De Anna} and \textit{M. Paicu}, J. Funct. Anal. 279, No. 11, Article ID 108761, 64 p. (2020; Zbl 1448.35389) Full Text: DOI arXiv OpenURL
Xie, Qianqian; Jia, Yan; Dong, Bo-Qing Large time decay of weak solutions for the 2D Oldroyd-B model of non-Newtonian flows. (English) Zbl 1450.35071 Appl. Math. Lett. 108, Article ID 106510, 7 p. (2020). MSC: 35B40 35Q35 76A05 35D30 PDF BibTeX XML Cite \textit{Q. Xie} et al., Appl. Math. Lett. 108, Article ID 106510, 7 p. (2020; Zbl 1450.35071) Full Text: DOI OpenURL
Sieber, Oliver On convergent schemes for a two-phase Oldroyd-B type model with variable polymer density. (English) Zbl 1447.35277 J. Numer. Math. 28, No. 2, 99-129 (2020). MSC: 35Q35 76A10 76D03 76T06 76T20 35D30 35Q30 65M60 65N30 65M22 65M12 65M06 PDF BibTeX XML Cite \textit{O. Sieber}, J. Numer. Math. 28, No. 2, 99--129 (2020; Zbl 1447.35277) Full Text: DOI OpenURL
Ye, Zhuan Regularity results for the 2D critical Oldroyd-B model in the corotational case. (English) Zbl 1440.76009 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 4, 1871-1913 (2020). MSC: 76A10 76D03 76A05 35Q35 PDF BibTeX XML Cite \textit{Z. Ye}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 4, 1871--1913 (2020; Zbl 1440.76009) Full Text: DOI OpenURL
Ye, Zhuan Global regularity of the high-dimensional Oldroyd-B model in the corotational case. (English) Zbl 1442.35060 J. Math. Anal. Appl. 486, No. 2, Article ID 123867, 13 p. (2020). MSC: 35B65 35Q35 35R11 PDF BibTeX XML Cite \textit{Z. Ye}, J. Math. Anal. Appl. 486, No. 2, Article ID 123867, 13 p. (2020; Zbl 1442.35060) Full Text: DOI OpenURL
Moreno, Laura; Codina, Ramon; Baiges, Joan Solution of transient viscoelastic flow problems approximated by a term-by-term VMS stabilized finite element formulation using time-dependent subgrid-scales. (English) Zbl 1442.76068 Comput. Methods Appl. Mech. Eng. 367, Article ID 113074, 25 p. (2020). MSC: 76M10 76D05 76A10 65M60 PDF BibTeX XML Cite \textit{L. Moreno} et al., Comput. Methods Appl. Mech. Eng. 367, Article ID 113074, 25 p. (2020; Zbl 1442.76068) Full Text: DOI OpenURL
Di Iorio, Elena; Marcati, Pierangelo; Spirito, Stefano Splash singularity for a free-boundary incompressible viscoelastic fluid model. (English) Zbl 1443.76102 Adv. Math. 368, Article ID 107124, 63 p. (2020). MSC: 76A10 76M40 35Q35 PDF BibTeX XML Cite \textit{E. Di Iorio} et al., Adv. Math. 368, Article ID 107124, 63 p. (2020; Zbl 1443.76102) Full Text: DOI OpenURL
Di Iorio, Elena; Marcati, Pierangelo; Spirito, Stefano Splash singularities for a general Oldroyd model with finite Weissenberg number. (English) Zbl 1434.35089 Arch. Ration. Mech. Anal. 235, No. 3, 1589-1660 (2020). MSC: 35Q35 76A10 35Q30 PDF BibTeX XML Cite \textit{E. Di Iorio} et al., Arch. Ration. Mech. Anal. 235, No. 3, 1589--1660 (2020; Zbl 1434.35089) Full Text: DOI arXiv OpenURL
La, Joonhyun On diffusive 2D Fokker-Planck-Navier-Stokes systems. (English) Zbl 1461.76027 Arch. Ration. Mech. Anal. 235, No. 3, 1531-1588 (2020). MSC: 76A10 35Q35 82D15 PDF BibTeX XML Cite \textit{J. La}, Arch. Ration. Mech. Anal. 235, No. 3, 1531--1588 (2020; Zbl 1461.76027) Full Text: DOI arXiv OpenURL
Ullah, Saif; Tanveer, Muhammad; Bajwa, Sana Study of velocity and shear stress for unsteady flow of incompressible Oldroyd-B fluid between two concentric rotating circular cylinders. (English) Zbl 07408861 Hacet. J. Math. Stat. 48, No. 2, 372-383 (2019). MSC: 76A05 76A10 PDF BibTeX XML Cite \textit{S. Ullah} et al., Hacet. J. Math. Stat. 48, No. 2, 372--383 (2019; Zbl 07408861) Full Text: DOI OpenURL
Irfan, M.; Khan, M.; Khan, W. A. Impact of non-uniform heat sink/source and convective condition in radiative heat transfer to Oldroyd-B nanofluid: a revised proposed relation. (English) Zbl 1479.76006 Phys. Lett., A 383, No. 4, 376-382 (2019). MSC: 76A10 76T20 76W05 76M99 80A19 80A21 PDF BibTeX XML Cite \textit{M. Irfan} et al., Phys. Lett., A 383, No. 4, 376--382 (2019; Zbl 1479.76006) Full Text: DOI OpenURL
Zhang, Qiuyue Global regularity for 3D generalized Oldroyd-B type models with fractional dissipation. (Chinese. English summary) Zbl 1449.35140 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 5, 1125-1135 (2019). MSC: 35B65 35Q35 76A10 PDF BibTeX XML Cite \textit{Q. Zhang}, Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 5, 1125--1135 (2019; Zbl 1449.35140) OpenURL
Paşa, Gelu I. On the displacement of two immiscible Oldroyd-B fluids in a Hele-Shaw cell. (English) Zbl 1434.35116 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 65, No. 2, 337-359 (2019). Reviewer: Thomas Ernst (Uppsala) MSC: 35Q35 76A05 76A20 76D45 76E17 76M30 76D07 76S05 PDF BibTeX XML Cite \textit{G. I. Paşa}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 65, No. 2, 337--359 (2019; Zbl 1434.35116) Full Text: DOI arXiv OpenURL
Chen, Jinghua; Chen, Xuejuan; Zhang, Hongmei Analytical solutions of multi-term fractional differential equations in high dimensions and application to generalized Oldroyd-B fluid. (Chinese. English summary) Zbl 1438.35426 J. Xiamen Univ., Nat. Sci. 58, No. 3, 397-401 (2019). MSC: 35R11 76A05 PDF BibTeX XML Cite \textit{J. Chen} et al., J. Xiamen Univ., Nat. Sci. 58, No. 3, 397--401 (2019; Zbl 1438.35426) Full Text: DOI OpenURL
Zhang, Jinghua; Liu, Fawang; Anh, Vo V. Analytical and numerical solutions of a two-dimensional multi-term time-fractional Oldroyd-B model. (English) Zbl 1418.76039 Numer. Methods Partial Differ. Equations 35, No. 3, 875-893 (2019). MSC: 76M20 65M06 65M12 35R11 35Q35 76A10 PDF BibTeX XML Cite \textit{J. Zhang} et al., Numer. Methods Partial Differ. Equations 35, No. 3, 875--893 (2019; Zbl 1418.76039) Full Text: DOI OpenURL
Saghali, Sahar; Javidi, Mohammad; Saei, Farhad Dastmalchi Analytical solution of a fractional differential equation in the theory of viscoelastic fluids. (English) Zbl 1419.35222 Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 53, 13 p. (2019). MSC: 35R11 76A05 35Q35 PDF BibTeX XML Cite \textit{S. Saghali} et al., Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 53, 13 p. (2019; Zbl 1419.35222) Full Text: DOI OpenURL
Seol, Yunchang; Tseng, Yu-Hau; Kim, Yongsam; Lai, Ming-Chih An immersed boundary method for simulating Newtonian vesicles in viscoelastic fluid. (English) Zbl 1416.76228 J. Comput. Phys. 376, 1009-1027 (2019). MSC: 76M25 76T99 76Z05 92C35 PDF BibTeX XML Cite \textit{Y. Seol} et al., J. Comput. Phys. 376, 1009--1027 (2019; Zbl 1416.76228) Full Text: DOI OpenURL
Al-Maskari, Mariam; Karaa, Samir Galerkin FEM for a time-fractional Oldroyd-B fluid problem. (English) Zbl 1415.76444 Adv. Comput. Math. 45, No. 2, 1005-1029 (2019). MSC: 76M10 76A10 65M60 65M12 65M15 PDF BibTeX XML Cite \textit{M. Al-Maskari} and \textit{S. Karaa}, Adv. Comput. Math. 45, No. 2, 1005--1029 (2019; Zbl 1415.76444) Full Text: DOI arXiv OpenURL
Chen, Qionglei; Hao, Xiaonan An Osgood type regularity criterion for the 2D Oldroyd-B model. (English) Zbl 1421.35269 Math. Methods Appl. Sci. 42, No. 5, 1652-1661 (2019). Reviewer: Piotr Biler (Wrocław) MSC: 35Q35 76A10 35B40 35B65 42B25 PDF BibTeX XML Cite \textit{Q. Chen} and \textit{X. Hao}, Math. Methods Appl. Sci. 42, No. 5, 1652--1661 (2019; Zbl 1421.35269) Full Text: DOI OpenURL
Hieber, Matthias; Wen, Huanyao; Zi, Ruizhao Optimal decay rates for solutions to the incompressible Oldroyd-B model in \(\mathbb{R}^3\). (English) Zbl 1410.35123 Nonlinearity 32, No. 3, 833-852 (2019). MSC: 35Q35 76A10 35D30 35D35 PDF BibTeX XML Cite \textit{M. Hieber} et al., Nonlinearity 32, No. 3, 833--852 (2019; Zbl 1410.35123) Full Text: DOI OpenURL
Al Mahbub, Md. Abdullah; Hussain, Shahid; Nasu, Nasrin Jahan; Zheng, Haibiao Decoupled scheme for non-stationary viscoelastic fluid flow. (English) Zbl 07408332 Adv. Appl. Math. Mech. 10, No. 5, 1191-1226 (2018). MSC: 65N30 65N12 76A10 76M10 35Q35 PDF BibTeX XML Cite \textit{Md. A. Al Mahbub} et al., Adv. Appl. Math. Mech. 10, No. 5, 1191--1226 (2018; Zbl 07408332) Full Text: DOI OpenURL
Feng, Libo; Liu, Fawang; Turner, Ian; Zheng, Liancun Novel numerical analysis of multi-term time fractional viscoelastic non-Newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid. (English) Zbl 1439.76120 Fract. Calc. Appl. Anal. 21, No. 4, 1073-1103 (2018). MSC: 76M20 76W05 35Q35 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{L. Feng} et al., Fract. Calc. Appl. Anal. 21, No. 4, 1073--1103 (2018; Zbl 1439.76120) Full Text: DOI arXiv OpenURL
Boujena, S.; Kafi, O.; Sequeira, A. Mathematical study of a single leukocyte in microchannel flow. (English) Zbl 1405.35222 Math. Model. Nat. Phenom. 13, No. 5, Paper No. 43, 16 pp. (2018). MSC: 35Q92 92C35 76Z05 76S05 35Q35 PDF BibTeX XML Cite \textit{S. Boujena} et al., Math. Model. Nat. Phenom. 13, No. 5, Paper No. 43, 16 pp. (2018; Zbl 1405.35222) Full Text: DOI OpenURL
Raghunatha, K. R.; Shivakumara, I. S. Stability of triple diffusive convection in a viscoelastic fluid-saturated porous layer. (English) Zbl 1402.76129 AMM, Appl. Math. Mech., Engl. Ed. 39, No. 10, 1385-1410 (2018). MSC: 76S05 76E06 80A20 PDF BibTeX XML Cite \textit{K. R. Raghunatha} and \textit{I. S. Shivakumara}, AMM, Appl. Math. Mech., Engl. Ed. 39, No. 10, 1385--1410 (2018; Zbl 1402.76129) Full Text: DOI Link OpenURL
Xu, Xiaoyang; Yu, Peng A technique to remove the tensile instability in weakly compressible SPH. (English) Zbl 1470.76081 Comput. Mech. 62, No. 5, 963-990 (2018). MSC: 76M28 76A10 PDF BibTeX XML Cite \textit{X. Xu} and \textit{P. Yu}, Comput. Mech. 62, No. 5, 963--990 (2018; Zbl 1470.76081) Full Text: DOI OpenURL
Norouzi, M.; Davoodi, M.; Anwar Bég, O.; Shamshuddin, MD. Theoretical study of Oldroyd-B visco-elastic fluid flow through curved pipes with slip effects in polymer flow processing. (English) Zbl 1442.76015 Int. J. Appl. Comput. Math. 4, No. 4, Paper No. 108, 22 p. (2018). MSC: 76A10 PDF BibTeX XML Cite \textit{M. Norouzi} et al., Int. J. Appl. Comput. Math. 4, No. 4, Paper No. 108, 22 p. (2018; Zbl 1442.76015) Full Text: DOI Link OpenURL
Chiu, Shang-Huan; Pan, Tsorng-Whay; Glowinski, Roland A 3D DLM/FD method for simulating the motion of spheres in a bounded shear flow of Oldroyd-B fluids. (English) Zbl 1410.76163 Comput. Fluids 172, 661-673 (2018). MSC: 76M10 65M60 76A10 76T20 PDF BibTeX XML Cite \textit{S.-H. Chiu} et al., Comput. Fluids 172, 661--673 (2018; Zbl 1410.76163) Full Text: DOI arXiv OpenURL
Raghunatha, K. R.; Shivakumara, I. S.; Sowbhagya Stability of buoyancy-driven convection in an Oldroyd-B fluid-saturated anisotropic porous layer. (English) Zbl 1392.76088 AMM, Appl. Math. Mech., Engl. Ed. 39, No. 5, 653-666 (2018). MSC: 76S05 76E06 76A10 PDF BibTeX XML Cite \textit{K. R. Raghunatha} et al., AMM, Appl. Math. Mech., Engl. Ed. 39, No. 5, 653--666 (2018; Zbl 1392.76088) Full Text: DOI Link OpenURL
Lu, Yong; Zhang, Zhifei Relative entropy, weak-strong uniqueness, and conditional regularity for a compressible Oldroyd-B model. (English) Zbl 1392.35232 SIAM J. Math. Anal. 50, No. 1, 557-590 (2018). Reviewer: Vladimir Mityushev (Kraków) MSC: 35Q35 76N10 76A05 35B44 35D35 PDF BibTeX XML Cite \textit{Y. Lu} and \textit{Z. Zhang}, SIAM J. Math. Anal. 50, No. 1, 557--590 (2018; Zbl 1392.35232) Full Text: DOI arXiv OpenURL
Barrett, John W.; Süli, Endre Existence of global weak solutions to the kinetic Hookean dumbbell model for incompressible dilute polymeric fluids. (English) Zbl 1379.35232 Nonlinear Anal., Real World Appl. 39, 362-395 (2018). MSC: 35Q35 35Q84 35D30 76A05 76D05 PDF BibTeX XML Cite \textit{J. W. Barrett} and \textit{E. Süli}, Nonlinear Anal., Real World Appl. 39, 362--395 (2018; Zbl 1379.35232) Full Text: DOI arXiv OpenURL
Zhuo, Jingxuan; Cortez, Ricardo; Dillon, Robert Lagrangian mesh model with regridding for planar Poiseuille flow. (English) Zbl 07414433 Commun. Comput. Phys. 22, No. 1, 112-132 (2017). MSC: 74F10 76Z05 65M06 92C10 74S20 74L15 PDF BibTeX XML Cite \textit{J. Zhuo} et al., Commun. Comput. Phys. 22, No. 1, 112--132 (2017; Zbl 07414433) Full Text: DOI OpenURL
Chen, Shurui; Shen, Ming; Chen, Hui Unsteady boundary layer flow of fractional Oldroyd-B viscoelastic fluid past a moving plate in a porous medium. (English) Zbl 1399.76005 Ann. Appl. Math. 33, No. 4, 353-363 (2017). MSC: 76A10 76D10 76S05 26A33 PDF BibTeX XML Cite \textit{S. Chen} et al., Ann. Appl. Math. 33, No. 4, 353--363 (2017; Zbl 1399.76005) OpenURL
Castillo, E.; Codina, R. Finite element approximation of the viscoelastic flow problem: a non-residual based stabilized formulation. (English) Zbl 1390.76297 Comput. Fluids 142, 72-78 (2017). MSC: 76M10 65M60 76A10 PDF BibTeX XML Cite \textit{E. Castillo} and \textit{R. Codina}, Comput. Fluids 142, 72--78 (2017; Zbl 1390.76297) Full Text: DOI Link OpenURL
Barrett, John W.; Lu, Yong; Süli, Endre Existence of large-data finite-energy global weak solutions to a compressible Oldroyd-B model. (English) Zbl 1390.35007 Commun. Math. Sci. 15, No. 5, 1265-1323 (2017). MSC: 35A01 35Q35 76A05 PDF BibTeX XML Cite \textit{J. W. Barrett} et al., Commun. Math. Sci. 15, No. 5, 1265--1323 (2017; Zbl 1390.35007) Full Text: DOI arXiv OpenURL
Di Iorio, Elena; Marcati, Pierangelo; Spirito, Stefano Splash singularities for a 2D Oldroyd-B model with nonlinear Piola-Kirchhoff stress. (English) Zbl 1383.35159 NoDEA, Nonlinear Differ. Equ. Appl. 24, No. 6, Paper No. 60, 20 p. (2017). MSC: 35Q35 35Q30 76D27 76A10 35B35 35A01 PDF BibTeX XML Cite \textit{E. Di Iorio} et al., NoDEA, Nonlinear Differ. Equ. Appl. 24, No. 6, Paper No. 60, 20 p. (2017; Zbl 1383.35159) Full Text: DOI OpenURL
Constantin, Peter Analysis of hydrodynamic models. (English) Zbl 1402.76003 CBMS-NSF Regional Conference Series in Applied Mathematics 90. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM) (ISBN 978-1-61197-479-9/pbk; 978-1-61197-480-5/ebook). ix, 63 p. (2017). Reviewer: Gelu Paşa (Bucureşti) MSC: 76-02 76B03 76S05 35Q31 35Q35 PDF BibTeX XML Cite \textit{P. Constantin}, Analysis of hydrodynamic models. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM) (2017; Zbl 1402.76003) Full Text: DOI OpenURL
Castillo, Ernesto; Codina, Ramon Numerical analysis of a stabilized finite element approximation for the three-field linearized viscoelastic fluid problem using arbitrary interpolations. (English) Zbl 1393.76008 ESAIM, Math. Model. Numer. Anal. 51, No. 4, 1407-1427 (2017). MSC: 76A10 76M10 65N30 65N12 PDF BibTeX XML Cite \textit{E. Castillo} and \textit{R. Codina}, ESAIM, Math. Model. Numer. Anal. 51, No. 4, 1407--1427 (2017; Zbl 1393.76008) Full Text: DOI Link OpenURL
Mahanthesh, B.; Gireesha, B. J.; Shehzad, S. A.; Abbasi, F. M.; Gorla, R. S. R. Nonlinear three-dimensional stretched flow of an Oldroyd-B fluid with convective condition, thermal radiation, and mixed convection. (English) Zbl 1367.76003 AMM, Appl. Math. Mech., Engl. Ed. 38, No. 7, 969-980 (2017). MSC: 76A05 80A20 PDF BibTeX XML Cite \textit{B. Mahanthesh} et al., AMM, Appl. Math. Mech., Engl. Ed. 38, No. 7, 969--980 (2017; Zbl 1367.76003) Full Text: DOI OpenURL
Hayat, T.; Kiran, A.; Imtiaz, M.; Alsaedi, A. Melting heat and thermal radiation effects in stretched flow of an Oldroyd-B fluid. (English) Zbl 1367.76001 AMM, Appl. Math. Mech., Engl. Ed. 38, No. 7, 957-968 (2017). MSC: 76A05 76W05 76R05 76R10 PDF BibTeX XML Cite \textit{T. Hayat} et al., AMM, Appl. Math. Mech., Engl. Ed. 38, No. 7, 957--968 (2017; Zbl 1367.76001) Full Text: DOI OpenURL
Perrotti, Louis; Walkington, Noel J.; Wang, Daren Numerical approximation of viscoelastic fluids. (English) Zbl 1398.76122 ESAIM, Math. Model. Numer. Anal. 51, No. 3, 1119-1144 (2017). MSC: 76M10 65M60 65M12 65M15 76A10 PDF BibTeX XML Cite \textit{L. Perrotti} et al., ESAIM, Math. Model. Numer. Anal. 51, No. 3, 1119--1144 (2017; Zbl 1398.76122) Full Text: DOI Link OpenURL
Ghosh, Arun Kumar; Datta, Sanjib Kumar; Sen, Pulakesh On hydromagnetic flow of an Oldroyd-B fluid between two oscillating plates. (English) Zbl 1456.76150 Int. J. Appl. Comput. Math. 2, No. 3, 365-386 (2016). MSC: 76W05 76A10 PDF BibTeX XML Cite \textit{A. K. Ghosh} et al., Int. J. Appl. Comput. Math. 2, No. 3, 365--386 (2016; Zbl 1456.76150) Full Text: DOI OpenURL
Rasheed, Amer; Wahab, Abdul; Shah, Shaista Qaim; Nawaz, Rab Finite difference-finite element approach for solving fractional Oldroyd-B equation. (English) Zbl 1419.35003 Adv. Difference Equ. 2016, Paper No. 236, 21 p. (2016). MSC: 35A15 35R11 76A05 76A10 76D99 76M10 PDF BibTeX XML Cite \textit{A. Rasheed} et al., Adv. Difference Equ. 2016, Paper No. 236, 21 p. (2016; Zbl 1419.35003) Full Text: DOI OpenURL
Sedaghat, M. H.; Shahmardan, M. M.; Norouzi, M.; Jayathilake, P. G.; Nazari, M. Numerical simulation of muco-ciliary clearance: immersed boundary-lattice Boltzmann method. (English) Zbl 1390.76762 Comput. Fluids 131, 91-101 (2016). MSC: 76M28 76Z05 92C35 PDF BibTeX XML Cite \textit{M. H. Sedaghat} et al., Comput. Fluids 131, 91--101 (2016; Zbl 1390.76762) Full Text: DOI OpenURL
Osmanlic, F.; Körner, C. Lattice Boltzmann method for Oldroyd-B fluids. (English) Zbl 1390.76752 Comput. Fluids 124, 190-196 (2016). MSC: 76M28 76A10 PDF BibTeX XML Cite \textit{F. Osmanlic} and \textit{C. Körner}, Comput. Fluids 124, 190--196 (2016; Zbl 1390.76752) Full Text: DOI OpenURL
Zaman, Akbar; Ali, Nasir; Anwar Beg, O.; Sajid, M. Unsteady two-layered blood flow through a \(w\)-shaped stenosed artery using the generalized Oldroyd-B fluid model. (English) Zbl 1433.76202 ANZIAM J. 58, No. 1, 96-118 (2016). MSC: 76Z05 76A05 92C35 35Q35 PDF BibTeX XML Cite \textit{A. Zaman} et al., ANZIAM J. 58, No. 1, 96--118 (2016; Zbl 1433.76202) Full Text: DOI OpenURL
Ming, Chunying; Liu, Fawang; Zheng, Liancun; Turner, Ian; Anh, Vo Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelastic fluid. (English) Zbl 1398.35277 Comput. Math. Appl. 72, No. 9, 2084-2097 (2016). MSC: 35R11 35Q35 76A10 PDF BibTeX XML Cite \textit{C. Ming} et al., Comput. Math. Appl. 72, No. 9, 2084--2097 (2016; Zbl 1398.35277) Full Text: DOI OpenURL
Zafar, Azhar Ali; Fetecau, Constantin; Mirza, Itrat Abbas On the flow of Oldroyd-B fluids with fractional derivatives over a plate that applies shear stress to the fluid. (English) Zbl 1374.76016 Math. Rep., Buchar. 18(68), No. 1, 85-108 (2016). MSC: 76A05 74K20 35R11 74F10 PDF BibTeX XML Cite \textit{A. A. Zafar} et al., Math. Rep., Buchar. 18(68), No. 1, 85--108 (2016; Zbl 1374.76016) Full Text: arXiv OpenURL
Liu, Yaqing; Zheng, Liancun Second-order slip flow of a generalized Oldroyd-B fluid through porous medium. (English) Zbl 1352.35222 Discrete Contin. Dyn. Syst., Ser. S 9, No. 6, 2031-2046 (2016). MSC: 35R11 35Q35 76S05 76D05 76F10 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{L. Zheng}, Discrete Contin. Dyn. Syst., Ser. S 9, No. 6, 2031--2046 (2016; Zbl 1352.35222) Full Text: DOI OpenURL
Bousbih, Hafedh; Majdoub, Mohamed Weak solutions for generalized stationary Oldroyd-B fluid with a diffusive stress. (English) Zbl 1352.35108 Georgian Math. J. 23, No. 4, 469-475 (2016). MSC: 35Q35 35Q30 35D30 76D03 76A05 76A10 PDF BibTeX XML Cite \textit{H. Bousbih} and \textit{M. Majdoub}, Georgian Math. J. 23, No. 4, 469--475 (2016; Zbl 1352.35108) Full Text: DOI OpenURL
Ashraf, M. Bilal; Hayat, T.; Alsaedi, A. Radiative mixed convection flow of an Oldroyd-B fluid over an inclined stretching surface. (English. Russian original) Zbl 1446.76062 J. Appl. Mech. Tech. Phys. 57, No. 2, 317-325 (2016); translation from Prikl. Mekh. Tekh. Fiz. 57, No. 2, 142-151 (2016). MSC: 76A10 80A21 76R99 PDF BibTeX XML Cite \textit{M. B. Ashraf} et al., J. Appl. Mech. Tech. Phys. 57, No. 2, 317--325 (2016; Zbl 1446.76062); translation from Prikl. Mekh. Tekh. Fiz. 57, No. 2, 142--151 (2016) Full Text: DOI OpenURL
Hayat, T.; Imtiaz, M.; Alsaedi, A. Boundary layer flow of Oldroyd-B fluid by exponentially stretching sheet. (English) Zbl 1342.76009 AMM, Appl. Math. Mech., Engl. Ed. 37, No. 5, 573-582 (2016). MSC: 76A05 76E06 76N20 PDF BibTeX XML Cite \textit{T. Hayat} et al., AMM, Appl. Math. Mech., Engl. Ed. 37, No. 5, 573--582 (2016; Zbl 1342.76009) Full Text: DOI OpenURL
Maryani, Sri On the free boundary problem for the Oldroyd-B model in the maximal \(L_p-L_q\) regularity class. (English) Zbl 1338.35373 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 141, 109-129 (2016). MSC: 35Q35 76N10 PDF BibTeX XML Cite \textit{S. Maryani}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 141, 109--129 (2016; Zbl 1338.35373) Full Text: DOI OpenURL
Lukáčová-Medvid’ová, Mária; Mizerová, Hana; She, Bangwei; Stebel, Jan Error analysis of finite element and finite volume methods for some viscoelastic fluids. (English) Zbl 1338.76059 J. Numer. Math. 24, No. 2, 105-123 (2016). MSC: 76M10 76M12 65M15 65M60 76Dxx PDF BibTeX XML Cite \textit{M. Lukáčová-Medvid'ová} et al., J. Numer. Math. 24, No. 2, 105--123 (2016; Zbl 1338.76059) Full Text: DOI OpenURL
Maryani, Sri Global well-posedness for free boundary problem of the Oldroyd-B model fluid flow. (English) Zbl 1342.35264 Math. Methods Appl. Sci. 39, No. 9, 2202-2219 (2016). MSC: 35Q35 76N10 76A05 35R35 PDF BibTeX XML Cite \textit{S. Maryani}, Math. Methods Appl. Sci. 39, No. 9, 2202--2219 (2016; Zbl 1342.35264) Full Text: DOI OpenURL
Kang, Shin Min; Nazeer, Waqas; Athar, Muhammad; Hisham, Muhammad Danial; Kwun, Young Chel Velocity and shear stress for an Oldroyd-B fluid within two cylinders. (English) Zbl 1339.35244 Bound. Value Probl. 2016, Paper No. 40, 11 p. (2016). MSC: 35Q35 76A05 76U05 44A10 PDF BibTeX XML Cite \textit{S. M. Kang} et al., Bound. Value Probl. 2016, Paper No. 40, 11 p. (2016; Zbl 1339.35244) Full Text: DOI OpenURL
Javid, K.; Ali, N.; Sajid, M. Simultaneous effects of viscoelasticity and curvature on peristaltic flow through a curved channel. (English) Zbl 1382.76303 Meccanica 51, No. 1, 87-98 (2016). MSC: 76Z05 92C35 74F10 76A05 PDF BibTeX XML Cite \textit{K. Javid} et al., Meccanica 51, No. 1, 87--98 (2016; Zbl 1382.76303) Full Text: DOI OpenURL
Sajid, M.; Zaman, A.; Ali, N.; Siddiqui, A. M. Pulsatile flow of blood in a vessel using an Oldroyd-B fluid. (English) Zbl 1401.76170 Int. J. Nonlinear Sci. Numer. Simul. 16, No. 5, 197-206 (2015). MSC: 76Z05 76M20 92C35 PDF BibTeX XML Cite \textit{M. Sajid} et al., Int. J. Nonlinear Sci. Numer. Simul. 16, No. 5, 197--206 (2015; Zbl 1401.76170) Full Text: DOI OpenURL
Ramzan, M.; Farooq, M.; Alhothuali, M. S.; Malaikah, H. M.; Cui, W.; Hayat, T. Three dimensional flow of an Oldroyd-B fluid with Newtonian heating. (English) Zbl 1356.76032 Int. J. Numer. Methods Heat Fluid Flow 25, No. 1, 68-85 (2015). MSC: 76A10 PDF BibTeX XML Cite \textit{M. Ramzan} et al., Int. J. Numer. Methods Heat Fluid Flow 25, No. 1, 68--85 (2015; Zbl 1356.76032) Full Text: DOI OpenURL
Vasileva, Daniela; Bazhlekov, Ivan; Ayryan, Edik; Bazhlekova, Emilia A compact alternating direction implicit scheme for two-dimensional fractional Oldroyd-B fluids. (English) Zbl 1363.35372 PLISKA, Stud. Math. 25, 213-224 (2015). MSC: 35R11 65M06 65M22 74D05 26A33 PDF BibTeX XML Cite \textit{D. Vasileva} et al., PLISKA, Stud. Math. 25, 213--224 (2015; Zbl 1363.35372) Full Text: Link OpenURL
Sajid, M.; Ahmed, B.; Abbas, Z. Steady mixed convection stagnation point flow of MHD Oldroyd-B fluid over a stretching sheet. (English) Zbl 1330.76145 J. Egypt. Math. Soc. 23, No. 2, 440-444 (2015). MSC: 76W05 76M20 65N06 76D05 76R10 PDF BibTeX XML Cite \textit{M. Sajid} et al., J. Egypt. Math. Soc. 23, No. 2, 440--444 (2015; Zbl 1330.76145) Full Text: DOI OpenURL
Zhou, Wen; Xie, Yan; Ouyang, Jie; Li, Qiang Simulating viscoelastic flow field based on DCQ-QUICK scheme. (Chinese. English summary) Zbl 1340.76006 Chin. J. Eng. Math. 32, No. 1, 50-60 (2015). MSC: 76A10 76M25 76M12 PDF BibTeX XML Cite \textit{W. Zhou} et al., Chin. J. Eng. Math. 32, No. 1, 50--60 (2015; Zbl 1340.76006) Full Text: DOI OpenURL
Elgindi, Tarek M.; Liu, Jianli Global wellposedness to the generalized Oldroyd type models in \(\mathbb{R}^3\). (English) Zbl 1326.35265 J. Differ. Equations 259, No. 5, 1958-1966 (2015). Reviewer: S. C. Rajvanshi (Chandigarh) MSC: 35Q35 76A10 35D35 PDF BibTeX XML Cite \textit{T. M. Elgindi} and \textit{J. Liu}, J. Differ. Equations 259, No. 5, 1958--1966 (2015; Zbl 1326.35265) Full Text: DOI OpenURL
Constantin, Peter Lagrangian-Eulerian methods for uniqueness in hydrodynamic systems. (English) Zbl 1384.76008 Adv. Math. 278, 67-102 (2015). MSC: 76A10 76W05 35Q35 PDF BibTeX XML Cite \textit{P. Constantin}, Adv. Math. 278, 67--102 (2015; Zbl 1384.76008) Full Text: DOI arXiv OpenURL
Ren, Dandan; Ou, Yaobin Strong solutions to an Oldroyd-B model with slip boundary conditions via incompressible limit. (English) Zbl 1308.35226 Math. Methods Appl. Sci. 38, No. 2, 330-348 (2015). MSC: 35Q35 76A10 76D03 35D35 PDF BibTeX XML Cite \textit{D. Ren} and \textit{Y. Ou}, Math. Methods Appl. Sci. 38, No. 2, 330--348 (2015; Zbl 1308.35226) Full Text: DOI OpenURL
Hayat, T.; Hussain, Zakir; Farooq, M.; Alsaedi, A.; Obaid, Mustafa Thermally stratified stagnation point flow of an Oldroyd-B fluid. (English) Zbl 1401.76011 Int. J. Nonlinear Sci. Numer. Simul. 15, No. 1, 77-86 (2014). MSC: 76A05 76E06 76R10 PDF BibTeX XML Cite \textit{T. Hayat} et al., Int. J. Nonlinear Sci. Numer. Simul. 15, No. 1, 77--86 (2014; Zbl 1401.76011) Full Text: DOI OpenURL
Castillo, Ernesto; Codina, Ramon Variational multi-scale stabilized formulations for the stationary three-field incompressible viscoelastic flow problem. (English) Zbl 1423.76217 Comput. Methods Appl. Mech. Eng. 279, 579-605 (2014). MSC: 76M10 65N30 76A10 PDF BibTeX XML Cite \textit{E. Castillo} and \textit{R. Codina}, Comput. Methods Appl. Mech. Eng. 279, 579--605 (2014; Zbl 1423.76217) Full Text: DOI OpenURL
Abbasbandy, S.; Hayat, T.; Alsaedi, A.; Rashidi, M. M. Numerical and analytical solutions for Falkner-Skan flow of MHD Oldroyd-B fluid. (English) Zbl 1356.76416 Int. J. Numer. Methods Heat Fluid Flow 24, No. 2, 390-401 (2014). MSC: 76W05 76A10 PDF BibTeX XML Cite \textit{S. Abbasbandy} et al., Int. J. Numer. Methods Heat Fluid Flow 24, No. 2, 390--401 (2014; Zbl 1356.76416) Full Text: DOI OpenURL
Khan, Amir; Zaman, Gul On oscillatory motion of a generalized MHD Oldroyd-B fluid. (English) Zbl 1327.76011 Int. J. Appl. Math. 27, No. 6, 605-612 (2014). MSC: 76A05 76A10 PDF BibTeX XML Cite \textit{A. Khan} and \textit{G. Zaman}, Int. J. Appl. Math. 27, No. 6, 605--612 (2014; Zbl 1327.76011) OpenURL
Bazhlekova, Emilia; Bazhlekov, Ivan Viscoelastic flows with fractional derivative models: computational approach by convolutional calculus of Dimovski. (English) Zbl 1314.76007 Fract. Calc. Appl. Anal. 17, No. 4, 954-976 (2014). MSC: 76A10 26A33 35R11 44A35 44A40 74D05 PDF BibTeX XML Cite \textit{E. Bazhlekova} and \textit{I. Bazhlekov}, Fract. Calc. Appl. Anal. 17, No. 4, 954--976 (2014; Zbl 1314.76007) Full Text: DOI OpenURL
Fang, Daoyuan; Han, Bin; Zhang, Ting Global existence in critical spaces for density-dependent incompressible viscoelastic fluids. (English) Zbl 1301.35107 Acta Appl. Math. 130, No. 1, 51-80 (2014). MSC: 35Q35 35Q30 76D03 76A10 42B25 35B65 PDF BibTeX XML Cite \textit{D. Fang} et al., Acta Appl. Math. 130, No. 1, 51--80 (2014; Zbl 1301.35107) Full Text: DOI arXiv OpenURL