Manna, Utpal; Mukherjee, Debopriya Weak solutions and invariant measures of stochastic Oldroyd-B type model driven by jump noise. (English) Zbl 07285702 J. Differ. Equations 272, 760-818 (2021). MSC: 60H30 76A10 37L40 76M35 PDF BibTeX XML Cite \textit{U. Manna} and \textit{D. Mukherjee}, J. Differ. Equations 272, 760--818 (2021; Zbl 07285702) Full Text: DOI
Zhao, Youyi; Wang, Weiwei On the Rayleigh-Taylor instability in compressible viscoelastic fluids under \(L^1\)-norm. (English) Zbl 1447.76015 J. Comput. Appl. Math. 383, Article ID 113130, 21 p. (2021). MSC: 76E17 76E30 76A10 35Q35 PDF BibTeX XML Cite \textit{Y. Zhao} and \textit{W. Wang}, J. Comput. Appl. Math. 383, Article ID 113130, 21 p. (2021; Zbl 1447.76015) Full Text: DOI
De Anna, Francesco; Paicu, Marius The Fujita-Kato theorem for some Oldroyd-B model. (English) Zbl 1448.35389 J. Funct. Anal. 279, No. 11, Article ID 108761, 64 p. (2020). MSC: 35Q35 35B65 76D05 76A10 35A01 35A02 35A09 76U05 PDF BibTeX XML Cite \textit{F. De Anna} and \textit{M. Paicu}, J. Funct. Anal. 279, No. 11, Article ID 108761, 64 p. (2020; Zbl 1448.35389) Full Text: DOI
Xie, Qianqian; Jia, Yan; Dong, Bo-Qing Large time decay of weak solutions for the 2D Oldroyd-B model of non-Newtonian flows. (English) Zbl 1450.35071 Appl. Math. Lett. 108, Article ID 106510, 7 p. (2020). MSC: 35B40 35Q35 76A05 35D30 PDF BibTeX XML Cite \textit{Q. Xie} et al., Appl. Math. Lett. 108, Article ID 106510, 7 p. (2020; Zbl 1450.35071) Full Text: DOI
Sieber, Oliver On convergent schemes for a two-phase Oldroyd-B type model with variable polymer density. (English) Zbl 1447.35277 J. Numer. Math. 28, No. 2, 99-129 (2020). MSC: 35Q35 76A10 76D03 76T06 76T20 35D30 35Q30 65M60 65N30 65M22 65M12 65M06 PDF BibTeX XML Cite \textit{O. Sieber}, J. Numer. Math. 28, No. 2, 99--129 (2020; Zbl 1447.35277) Full Text: DOI
Ye, Zhuan Regularity results for the 2D critical Oldroyd-B model in the corotational case. (English) Zbl 1440.76009 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 4, 1871-1913 (2020). MSC: 76A10 76D03 76A05 35Q35 PDF BibTeX XML Cite \textit{Z. Ye}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 4, 1871--1913 (2020; Zbl 1440.76009) Full Text: DOI
Ye, Zhuan Global regularity of the high-dimensional Oldroyd-B model in the corotational case. (English) Zbl 1442.35060 J. Math. Anal. Appl. 486, No. 2, Article ID 123867, 13 p. (2020). MSC: 35B65 35Q35 35R11 PDF BibTeX XML Cite \textit{Z. Ye}, J. Math. Anal. Appl. 486, No. 2, Article ID 123867, 13 p. (2020; Zbl 1442.35060) Full Text: DOI
Moreno, Laura; Codina, Ramon; Baiges, Joan Solution of transient viscoelastic flow problems approximated by a term-by-term VMS stabilized finite element formulation using time-dependent subgrid-scales. (English) Zbl 1442.76068 Comput. Methods Appl. Mech. Eng. 367, Article ID 113074, 25 p. (2020). MSC: 76M10 76D05 76A10 65M60 PDF BibTeX XML Cite \textit{L. Moreno} et al., Comput. Methods Appl. Mech. Eng. 367, Article ID 113074, 25 p. (2020; Zbl 1442.76068) Full Text: DOI
Di Iorio, Elena; Marcati, Pierangelo; Spirito, Stefano Splash singularity for a free-boundary incompressible viscoelastic fluid model. (English) Zbl 1443.76102 Adv. Math. 368, Article ID 107124, 63 p. (2020). MSC: 76A10 76M40 35Q35 PDF BibTeX XML Cite \textit{E. Di Iorio} et al., Adv. Math. 368, Article ID 107124, 63 p. (2020; Zbl 1443.76102) Full Text: DOI
Di Iorio, Elena; Marcati, Pierangelo; Spirito, Stefano Splash singularities for a general Oldroyd model with finite Weissenberg number. (English) Zbl 1434.35089 Arch. Ration. Mech. Anal. 235, No. 3, 1589-1660 (2020). MSC: 35Q35 76A10 35Q30 PDF BibTeX XML Cite \textit{E. Di Iorio} et al., Arch. Ration. Mech. Anal. 235, No. 3, 1589--1660 (2020; Zbl 1434.35089) Full Text: DOI
Zhang, Qiuyue Global regularity for 3D generalized Oldroyd-B type models with fractional dissipation. (Chinese. English summary) Zbl 1449.35140 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 5, 1125-1135 (2019). MSC: 35B65 35Q35 76A10 PDF BibTeX XML Cite \textit{Q. Zhang}, Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 5, 1125--1135 (2019; Zbl 1449.35140)
Paşa, Gelu I. On the displacement of two immiscible Oldroyd-B fluids in a Hele-Shaw cell. (English) Zbl 1434.35116 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 65, No. 2, 337-359 (2019). Reviewer: Thomas Ernst (Uppsala) MSC: 35Q35 76A05 76A20 76D45 76E17 76M30 76D07 76S05 PDF BibTeX XML Cite \textit{G. I. Paşa}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 65, No. 2, 337--359 (2019; Zbl 1434.35116) Full Text: DOI
Chen, Jinghua; Chen, Xuejuan; Zhang, Hongmei Analytical solutions of multi-term fractional differential equations in high dimensions and application to generalized Oldroyd-B fluid. (Chinese. English summary) Zbl 1438.35426 J. Xiamen Univ., Nat. Sci. 58, No. 3, 397-401 (2019). MSC: 35R11 76A05 PDF BibTeX XML Cite \textit{J. Chen} et al., J. Xiamen Univ., Nat. Sci. 58, No. 3, 397--401 (2019; Zbl 1438.35426) Full Text: DOI
Zhang, Jinghua; Liu, Fawang; Anh, Vo V. Analytical and numerical solutions of a two-dimensional multi-term time-fractional Oldroyd-B model. (English) Zbl 1418.76039 Numer. Methods Partial Differ. Equations 35, No. 3, 875-893 (2019). MSC: 76M20 65M06 65M12 35R11 35Q35 76A10 PDF BibTeX XML Cite \textit{J. Zhang} et al., Numer. Methods Partial Differ. Equations 35, No. 3, 875--893 (2019; Zbl 1418.76039) Full Text: DOI
Saghali, Sahar; Javidi, Mohammad; Saei, Farhad Dastmalchi Analytical solution of a fractional differential equation in the theory of viscoelastic fluids. (English) Zbl 1419.35222 Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 53, 13 p. (2019). MSC: 35R11 76A05 35Q35 PDF BibTeX XML Cite \textit{S. Saghali} et al., Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 53, 13 p. (2019; Zbl 1419.35222) Full Text: DOI
Seol, Yunchang; Tseng, Yu-Hau; Kim, Yongsam; Lai, Ming-Chih An immersed boundary method for simulating Newtonian vesicles in viscoelastic fluid. (English) Zbl 1416.76228 J. Comput. Phys. 376, 1009-1027 (2019). MSC: 76M25 76T99 76Z05 92C35 PDF BibTeX XML Cite \textit{Y. Seol} et al., J. Comput. Phys. 376, 1009--1027 (2019; Zbl 1416.76228) Full Text: DOI
Al-Maskari, Mariam; Karaa, Samir Galerkin FEM for a time-fractional Oldroyd-B fluid problem. (English) Zbl 1415.76444 Adv. Comput. Math. 45, No. 2, 1005-1029 (2019). MSC: 76M10 76A10 65M60 65M12 65M15 PDF BibTeX XML Cite \textit{M. Al-Maskari} and \textit{S. Karaa}, Adv. Comput. Math. 45, No. 2, 1005--1029 (2019; Zbl 1415.76444) Full Text: DOI arXiv
Chen, Qionglei; Hao, Xiaonan An Osgood type regularity criterion for the 2D Oldroyd-B model. (English) Zbl 1421.35269 Math. Methods Appl. Sci. 42, No. 5, 1652-1661 (2019). Reviewer: Piotr Biler (Wrocław) MSC: 35Q35 76A10 35B40 35B65 42B25 PDF BibTeX XML Cite \textit{Q. Chen} and \textit{X. Hao}, Math. Methods Appl. Sci. 42, No. 5, 1652--1661 (2019; Zbl 1421.35269) Full Text: DOI
Hieber, Matthias; Wen, Huanyao; Zi, Ruizhao Optimal decay rates for solutions to the incompressible Oldroyd-B model in \(\mathbb{R}^3\). (English) Zbl 1410.35123 Nonlinearity 32, No. 3, 833-852 (2019). MSC: 35Q35 76A10 35D30 35D35 PDF BibTeX XML Cite \textit{M. Hieber} et al., Nonlinearity 32, No. 3, 833--852 (2019; Zbl 1410.35123) Full Text: DOI
Feng, Libo; Liu, Fawang; Turner, Ian; Zheng, Liancun Novel numerical analysis of multi-term time fractional viscoelastic non-Newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid. (English) Zbl 1439.76120 Fract. Calc. Appl. Anal. 21, No. 4, 1073-1103 (2018). MSC: 76M20 76W05 35Q35 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{L. Feng} et al., Fract. Calc. Appl. Anal. 21, No. 4, 1073--1103 (2018; Zbl 1439.76120) Full Text: DOI
Boujena, S.; Kafi, O.; Sequeira, A. Mathematical study of a single leukocyte in microchannel flow. (English) Zbl 1405.35222 Math. Model. Nat. Phenom. 13, No. 5, Paper No. 43, 16 pp. (2018). MSC: 35Q92 92C35 76Z05 76S05 35Q35 PDF BibTeX XML Cite \textit{S. Boujena} et al., Math. Model. Nat. Phenom. 13, No. 5, Paper No. 43, 16 pp. (2018; Zbl 1405.35222) Full Text: DOI
Raghunatha, K. R.; Shivakumara, I. S. Stability of triple diffusive convection in a viscoelastic fluid-saturated porous layer. (English) Zbl 1402.76129 AMM, Appl. Math. Mech., Engl. Ed. 39, No. 10, 1385-1410 (2018). MSC: 76S05 76E06 80A20 PDF BibTeX XML Cite \textit{K. R. Raghunatha} and \textit{I. S. Shivakumara}, AMM, Appl. Math. Mech., Engl. Ed. 39, No. 10, 1385--1410 (2018; Zbl 1402.76129) Full Text: DOI
Norouzi, M.; Davoodi, M.; Anwar Bég, O.; Shamshuddin, MD. Theoretical study of Oldroyd-B visco-elastic fluid flow through curved pipes with slip effects in polymer flow processing. (English) Zbl 1442.76015 Int. J. Appl. Comput. Math. 4, No. 4, Paper No. 108, 22 p. (2018). MSC: 76A10 PDF BibTeX XML Cite \textit{M. Norouzi} et al., Int. J. Appl. Comput. Math. 4, No. 4, Paper No. 108, 22 p. (2018; Zbl 1442.76015) Full Text: DOI
Chiu, Shang-Huan; Pan, Tsorng-Whay; Glowinski, Roland A 3D DLM/FD method for simulating the motion of spheres in a bounded shear flow of Oldroyd-B fluids. (English) Zbl 1410.76163 Comput. Fluids 172, 661-673 (2018). MSC: 76M10 65M60 76A10 76T20 PDF BibTeX XML Cite \textit{S.-H. Chiu} et al., Comput. Fluids 172, 661--673 (2018; Zbl 1410.76163) Full Text: DOI
Raghunatha, K. R.; Shivakumara, I. S.; Sowbhagya Stability of buoyancy-driven convection in an Oldroyd-B fluid-saturated anisotropic porous layer. (English) Zbl 1392.76088 AMM, Appl. Math. Mech., Engl. Ed. 39, No. 5, 653-666 (2018). MSC: 76S05 76E06 76A10 PDF BibTeX XML Cite \textit{K. R. Raghunatha} et al., AMM, Appl. Math. Mech., Engl. Ed. 39, No. 5, 653--666 (2018; Zbl 1392.76088) Full Text: DOI
Lu, Yong; Zhang, Zhifei Relative entropy, weak-strong uniqueness, and conditional regularity for a compressible Oldroyd-B model. (English) Zbl 1392.35232 SIAM J. Math. Anal. 50, No. 1, 557-590 (2018). Reviewer: Vladimir Mityushev (Kraków) MSC: 35Q35 76N10 76A05 35B44 35D35 PDF BibTeX XML Cite \textit{Y. Lu} and \textit{Z. Zhang}, SIAM J. Math. Anal. 50, No. 1, 557--590 (2018; Zbl 1392.35232) Full Text: DOI arXiv
Barrett, John W.; Süli, Endre Existence of global weak solutions to the kinetic Hookean dumbbell model for incompressible dilute polymeric fluids. (English) Zbl 1379.35232 Nonlinear Anal., Real World Appl. 39, 362-395 (2018). MSC: 35Q35 35Q84 35D30 76A05 76D05 PDF BibTeX XML Cite \textit{J. W. Barrett} and \textit{E. Süli}, Nonlinear Anal., Real World Appl. 39, 362--395 (2018; Zbl 1379.35232) Full Text: DOI
Chen, Shurui; Shen, Ming; Chen, Hui Unsteady boundary layer flow of fractional Oldroyd-B viscoelastic fluid past a moving plate in a porous medium. (English) Zbl 1399.76005 Ann. Appl. Math. 33, No. 4, 353-363 (2017). MSC: 76A10 76D10 76S05 26A33 PDF BibTeX XML Cite \textit{S. Chen} et al., Ann. Appl. Math. 33, No. 4, 353--363 (2017; Zbl 1399.76005)
Castillo, E.; Codina, R. Finite element approximation of the viscoelastic flow problem: a non-residual based stabilized formulation. (English) Zbl 1390.76297 Comput. Fluids 142, 72-78 (2017). MSC: 76M10 65M60 76A10 PDF BibTeX XML Cite \textit{E. Castillo} and \textit{R. Codina}, Comput. Fluids 142, 72--78 (2017; Zbl 1390.76297) Full Text: DOI
Barrett, John W.; Lu, Yong; Süli, Endre Existence of large-data finite-energy global weak solutions to a compressible Oldroyd-B model. (English) Zbl 1390.35007 Commun. Math. Sci. 15, No. 5, 1265-1323 (2017). MSC: 35A01 35Q35 76A05 PDF BibTeX XML Cite \textit{J. W. Barrett} et al., Commun. Math. Sci. 15, No. 5, 1265--1323 (2017; Zbl 1390.35007) Full Text: DOI
Di Iorio, Elena; Marcati, Pierangelo; Spirito, Stefano Splash singularities for a 2D Oldroyd-B model with nonlinear Piola-Kirchhoff stress. (English) Zbl 1383.35159 NoDEA, Nonlinear Differ. Equ. Appl. 24, No. 6, Paper No. 60, 20 p. (2017). MSC: 35Q35 35Q30 76D27 76A10 35B35 35A01 PDF BibTeX XML Cite \textit{E. Di Iorio} et al., NoDEA, Nonlinear Differ. Equ. Appl. 24, No. 6, Paper No. 60, 20 p. (2017; Zbl 1383.35159) Full Text: DOI
Constantin, Peter Analysis of hydrodynamic models. (English) Zbl 1402.76003 CBMS-NSF Regional Conference Series in Applied Mathematics 90. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM) (ISBN 978-1-61197-479-9/pbk; 978-1-61197-480-5/ebook). ix, 63 p. (2017). Reviewer: Gelu Paşa (Bucureşti) MSC: 76-02 76B03 76S05 35Q31 35Q35 PDF BibTeX XML Cite \textit{P. Constantin}, Analysis of hydrodynamic models. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM) (2017; Zbl 1402.76003) Full Text: DOI
Castillo, Ernesto; Codina, Ramon Numerical analysis of a stabilized finite element approximation for the three-field linearized viscoelastic fluid problem using arbitrary interpolations. (English) Zbl 1393.76008 ESAIM, Math. Model. Numer. Anal. 51, No. 4, 1407-1427 (2017). MSC: 76A10 76M10 65N30 65N12 PDF BibTeX XML Cite \textit{E. Castillo} and \textit{R. Codina}, ESAIM, Math. Model. Numer. Anal. 51, No. 4, 1407--1427 (2017; Zbl 1393.76008) Full Text: DOI
Mahanthesh, B.; Gireesha, B. J.; Shehzad, S. A.; Abbasi, F. M.; Gorla, R. S. R. Nonlinear three-dimensional stretched flow of an Oldroyd-B fluid with convective condition, thermal radiation, and mixed convection. (English) Zbl 1367.76003 AMM, Appl. Math. Mech., Engl. Ed. 38, No. 7, 969-980 (2017). MSC: 76A05 80A20 PDF BibTeX XML Cite \textit{B. Mahanthesh} et al., AMM, Appl. Math. Mech., Engl. Ed. 38, No. 7, 969--980 (2017; Zbl 1367.76003) Full Text: DOI
Hayat, T.; Kiran, A.; Imtiaz, M.; Alsaedi, A. Melting heat and thermal radiation effects in stretched flow of an Oldroyd-B fluid. (English) Zbl 1367.76001 AMM, Appl. Math. Mech., Engl. Ed. 38, No. 7, 957-968 (2017). MSC: 76A05 76W05 76R05 76R10 PDF BibTeX XML Cite \textit{T. Hayat} et al., AMM, Appl. Math. Mech., Engl. Ed. 38, No. 7, 957--968 (2017; Zbl 1367.76001) Full Text: DOI
Perrotti, Louis; Walkington, Noel J.; Wang, Daren Numerical approximation of viscoelastic fluids. (English) Zbl 1398.76122 ESAIM, Math. Model. Numer. Anal. 51, No. 3, 1119-1144 (2017). MSC: 76M10 65M60 65M12 65M15 76A10 PDF BibTeX XML Cite \textit{L. Perrotti} et al., ESAIM, Math. Model. Numer. Anal. 51, No. 3, 1119--1144 (2017; Zbl 1398.76122) Full Text: DOI
Rasheed, Amer; Wahab, Abdul; Shah, Shaista Qaim; Nawaz, Rab Finite difference-finite element approach for solving fractional Oldroyd-B equation. (English) Zbl 1419.35003 Adv. Difference Equ. 2016, Paper No. 236, 21 p. (2016). MSC: 35A15 35R11 76A05 76A10 76D99 76M10 PDF BibTeX XML Cite \textit{A. Rasheed} et al., Adv. Difference Equ. 2016, Paper No. 236, 21 p. (2016; Zbl 1419.35003) Full Text: DOI
Sedaghat, M. H.; Shahmardan, M. M.; Norouzi, M.; Jayathilake, P. G.; Nazari, M. Numerical simulation of muco-ciliary clearance: immersed boundary-lattice Boltzmann method. (English) Zbl 1390.76762 Comput. Fluids 131, 91-101 (2016). MSC: 76M28 76Z05 92C35 PDF BibTeX XML Cite \textit{M. H. Sedaghat} et al., Comput. Fluids 131, 91--101 (2016; Zbl 1390.76762) Full Text: DOI
Osmanlic, F.; Körner, C. Lattice Boltzmann method for Oldroyd-B fluids. (English) Zbl 1390.76752 Comput. Fluids 124, 190-196 (2016). MSC: 76M28 76A10 PDF BibTeX XML Cite \textit{F. Osmanlic} and \textit{C. Körner}, Comput. Fluids 124, 190--196 (2016; Zbl 1390.76752) Full Text: DOI
Zaman, Akbar; Ali, Nasir; Anwar Beg, O.; Sajid, M. Unsteady two-layered blood flow through a \(w\)-shaped stenosed artery using the generalized Oldroyd-B fluid model. (English) Zbl 1433.76202 ANZIAM J. 58, No. 1, 96-118 (2016). MSC: 76Z05 76A05 92C35 35Q35 PDF BibTeX XML Cite \textit{A. Zaman} et al., ANZIAM J. 58, No. 1, 96--118 (2016; Zbl 1433.76202) Full Text: DOI
Ming, Chunying; Liu, Fawang; Zheng, Liancun; Turner, Ian; Anh, Vo Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelastic fluid. (English) Zbl 1398.35277 Comput. Math. Appl. 72, No. 9, 2084-2097 (2016). MSC: 35R11 35Q35 76A10 PDF BibTeX XML Cite \textit{C. Ming} et al., Comput. Math. Appl. 72, No. 9, 2084--2097 (2016; Zbl 1398.35277) Full Text: DOI
Zafar, Azhar Ali; Fetecau, Constantin; Mirza, Itrat Abbas On the flow of Oldroyd-B fluids with fractional derivatives over a plate that applies shear stress to the fluid. (English) Zbl 1374.76016 Math. Rep., Buchar. 18(68), No. 1, 85-108 (2016). MSC: 76A05 74K20 35R11 74F10 PDF BibTeX XML Cite \textit{A. A. Zafar} et al., Math. Rep., Buchar. 18(68), No. 1, 85--108 (2016; Zbl 1374.76016)
Liu, Yaqing; Zheng, Liancun Second-order slip flow of a generalized Oldroyd-B fluid through porous medium. (English) Zbl 1352.35222 Discrete Contin. Dyn. Syst., Ser. S 9, No. 6, 2031-2046 (2016). MSC: 35R11 35Q35 76S05 76D05 76F10 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{L. Zheng}, Discrete Contin. Dyn. Syst., Ser. S 9, No. 6, 2031--2046 (2016; Zbl 1352.35222) Full Text: DOI
Bousbih, Hafedh; Majdoub, Mohamed Weak solutions for generalized stationary Oldroyd-B fluid with a diffusive stress. (English) Zbl 1352.35108 Georgian Math. J. 23, No. 4, 469-475 (2016). MSC: 35Q35 35Q30 35D30 76D03 76A05 76A10 PDF BibTeX XML Cite \textit{H. Bousbih} and \textit{M. Majdoub}, Georgian Math. J. 23, No. 4, 469--475 (2016; Zbl 1352.35108) Full Text: DOI
Ashraf, M. Bilal; Hayat, T.; Alsaedi, A. Radiative mixed convection flow of an Oldroyd-B fluid over an inclined stretching surface. (English. Russian original) Zbl 1446.76062 J. Appl. Mech. Tech. Phys. 57, No. 2, 317-325 (2016); translation from Prikl. Mekh. Tekh. Fiz. 57, No. 2, 142-151 (2016). MSC: 76A10 80A21 76R99 PDF BibTeX XML Cite \textit{M. B. Ashraf} et al., J. Appl. Mech. Tech. Phys. 57, No. 2, 317--325 (2016; Zbl 1446.76062); translation from Prikl. Mekh. Tekh. Fiz. 57, No. 2, 142--151 (2016) Full Text: DOI
Hayat, T.; Imtiaz, M.; Alsaedi, A. Boundary layer flow of Oldroyd-B fluid by exponentially stretching sheet. (English) Zbl 1342.76009 AMM, Appl. Math. Mech., Engl. Ed. 37, No. 5, 573-582 (2016). MSC: 76A05 76E06 76N20 PDF BibTeX XML Cite \textit{T. Hayat} et al., AMM, Appl. Math. Mech., Engl. Ed. 37, No. 5, 573--582 (2016; Zbl 1342.76009) Full Text: DOI
Maryani, Sri On the free boundary problem for the Oldroyd-B model in the maximal \(L_p-L_q\) regularity class. (English) Zbl 1338.35373 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 141, 109-129 (2016). MSC: 35Q35 76N10 PDF BibTeX XML Cite \textit{S. Maryani}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 141, 109--129 (2016; Zbl 1338.35373) Full Text: DOI
Lukáčová-Medvid’ová, Mária; Mizerová, Hana; She, Bangwei; Stebel, Jan Error analysis of finite element and finite volume methods for some viscoelastic fluids. (English) Zbl 1338.76059 J. Numer. Math. 24, No. 2, 105-123 (2016). MSC: 76M10 76M12 65M15 65M60 76Dxx PDF BibTeX XML Cite \textit{M. Lukáčová-Medvid'ová} et al., J. Numer. Math. 24, No. 2, 105--123 (2016; Zbl 1338.76059) Full Text: DOI
Maryani, Sri Global well-posedness for free boundary problem of the Oldroyd-B model fluid flow. (English) Zbl 1342.35264 Math. Methods Appl. Sci. 39, No. 9, 2202-2219 (2016). MSC: 35Q35 76N10 76A05 35R35 PDF BibTeX XML Cite \textit{S. Maryani}, Math. Methods Appl. Sci. 39, No. 9, 2202--2219 (2016; Zbl 1342.35264) Full Text: DOI
Kang, Shin Min; Nazeer, Waqas; Athar, Muhammad; Hisham, Muhammad Danial; Kwun, Young Chel Velocity and shear stress for an Oldroyd-B fluid within two cylinders. (English) Zbl 1339.35244 Bound. Value Probl. 2016, Paper No. 40, 11 p. (2016). MSC: 35Q35 76A05 76U05 44A10 PDF BibTeX XML Cite \textit{S. M. Kang} et al., Bound. Value Probl. 2016, Paper No. 40, 11 p. (2016; Zbl 1339.35244) Full Text: DOI
Javid, K.; Ali, N.; Sajid, M. Simultaneous effects of viscoelasticity and curvature on peristaltic flow through a curved channel. (English) Zbl 1382.76303 Meccanica 51, No. 1, 87-98 (2016). MSC: 76Z05 92C35 74F10 76A05 PDF BibTeX XML Cite \textit{K. Javid} et al., Meccanica 51, No. 1, 87--98 (2016; Zbl 1382.76303) Full Text: DOI
Sajid, M.; Zaman, A.; Ali, N.; Siddiqui, A. M. Pulsatile flow of blood in a vessel using an Oldroyd-B fluid. (English) Zbl 1401.76170 Int. J. Nonlinear Sci. Numer. Simul. 16, No. 5, 197-206 (2015). MSC: 76Z05 76M20 92C35 PDF BibTeX XML Cite \textit{M. Sajid} et al., Int. J. Nonlinear Sci. Numer. Simul. 16, No. 5, 197--206 (2015; Zbl 1401.76170) Full Text: DOI
Ramzan, M.; Farooq, M.; Alhothuali, M. S.; Malaikah, H. M.; Cui, W.; Hayat, T. Three dimensional flow of an Oldroyd-B fluid with Newtonian heating. (English) Zbl 1356.76032 Int. J. Numer. Methods Heat Fluid Flow 25, No. 1, 68-85 (2015). MSC: 76A10 PDF BibTeX XML Cite \textit{M. Ramzan} et al., Int. J. Numer. Methods Heat Fluid Flow 25, No. 1, 68--85 (2015; Zbl 1356.76032) Full Text: DOI
Vasileva, Daniela; Bazhlekov, Ivan; Ayryan, Edik; Bazhlekova, Emilia A compact alternating direction implicit scheme for two-dimensional fractional Oldroyd-B fluids. (English) Zbl 1363.35372 PLISKA, Stud. Math. 25, 213-224 (2015). MSC: 35R11 65M06 65M22 74D05 26A33 PDF BibTeX XML Cite \textit{D. Vasileva} et al., PLISKA, Stud. Math. 25, 213--224 (2015; Zbl 1363.35372) Full Text: Link
Sajid, M.; Ahmed, B.; Abbas, Z. Steady mixed convection stagnation point flow of MHD Oldroyd-B fluid over a stretching sheet. (English) Zbl 1330.76145 J. Egypt. Math. Soc. 23, No. 2, 440-444 (2015). MSC: 76W05 76M20 65N06 76D05 76R10 PDF BibTeX XML Cite \textit{M. Sajid} et al., J. Egypt. Math. Soc. 23, No. 2, 440--444 (2015; Zbl 1330.76145) Full Text: DOI
Zhou, Wen; Xie, Yan; Ouyang, Jie; Li, Qiang Simulating viscoelastic flow field based on DCQ-QUICK scheme. (Chinese. English summary) Zbl 1340.76006 Chin. J. Eng. Math. 32, No. 1, 50-60 (2015). MSC: 76A10 76M25 76M12 PDF BibTeX XML Cite \textit{W. Zhou} et al., Chin. J. Eng. Math. 32, No. 1, 50--60 (2015; Zbl 1340.76006) Full Text: DOI
Elgindi, Tarek M.; Liu, Jianli Global wellposedness to the generalized Oldroyd type models in \(\mathbb{R}^3\). (English) Zbl 1326.35265 J. Differ. Equations 259, No. 5, 1958-1966 (2015). Reviewer: S. C. Rajvanshi (Chandigarh) MSC: 35Q35 76A10 35D35 PDF BibTeX XML Cite \textit{T. M. Elgindi} and \textit{J. Liu}, J. Differ. Equations 259, No. 5, 1958--1966 (2015; Zbl 1326.35265) Full Text: DOI
Constantin, Peter Lagrangian-Eulerian methods for uniqueness in hydrodynamic systems. (English) Zbl 1384.76008 Adv. Math. 278, 67-102 (2015). MSC: 76A10 76W05 35Q35 PDF BibTeX XML Cite \textit{P. Constantin}, Adv. Math. 278, 67--102 (2015; Zbl 1384.76008) Full Text: DOI
Ren, Dandan; Ou, Yaobin Strong solutions to an Oldroyd-B model with slip boundary conditions via incompressible limit. (English) Zbl 1308.35226 Math. Methods Appl. Sci. 38, No. 2, 330-348 (2015). MSC: 35Q35 76A10 76D03 35D35 PDF BibTeX XML Cite \textit{D. Ren} and \textit{Y. Ou}, Math. Methods Appl. Sci. 38, No. 2, 330--348 (2015; Zbl 1308.35226) Full Text: DOI
Hayat, T.; Hussain, Zakir; Farooq, M.; Alsaedi, A.; Obaid, Mustafa Thermally stratified stagnation point flow of an Oldroyd-B fluid. (English) Zbl 1401.76011 Int. J. Nonlinear Sci. Numer. Simul. 15, No. 1, 77-86 (2014). MSC: 76A05 76E06 76R10 PDF BibTeX XML Cite \textit{T. Hayat} et al., Int. J. Nonlinear Sci. Numer. Simul. 15, No. 1, 77--86 (2014; Zbl 1401.76011) Full Text: DOI
Castillo, Ernesto; Codina, Ramon Variational multi-scale stabilized formulations for the stationary three-field incompressible viscoelastic flow problem. (English) Zbl 1423.76217 Comput. Methods Appl. Mech. Eng. 279, 579-605 (2014). MSC: 76M10 65N30 76A10 PDF BibTeX XML Cite \textit{E. Castillo} and \textit{R. Codina}, Comput. Methods Appl. Mech. Eng. 279, 579--605 (2014; Zbl 1423.76217) Full Text: DOI
Abbasbandy, S.; Hayat, T.; Alsaedi, A.; Rashidi, M. M. Numerical and analytical solutions for Falkner-Skan flow of MHD Oldroyd-B fluid. (English) Zbl 1356.76416 Int. J. Numer. Methods Heat Fluid Flow 24, No. 2, 390-401 (2014). MSC: 76W05 76A10 PDF BibTeX XML Cite \textit{S. Abbasbandy} et al., Int. J. Numer. Methods Heat Fluid Flow 24, No. 2, 390--401 (2014; Zbl 1356.76416) Full Text: DOI
Khan, Amir; Zaman, Gul On oscillatory motion of a generalized MHD Oldroyd-B fluid. (English) Zbl 1327.76011 Int. J. Appl. Math. 27, No. 6, 605-612 (2014). MSC: 76A05 76A10 PDF BibTeX XML Cite \textit{A. Khan} and \textit{G. Zaman}, Int. J. Appl. Math. 27, No. 6, 605--612 (2014; Zbl 1327.76011)
Bazhlekova, Emilia; Bazhlekov, Ivan Viscoelastic flows with fractional derivative models: computational approach by convolutional calculus of Dimovski. (English) Zbl 1314.76007 Fract. Calc. Appl. Anal. 17, No. 4, 954-976 (2014). MSC: 76A10 26A33 35R11 44A35 44A40 74D05 PDF BibTeX XML Cite \textit{E. Bazhlekova} and \textit{I. Bazhlekov}, Fract. Calc. Appl. Anal. 17, No. 4, 954--976 (2014; Zbl 1314.76007) Full Text: DOI
Fang, Daoyuan; Han, Bin; Zhang, Ting Global existence in critical spaces for density-dependent incompressible viscoelastic fluids. (English) Zbl 1301.35107 Acta Appl. Math. 130, No. 1, 51-80 (2014). MSC: 35Q35 35Q30 76D03 76A10 42B25 35B65 PDF BibTeX XML Cite \textit{D. Fang} et al., Acta Appl. Math. 130, No. 1, 51--80 (2014; Zbl 1301.35107) Full Text: DOI arXiv
Nesensohn, Manuel Generalized viscoelastic fluids with a free boundary without surface tension. (English) Zbl 1287.35108 SIAM J. Math. Anal. 46, No. 1, 428-458 (2014). MSC: 35R35 35Q35 76A10 76D03 PDF BibTeX XML Cite \textit{M. Nesensohn}, SIAM J. Math. Anal. 46, No. 1, 428--458 (2014; Zbl 1287.35108) Full Text: DOI
Fang, Daoyuan; Zi, Ruizhao Incompressible limit of Oldroyd-B fluids in the whole space. (English) Zbl 1302.76015 J. Differ. Equations 256, No. 7, 2559-2602 (2014). Reviewer: Valeriu Al. Sava (Paris) MSC: 76A10 35Q35 PDF BibTeX XML Cite \textit{D. Fang} and \textit{R. Zi}, J. Differ. Equations 256, No. 7, 2559--2602 (2014; Zbl 1302.76015) Full Text: DOI
Hayat, T.; Shehzad, S. A.; Alsaedi, A.; Alhothuali, M. S. Three-dimensional flow of Oldroyd-B fluid over surface with convective boundary conditions. (English) Zbl 1400.76057 Appl. Math. Mech., Engl. Ed. 34, No. 4, 489-500 (2013). MSC: 76M25 76A05 PDF BibTeX XML Cite \textit{T. Hayat} et al., Appl. Math. Mech., Engl. Ed. 34, No. 4, 489--500 (2013; Zbl 1400.76057) Full Text: DOI
Jamil, Muhammad; Khan, Najeeb Alam; Imran, Muhammad Asjad New exact solutions for an Oldroyd-B fluid with fractional derivatives: Stokes’ first problem. (English) Zbl 1401.76012 Int. J. Nonlinear Sci. Numer. Simul. 14, No. 7-8, 443-451 (2013). MSC: 76A05 76A10 PDF BibTeX XML Cite \textit{M. Jamil} et al., Int. J. Nonlinear Sci. Numer. Simul. 14, No. 7--8, 443--451 (2013; Zbl 1401.76012) Full Text: DOI
Chinyoka, T.; Makinde, O. D. Viscoelastic modeling of the diffusion of polymeric pollutants injected into a pipe flow. (English) Zbl 1345.76005 Acta Mech. Sin. 29, No. 2, 166-178 (2013). MSC: 76A05 76A10 76M20 PDF BibTeX XML Cite \textit{T. Chinyoka} and \textit{O. D. Makinde}, Acta Mech. Sin. 29, No. 2, 166--178 (2013; Zbl 1345.76005) Full Text: DOI
Keslerová, Radka; Kozel, Karel Numerical simulation of generalized Newtonian and Oldroyd-B fluids flow. (English) Zbl 1340.76021 Chleboun, J. (ed.) et al., Programs and algorithms of numerical mathematics 16. Proceedings of the 16th seminar (PANM), Dolní Maxov, Czech Republic, June 3–8, 2012. Prague: Academy of Sciences of the Czech Republic, Institute of Mathematics (ISBN 978-80-85823-62-2). 112-117 (2013). Reviewer: Marek Brandner (Plzeň) MSC: 76D05 35Q30 76M12 76A05 PDF BibTeX XML Cite \textit{R. Keslerová} and \textit{K. Kozel}, in: Programs and algorithms of numerical mathematics 16. Proceedings of the 16th seminar (PANM), Dolní Maxov, Czech Republic, June 3--8, 2012. Prague: Academy of Sciences of the Czech Republic, Institute of Mathematics. 112--117 (2013; Zbl 1340.76021) Full Text: Link
Kamran, M.; Imran, M.; Athar, M. Exact solutions for the unsteady rotational flow of an Oldroyd-B fluid with fractional derivatives induced by a circular cylinder. (English) Zbl 1293.76029 Meccanica 48, No. 5, 1215-1226 (2013). MSC: 76A10 76U05 26A33 PDF BibTeX XML Cite \textit{M. Kamran} et al., Meccanica 48, No. 5, 1215--1226 (2013; Zbl 1293.76029) Full Text: DOI
Chinyoka, T.; Goqo, S. P.; Olajuwon, B. I. Computational analysis of gravity driven flow of a variable viscosity viscoelastic fluid down an inclined plane. (English) Zbl 1290.76096 Comput. Fluids 84, 315-326 (2013). MSC: 76M20 76A10 PDF BibTeX XML Cite \textit{T. Chinyoka} et al., Comput. Fluids 84, 315--326 (2013; Zbl 1290.76096) Full Text: DOI
Fang, Daoyuang; Hieber, Matthias; Zi, Ruizhao Global existence results for Oldroyd-B fluids in exterior domains: the case of non-small coupling parameters. (English) Zbl 1314.35097 Math. Ann. 357, No. 2, 687-709 (2013). Reviewer: Diego Chamorro (Evry) MSC: 35Q35 76D03 76A10 35A01 PDF BibTeX XML Cite \textit{D. Fang} et al., Math. Ann. 357, No. 2, 687--709 (2013; Zbl 1314.35097) Full Text: DOI arXiv
Hieber, Matthias Remarks on the theory of Oldroyd-B fluids in exterior domains. (English) Zbl 1260.35143 Discrete Contin. Dyn. Syst., Ser. S 6, No. 5, 1307-1313 (2013). MSC: 35Q35 76D03 76D05 PDF BibTeX XML Cite \textit{M. Hieber}, Discrete Contin. Dyn. Syst., Ser. S 6, No. 5, 1307--1313 (2013; Zbl 1260.35143) Full Text: DOI
Fetecau, Constantin; Shahid, Nazish; Khan, Masood Flow of a fractional Oldroyd-B fluid over a plane wall that applies a time-dependent shear to the fluid. (English) Zbl 1433.76008 Baskoro, Edy Tri (ed.) et al., The 5th international conference on research and education in mathematics, ICREM5, Bandung, Indonesia, October, 22–24, 2011. Melville, NY: American Institute of Physics (AIP). AIP Conf. Proc. 1450, 65-76 (2012). MSC: 76A05 PDF BibTeX XML Cite \textit{C. Fetecau} et al., AIP Conf. Proc. 1450, 65--76 (2012; Zbl 1433.76008) Full Text: DOI
Hayat, T.; Awais, M.; Obaidat, S. Similar solution for three-dimensional flow in an oldroyd-B fluid over a stretching surface. (English) Zbl 1412.76011 Int. J. Numer. Methods Fluids 70, No. 7, 851-859 (2012). MSC: 76A05 76M25 PDF BibTeX XML Cite \textit{T. Hayat} et al., Int. J. Numer. Methods Fluids 70, No. 7, 851--859 (2012; Zbl 1412.76011) Full Text: DOI
Zafar, Azhar Ali; Rauf, Abdul; Vieru, Dumitru On exact solution for flow of a fractal Oldroyd-B fluid between two side walls perpendicular to a plate. (English) Zbl 1413.76008 Bul. Inst. Politeh. Iaşi, Secţ. I, Mat. Mec. Teor. Fiz. 58(62), No. 2, 17-30 (2012). MSC: 76A05 76A99 PDF BibTeX XML Cite \textit{A. A. Zafar} et al., Bul. Inst. Politeh. Iaşi, Secţ. I, Mat. Mec. Teor. Fiz. 58(62), No. 2, 17--30 (2012; Zbl 1413.76008)
Sirwah, Magdy A. Linear instability of the electrified free interface between two cylindrical shells of viscoelastic fluids through porous media. (English) Zbl 1345.76012 Acta Mech. Sin. 28, No. 6, 1572-1589 (2012). MSC: 76A10 74F10 76S05 74K20 76W05 76E05 PDF BibTeX XML Cite \textit{M. A. Sirwah}, Acta Mech. Sin. 28, No. 6, 1572--1589 (2012; Zbl 1345.76012) Full Text: DOI
Kamran, M.; Imran, M.; Athar, M.; Imran, M. A. On the unsteady rotational flow of fractional Oldroyd-B fluid in cylindrical domains. (English) Zbl 1293.76030 Meccanica 47, No. 3, 573-584 (2012). MSC: 76A10 76U05 PDF BibTeX XML Cite \textit{M. Kamran} et al., Meccanica 47, No. 3, 573--584 (2012; Zbl 1293.76030) Full Text: DOI
Lee, Hsueh-Chen A nonlinear weighted least-squares finite element method for the Oldroyd-B viscoelastic flow. (English) Zbl 1291.76206 Appl. Math. Comput. 219, No. 1, 421-434 (2012). MSC: 76M10 76A10 65N30 PDF BibTeX XML Cite \textit{H.-C. Lee}, Appl. Math. Comput. 219, No. 1, 421--434 (2012; Zbl 1291.76206) Full Text: DOI
Shahid, Nazish; Rana, Mehwish; Siddique, Imran Exact solution for motion of an Oldroyd-B fluid over an infinite flat plate that applies an oscillating shear stress to the fluid. (English) Zbl 1273.76027 Bound. Value Probl. 2012, Paper No. 48, 19 p. (2012). MSC: 76A05 76A10 PDF BibTeX XML Cite \textit{N. Shahid} et al., Bound. Value Probl. 2012, Paper No. 48, 19 p. (2012; Zbl 1273.76027) Full Text: DOI
Constantin, Peter; Sun, Weiran Remarks on Oldroyd-B and related complex fluid models. (English) Zbl 1291.35201 Commun. Math. Sci. 10, No. 1, 33-73 (2012). MSC: 35Q31 35Q35 35Q70 35Q84 PDF BibTeX XML Cite \textit{P. Constantin} and \textit{W. Sun}, Commun. Math. Sci. 10, No. 1, 33--73 (2012; Zbl 1291.35201) Full Text: DOI arXiv
Li, Chunrui; Zheng, Liancun; Zhang, Yue; Ma, Lianxi; Zhang, Xinxin Helical flows of a heated generalized Oldroyd-B fluid subject to a time-dependent shear stress in porous medium. (English) Zbl 1302.76016 Commun. Nonlinear Sci. Numer. Simul. 17, No. 12, 5026-5041 (2012). Reviewer: Valeriu Al. Sava (Paris) MSC: 76A10 PDF BibTeX XML Cite \textit{C. Li} et al., Commun. Nonlinear Sci. Numer. Simul. 17, No. 12, 5026--5041 (2012; Zbl 1302.76016) Full Text: DOI
Zhang, Ting; Fang, Daoyuan Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical \(L^p\) framework. (English) Zbl 1390.76029 SIAM J. Math. Anal. 44, No. 4, 2266-2288 (2012). MSC: 76A10 35Q35 76D03 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{D. Fang}, SIAM J. Math. Anal. 44, No. 4, 2266--2288 (2012; Zbl 1390.76029) Full Text: DOI arXiv
Geissert, Matthias; Götz, Dario; Nesensohn, Manuel \(L_p\)-theory for a generalized nonlinear viscoelastic fluid model of differential type in various domains. (English) Zbl 1392.76004 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75, No. 13, 5015-5026 (2012). MSC: 76A10 35Q35 PDF BibTeX XML Cite \textit{M. Geissert} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75, No. 13, 5015--5026 (2012; Zbl 1392.76004) Full Text: DOI
Zheng, Liancun; Liu, Yaqing; Zhang, Xinxin Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative. (English) Zbl 1238.76056 Nonlinear Anal., Real World Appl. 13, No. 2, 513-523 (2012). MSC: 76W05 76A05 33C80 PDF BibTeX XML Cite \textit{L. Zheng} et al., Nonlinear Anal., Real World Appl. 13, No. 2, 513--523 (2012; Zbl 1238.76056) Full Text: DOI
Hieber, Matthias; Naito, Yuka; Shibata, Yoshihiro Global existence results for Oldroyd-B fluids in exterior domains. (English) Zbl 1234.35195 J. Differ. Equations 252, No. 3, 2617-2629 (2012). Reviewer: Vladimir Mityushev (Kraków) MSC: 35Q35 76D03 76D05 35A02 PDF BibTeX XML Cite \textit{M. Hieber} et al., J. Differ. Equations 252, No. 3, 2617--2629 (2012; Zbl 1234.35195) Full Text: DOI
Fetecău, Corina; Awan, Aziz Ullah; Shahid, Nazish Axial-Couette flow of an Oldroyd-B fluid in an annulus due to a time-dependent shear stress. (English) Zbl 1413.76004 Bul. Inst. Politeh. Iaşi, Secţ. I, Mat. Mec. Teor. Fiz. 57(61), No. 4, 13-26 (2011). MSC: 76A05 PDF BibTeX XML Cite \textit{C. Fetecău} et al., Bul. Inst. Politeh. Iaşi, Secţ. I, Mat. Mec. Teor. Fiz. 57(61), No. 4, 13--26 (2011; Zbl 1413.76004)
Burdujan, Ilie The flow of a particular class of Oldroyd-B fluids. (English) Zbl 1284.76038 Ann. Acad. Rom. Sci., Math. Appl. 3, No. 1, 23-45 (2011). MSC: 76A05 PDF BibTeX XML Cite \textit{I. Burdujan}, Ann. Acad. Rom. Sci., Math. Appl. 3, No. 1, 23--45 (2011; Zbl 1284.76038) Full Text: Link
Thomases, Becca An analysis of the effect of stress diffusion on the dynamics of creeping viscoelastic flow. (English) Zbl 1282.76057 J. Non-Newton. Fluid Mech. 166, No. 21-22, 1221-1228 (2011). MSC: 76A10 PDF BibTeX XML Cite \textit{B. Thomases}, J. Non-Newton. Fluid Mech. 166, No. 21--22, 1221--1228 (2011; Zbl 1282.76057) Full Text: DOI
Sahin, Mehmet A stable unstructured finite volume method for parallel large-scale viscoelastic fluid flow calculations. (English) Zbl 1282.76133 J. Non-Newton. Fluid Mech. 166, No. 14-15, 779-791 (2011). MSC: 76M12 76A10 PDF BibTeX XML Cite \textit{M. Sahin}, J. Non-Newton. Fluid Mech. 166, No. 14--15, 779--791 (2011; Zbl 1282.76133) Full Text: DOI
Housiadas, Kostas D.; Georgiou, Georgios C. Perturbation solution of Poiseuille flow of a weakly compressible Oldroyd-B fluid. (English) Zbl 1281.76016 J. Non-Newton. Fluid Mech. 166, No. 1-2, 73-92 (2011). MSC: 76A10 76M45 76N15 PDF BibTeX XML Cite \textit{K. D. Housiadas} and \textit{G. C. Georgiou}, J. Non-Newton. Fluid Mech. 166, No. 1--2, 73--92 (2011; Zbl 1281.76016) Full Text: DOI
Cardinaels, Ruth; Afkhami, Shahriar; Renardy, Yuriko; Moldenaers, Paula An experimental and numerical investigation of the dynamics of microconfined droplets in systems with one viscoelastic phase. (English) Zbl 1281.76043 J. Non-Newton. Fluid Mech. 166, No. 1-2, 52-62 (2011). MSC: 76T10 76A10 76M20 76-05 PDF BibTeX XML Cite \textit{R. Cardinaels} et al., J. Non-Newton. Fluid Mech. 166, No. 1--2, 52--62 (2011; Zbl 1281.76043) Full Text: DOI
Keslerová, Radka; Kozel, Karel Numerical study of viscous and viscoelastic fluids flow. (English) Zbl 1284.35318 J. Math-for-Ind. 2011, Spec. Issue, 27-32 (2011). MSC: 35Q30 76D05 76A10 76M12 PDF BibTeX XML Cite \textit{R. Keslerová} and \textit{K. Kozel}, J. Math-for-Ind. 2011, 27--32 (2011; Zbl 1284.35318) Full Text: Link
Zaman, Gul; Kang, Yong Han; Jung, Il Hyo Orientational stress tensor of polymer solution with applications to blood flow. (English) Zbl 1263.76007 Mod. Phys. Lett. B 25, No. 12-13, 1157-1166 (2011). MSC: 76A05 76M20 92C35 76Z05 PDF BibTeX XML Cite \textit{G. Zaman} et al., Mod. Phys. Lett. B 25, No. 12--13, 1157--1166 (2011; Zbl 1263.76007) Full Text: DOI
Keslerová, Radka; Kozel, Karel Numerical simulation of viscous and viscoelastic fluids flow by finite volume method. (English) Zbl 1246.76099 Fořt, Jaroslav (ed.) et al., Finite volumes for complex applications VI: Problems and perspectives. FVCA 6, international symposium, Prague, Czech Republich, June 6–10, 2011. Vol. 1 and 2. Berlin: Springer (ISBN 978-3-642-20670-2/hbk; 978-3-642-20671-9/ebook). Springer Proceedings in Mathematics 4, 589-596 (2011). MSC: 76M12 65N08 76D05 65L06 76A05 PDF BibTeX XML Cite \textit{R. Keslerová} and \textit{K. Kozel}, Springer Proc. Math. 4, 589--596 (2011; Zbl 1246.76099) Full Text: DOI
Tripathi, Dharmendra Numerical and analytical simulation of peristaltic flows of generalized Oldroyd-B fluids. (English) Zbl 1426.76043 Int. J. Numer. Methods Fluids 67, No. 12, 1932-1943 (2011). MSC: 76A10 76M45 76M30 PDF BibTeX XML Cite \textit{D. Tripathi}, Int. J. Numer. Methods Fluids 67, No. 12, 1932--1943 (2011; Zbl 1426.76043) Full Text: DOI
Connors, Jeffrey M.; Jenkins, Eleanor W.; Rebholz, Leo G. Small-scale divergence penalization for incompressible flow problems via time relaxation. (English) Zbl 1381.76159 Int. J. Comput. Math. 88, No. 15, 3202-3216 (2011). MSC: 76M10 76A05 76D05 65M60 35Q35 PDF BibTeX XML Cite \textit{J. M. Connors} et al., Int. J. Comput. Math. 88, No. 15, 3202--3216 (2011; Zbl 1381.76159) Full Text: DOI
Christov, Ivan C. Comments on: “Energetic balance for the Rayleigh-Stokes problem of an Oldroyd-B fluid”. (English) Zbl 1231.35162 Nonlinear Anal., Real World Appl. 12, No. 6, 3687-3690 (2011). MSC: 35Q35 76A05 76D08 76M45 PDF BibTeX XML Cite \textit{I. C. Christov}, Nonlinear Anal., Real World Appl. 12, No. 6, 3687--3690 (2011; Zbl 1231.35162) Full Text: DOI