Fu, Hang; Kang, Ming-chang; Wang, Baoshan; Zhou, Jian Noether’s problem for some subgroups of \(S_{14}\): the modular case. (English) Zbl 07285348 J. Algebra 568, 529-546 (2021). MSC: 13A50 14E08 PDF BibTeX XML Cite \textit{H. Fu} et al., J. Algebra 568, 529--546 (2021; Zbl 07285348) Full Text: DOI
Zhang, Lin-Jie; Zhang, Yi Non-standard Birkhoffian dynamics and its Noether’s theorems. (English) Zbl 07281809 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105435, 16 p. (2020). MSC: 70H30 70G75 70H33 37J51 PDF BibTeX XML Cite \textit{L.-J. Zhang} and \textit{Y. Zhang}, Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105435, 16 p. (2020; Zbl 07281809) Full Text: DOI
Dorodnitsyn, V. A.; Kaptsov, E. I. Shallow water equations in Lagrangian coordinates: symmetries, conservation laws and its preservation in difference models. (English) Zbl 1450.76024 Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105343, 23 p. (2020). MSC: 76M20 76B15 76M60 PDF BibTeX XML Cite \textit{V. A. Dorodnitsyn} and \textit{E. I. Kaptsov}, Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105343, 23 p. (2020; Zbl 1450.76024) Full Text: DOI
Ren, Ruichao; Zhang, Shunli Invariant analysis, conservation laws, and some exact solutions for \((2+1)\)-dimension fractional long-wave dispersive system. (English) Zbl 07261316 Comput. Appl. Math. 39, No. 4, Paper No. 249, 21 p. (2020). MSC: 35A09 PDF BibTeX XML Cite \textit{R. Ren} and \textit{S. Zhang}, Comput. Appl. Math. 39, No. 4, Paper No. 249, 21 p. (2020; Zbl 07261316) Full Text: DOI
Popovych, Roman O.; Cheviakov, Alexei F. Variational symmetries and conservation laws of the wave equation in one space dimension. (English) Zbl 1437.35012 Appl. Math. Lett. 104, Article ID 106225, 7 p. (2020). MSC: 35B06 35L05 PDF BibTeX XML Cite \textit{R. O. Popovych} and \textit{A. F. Cheviakov}, Appl. Math. Lett. 104, Article ID 106225, 7 p. (2020; Zbl 1437.35012) Full Text: DOI
Kaptsov, E. I.; Meleshko, S. V. Analysis of the one-dimensional Euler-Lagrange equation of continuum mechanics with a Lagrangian of a special form. (English) Zbl 07193040 Appl. Math. Modelling 77, Part 2, 1497-1511 (2020). MSC: 35 76 PDF BibTeX XML Cite \textit{E. I. Kaptsov} and \textit{S. V. Meleshko}, Appl. Math. Modelling 77, Part 2, 1497--1511 (2020; Zbl 07193040) Full Text: DOI
Tian, Xue; Zhang, Yi Noether’s theorem for fractional Herglotz variational principle in phase space. (English) Zbl 1448.70051 Chaos Solitons Fractals 119, 50-54 (2019). MSC: 70H33 70H30 49S05 49K20 26A33 PDF BibTeX XML Cite \textit{X. Tian} and \textit{Y. Zhang}, Chaos Solitons Fractals 119, 50--54 (2019; Zbl 1448.70051) Full Text: DOI
Huang, Zaixing Noether’s theorem in peridynamics. (English) Zbl 07273372 Math. Mech. Solids 24, No. 11, 3394-3402 (2019). MSC: 74 PDF BibTeX XML Cite \textit{Z. Huang}, Math. Mech. Solids 24, No. 11, 3394--3402 (2019; Zbl 07273372) Full Text: DOI
Dorodnitsyn, V. A.; Kozlov, Roman; Meleshko, Sergey V. One-dimensional gas dynamics equations of a polytropic gas in Lagrangian coordinates: symmetry classification, conservation laws, difference schemes. (English) Zbl 07264811 Commun. Nonlinear Sci. Numer. Simul. 74, 201-218 (2019). MSC: 35 76 PDF BibTeX XML Cite \textit{V. A. Dorodnitsyn} et al., Commun. Nonlinear Sci. Numer. Simul. 74, 201--218 (2019; Zbl 07264811) Full Text: DOI
Urenda-Cázares, Ernesto; Gallegos, A.; Macías-Díaz, J. E.; Vargas-Rodríguez, H. An integral of motion for the damped cubic-quintic Duffing oscillator with variable coefficients. (English) Zbl 07264489 Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104860, 9 p. (2019). MSC: 93D 93C PDF BibTeX XML Cite \textit{E. Urenda-Cázares} et al., Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104860, 9 p. (2019; Zbl 07264489) Full Text: DOI
Lashkarian, Elham; Hejazi, S. Reza; Habibi, Noora; Motamednezhad, Ahmad Symmetry properties, conservation laws, reduction and numerical approximations of time-fractional cylindrical-Burgers equation. (English) Zbl 07263878 Commun. Nonlinear Sci. Numer. Simul. 67, 176-191 (2019). MSC: 00 PDF BibTeX XML Cite \textit{E. Lashkarian} et al., Commun. Nonlinear Sci. Numer. Simul. 67, 176--191 (2019; Zbl 07263878) Full Text: DOI
Wang, Ze; Zhang, Yi A class of quasi-fractional Noether’s theorems for nonconservative systems in event space. (Chinese. English summary) Zbl 1449.37046 Acta Sci. Nat. Univ. Sunyatseni 58, No. 6, 119-127 (2019). MSC: 37J51 37J06 34A08 26A33 70H33 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{Y. Zhang}, Acta Sci. Nat. Univ. Sunyatseni 58, No. 6, 119--127 (2019; Zbl 1449.37046) Full Text: DOI
Wang, Ze; Zhang, Yi Noether’s theorems based on El-Nabulsi extended exponentially quasi-fractional models in event space. (Chinese. English summary) Zbl 1449.37045 J. Suzhou Univ. Sci. Technol., Nat. Sci. 36, No. 3, 7-14 (2019). MSC: 37J51 37J06 34A08 26A33 70H33 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{Y. Zhang}, J. Suzhou Univ. Sci. Technol., Nat. Sci. 36, No. 3, 7--14 (2019; Zbl 1449.37045) Full Text: DOI
Cresson, Jacky; Szafrańska, Anna About the Noether’s theorem for fractional Lagrangian systems and a generalization of the classical Jost method of proof. (English) Zbl 07195224 Fract. Calc. Appl. Anal. 22, No. 4, 871-898 (2019). MSC: 70H03 26A33 34A08 PDF BibTeX XML Cite \textit{J. Cresson} and \textit{A. Szafrańska}, Fract. Calc. Appl. Anal. 22, No. 4, 871--898 (2019; Zbl 07195224) Full Text: DOI
Bustamante, Miguel D.; Lynch, Peter Nonholonomic Noetherian symmetries and integrals of the Routh sphere and the Chaplygin ball. (English) Zbl 1437.37079 Regul. Chaotic Dyn. 24, No. 5, 511-524 (2019). MSC: 37J60 70E18 70F25 70H07 70H33 PDF BibTeX XML Cite \textit{M. D. Bustamante} and \textit{P. Lynch}, Regul. Chaotic Dyn. 24, No. 5, 511--524 (2019; Zbl 1437.37079) Full Text: DOI
Cotter, Colin J.; Cullen, Michael John Priestley Particle relabelling symmetries and Noether’s theorem for vertical slice models. (English) Zbl 1435.35388 J. Geom. Mech. 11, No. 2, 139-151 (2019). MSC: 35Q86 35Q31 86A10 76U05 76U60 35A15 37K06 PDF BibTeX XML Cite \textit{C. J. Cotter} and \textit{M. J. P. Cullen}, J. Geom. Mech. 11, No. 2, 139--151 (2019; Zbl 1435.35388) Full Text: DOI
Reza Hejazi, S.; Hosseinpour, Soleiman; Lashkarian, Elham Approximate symmetries, conservation laws and numerical solutions for a class of perturbed linear wave type system. (English) Zbl 1427.76197 Quaest. Math. 42, No. 10, 1393-1409 (2019). MSC: 76M60 35A30 35Q35 34L16 PDF BibTeX XML Cite \textit{S. Reza Hejazi} et al., Quaest. Math. 42, No. 10, 1393--1409 (2019; Zbl 1427.76197) Full Text: DOI
Baker, Mark Robert; Kuzmin, Sergei A connection between linearized Gauss-Bonnet gravity and classical electrodynamics. (English) Zbl 1425.83050 Int. J. Mod. Phys. D 28, No. 7, Article ID 1950092, 10 p. (2019). MSC: 83D05 78A25 70S15 PDF BibTeX XML Cite \textit{M. R. Baker} and \textit{S. Kuzmin}, Int. J. Mod. Phys. D 28, No. 7, Article ID 1950092, 10 p. (2019; Zbl 1425.83050) Full Text: DOI
Kaparulin, Dmitry S. Conservation laws and stability of field theories of derived type. (English) Zbl 1425.70033 Symmetry 11, No. 5, Paper No. 642, 20 p. (2019). MSC: 70H33 PDF BibTeX XML Cite \textit{D. S. Kaparulin}, Symmetry 11, No. 5, Paper No. 642, 20 p. (2019; Zbl 1425.70033) Full Text: DOI
Montesinos, Merced; Romero, Rodrigo; Díaz, Bogar Symmetries of first-order Lovelock gravity. (English) Zbl 1431.83141 Classical Quantum Gravity 35, No. 23, Article ID 235015, 21 p. (2018). MSC: 83D05 83C20 83C40 81Q10 PDF BibTeX XML Cite \textit{M. Montesinos} et al., Classical Quantum Gravity 35, No. 23, Article ID 235015, 21 p. (2018; Zbl 1431.83141) Full Text: DOI
Montesinos, Merced; Gonzalez, Diego; Celada, Mariano The gauge symmetries of first-order general relativity with matter fields. (English) Zbl 1431.83009 Classical Quantum Gravity 35, No. 20, Article ID 205005, 21 p. (2018). MSC: 83C05 83D05 83C40 53Z05 81T13 PDF BibTeX XML Cite \textit{M. Montesinos} et al., Classical Quantum Gravity 35, No. 20, Article ID 205005, 21 p. (2018; Zbl 1431.83009) Full Text: DOI
Halder, Amlan K.; Paliathanasis, Andronikos; Leach, Peter G. L. Noether’s theorem and symmetry. (English) Zbl 1425.35004 Symmetry 10, No. 12, Paper No. 744, 21 p. (2018). MSC: 35A30 35L65 PDF BibTeX XML Cite \textit{A. K. Halder} et al., Symmetry 10, No. 12, Paper No. 744, 21 p. (2018; Zbl 1425.35004) Full Text: DOI
Tóth, Gábor Zsolt Noether currents for the Teukolsky master equation. (English) Zbl 1409.83115 Classical Quantum Gravity 35, No. 18, Article ID 185009, 17 p. (2018). MSC: 83C57 83C40 PDF BibTeX XML Cite \textit{G. Z. Tóth}, Classical Quantum Gravity 35, No. 18, Article ID 185009, 17 p. (2018; Zbl 1409.83115) Full Text: DOI
Smilga, Walter Noether’s theorem and its complement in multi-particle systems. (English) Zbl 1406.70018 Dobrev, Vladimir (ed.), Quantum theory and symmetries with Lie theory and its applications in physics. Volume 2. QTS-X/LT-XII, Varna, Bulgaria, June 19–25, 2017. Singapore: Springer (ISBN 978-981-13-2178-8/hbk; 978-981-13-2179-5/ebook). Springer Proceedings in Mathematics & Statistics 255, 363-371 (2018). MSC: 70F10 70H33 22E43 81V10 81V22 81V45 PDF BibTeX XML Cite \textit{W. Smilga}, in: Quantum theory and symmetries with Lie theory and its applications in physics. Volume 2. QTS-X/LT-XII, Varna, Bulgaria, June 19--25, 2017. Singapore: Springer. 363--371 (2018; Zbl 1406.70018) Full Text: DOI
Greuel, Gert-Martin; Lossen, Christoph; Shustin, Eugenii Singular algebraic curves. With an appendix by Oleg Viro. (English) Zbl 1411.14001 Springer Monographs in Mathematics. Cham: Springer (ISBN 978-3-030-03349-1/hbk; 978-3-030-03350-7/ebook). xx, 553 p. (2018). Reviewer: Aleksandr G. Aleksandrov (Moskva) MSC: 14-02 14Bxx 14Pxx 32Sxx 58Kxx PDF BibTeX XML Cite \textit{G.-M. Greuel} et al., Singular algebraic curves. With an appendix by Oleg Viro. Cham: Springer (2018; Zbl 1411.14001) Full Text: DOI
Jiang, Jun; Feng, Yuqiang; Li, Shougui Variational problems with partial fractional derivative: optimal conditions and Noether’s theorem. (English) Zbl 06979874 J. Funct. Spaces 2018, Article ID 4197673, 14 p. (2018). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 49J21 35R11 PDF BibTeX XML Cite \textit{J. Jiang} et al., J. Funct. Spaces 2018, Article ID 4197673, 14 p. (2018; Zbl 06979874) Full Text: DOI
Grunert, Katrin; Raynaud, Xavier Symmetries and multipeakon solutions for the modified two-component Camassa-Holm system. (English) Zbl 1402.35021 Gesztesy, Fritz (ed.) et al., Non-linear partial differential equations, mathematical physics, and stochastic analysis. The Helge Holden anniversary volume on the occasion of his 60th birthday. Based on the presentations at the conference ‘Non-linear PDEs, mathematical physics and stochastic analysis’, NTNU, Trondheim, Norway, July 4–7, 2016. Zürich: European Mathematical Society (EMS) (ISBN 978-3-03719-186-6/hbk; 978-3-03719-686-1/ebook). EMS Series of Congress Reports, 227-260 (2018). MSC: 35B06 35B10 35F55 PDF BibTeX XML Cite \textit{K. Grunert} and \textit{X. Raynaud}, in: Non-linear partial differential equations, mathematical physics, and stochastic analysis. The Helge Holden anniversary volume on the occasion of his 60th birthday. Based on the presentations at the conference `Non-linear PDEs, mathematical physics and stochastic analysis', NTNU, Trondheim, Norway, July 4--7, 2016. Zürich: European Mathematical Society (EMS). 227--260 (2018; Zbl 1402.35021) Full Text: DOI arXiv
Hejazi, S. Reza; Lashkarian, Elham On the structure of conservation laws of (3 + 1)-dimensional wave equation. (English) Zbl 1413.76034 Arab J. Math. Sci. 24, No. 2, 199-224 (2018). MSC: 76M60 70H33 35J05 PDF BibTeX XML Cite \textit{S. R. Hejazi} and \textit{E. Lashkarian}, Arab J. Math. Sci. 24, No. 2, 199--224 (2018; Zbl 1413.76034) Full Text: DOI
Tian, X.; Zhang, Y. Noether’s theorem and its inverse of Birkhoffian system in event space based on Herglotz variational problem. (English) Zbl 1431.70013 Int. J. Theor. Phys. 57, No. 3, 887-897 (2018). MSC: 70S10 49K10 37J51 70H30 81Q80 PDF BibTeX XML Cite \textit{X. Tian} and \textit{Y. Zhang}, Int. J. Theor. Phys. 57, No. 3, 887--897 (2018; Zbl 1431.70013) Full Text: DOI
Lechner, Kurt Classical electrodynamics. A modern perspective. (English) Zbl 1450.78001 Unitext for Physics. Cham: Springer (ISBN 978-3-319-91808-2/hbk; 978-3-319-91809-9/ebook). xix, 688 p. (2018). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 78-01 78A25 78A40 78A35 78A45 78M30 83A05 81V45 35Q60 35Q41 00A79 PDF BibTeX XML Cite \textit{K. Lechner}, Classical electrodynamics. A modern perspective. Cham: Springer (2018; Zbl 1450.78001) Full Text: DOI
Fiorani, Emanuele; Germani, Sandra; Spiro, Andrea Lie algebras of conservation laws of variational partial differential equations. (English) Zbl 1390.70066 Adv. Geom. 18, No. 2, 207-228 (2018). MSC: 70S05 70S10 70G65 PDF BibTeX XML Cite \textit{E. Fiorani} et al., Adv. Geom. 18, No. 2, 207--228 (2018; Zbl 1390.70066) Full Text: DOI arXiv
Baez, John C.; Biamonte, Jacob D. Quantum techniques in stochastic mechanics. (English) Zbl 1405.81005 Hackensack, NJ: World Scientific (ISBN 978-981-3226-93-7/hbk; 978-981-3226-96-8/ebook). xii, 263 p. (2018). Reviewer: Eugene Kryachko (Liège) MSC: 81-02 81P20 81S20 60Jxx 97K50 81Q30 PDF BibTeX XML Cite \textit{J. C. Baez} and \textit{J. D. Biamonte}, Quantum techniques in stochastic mechanics. Hackensack, NJ: World Scientific (2018; Zbl 1405.81005) Full Text: DOI
Fard, O. S.; Soolaki, J.; Almeida, R. A formulation of Noether’s theorem for fuzzy problems of the calculus of variations. (English) Zbl 1413.49049 Afr. Mat. 29, No. 1-2, 33-46 (2018). MSC: 49N99 49K45 PDF BibTeX XML Cite \textit{O. S. Fard} et al., Afr. Mat. 29, No. 1--2, 33--46 (2018; Zbl 1413.49049) Full Text: DOI
Herman, Jonathan Noether’s theorem in multisymplectic geometry. (English) Zbl 1385.53068 Differ. Geom. Appl. 56, 260-294 (2018). Reviewer: Cristian Lăzureanu (Timisoara) MSC: 53D05 70H05 PDF BibTeX XML Cite \textit{J. Herman}, Differ. Geom. Appl. 56, 260--294 (2018; Zbl 1385.53068) Full Text: DOI
Webb, Gary Magnetohydrodynamics and fluid dynamics: action principles and conservation laws. (English) Zbl 1397.76001 Lecture Notes in Physics 946. Cham: Springer (ISBN 978-3-319-72510-9/pbk; 978-3-319-72511-6/ebook). xiv, 301 p. (2018). Reviewer: Titus Petrila (Cluj-Napoca) MSC: 76-02 76W05 76M60 35L65 00A79 PDF BibTeX XML Cite \textit{G. Webb}, Magnetohydrodynamics and fluid dynamics: action principles and conservation laws. Cham: Springer (2018; Zbl 1397.76001) Full Text: DOI
Contiero, André; Feital, Lia; Vidal Martins, Renato Max Noether’s theorem for integral curves. (English) Zbl 1386.14112 J. Algebra 494, 111-136 (2018). Reviewer: Edoardo Ballico (Povo) MSC: 14H20 14H45 14H51 PDF BibTeX XML Cite \textit{A. Contiero} et al., J. Algebra 494, 111--136 (2018; Zbl 1386.14112) Full Text: DOI
Zhang, Hong-Bin; Chen, Hai-Bo Noether’s theorem of fractional Birkhoffian systems. (English) Zbl 1387.26019 J. Math. Anal. Appl. 456, No. 2, 1442-1456 (2017). MSC: 26A33 70H33 PDF BibTeX XML Cite \textit{H.-B. Zhang} and \textit{H.-B. Chen}, J. Math. Anal. Appl. 456, No. 2, 1442--1456 (2017; Zbl 1387.26019) Full Text: DOI
Montesinos, Merced; González, Diego; Celada, Mariano; Díaz, Bogar Reformulation of the symmetries of first-order general relativity. (English) Zbl 1380.83025 Classical Quantum Gravity 34, No. 20, Article ID 205002, 13 p. (2017). MSC: 83C05 83C40 53Z05 PDF BibTeX XML Cite \textit{M. Montesinos} et al., Classical Quantum Gravity 34, No. 20, Article ID 205002, 13 p. (2017; Zbl 1380.83025) Full Text: DOI
Liu, Yandong; Zhang, Yi The time-reparameterization method for Noether’s quasi-symmetry theorems. (Chinese. English summary) Zbl 1389.70012 J. Suzhou Univ. Sci. Technol., Nat. Sci. 34, No. 2, 1-7 (2017). MSC: 70H33 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{Y. Zhang}, J. Suzhou Univ. Sci. Technol., Nat. Sci. 34, No. 2, 1--7 (2017; Zbl 1389.70012)
Peng, Linyu Symmetries, conservation laws, and Noether’s theorem for differential-difference equations. (English) Zbl 1386.37064 Stud. Appl. Math. 139, No. 3, 457-502 (2017). Reviewer: Ti-Jun Xiao (Fudan) MSC: 37K05 35L65 39A12 35A30 PDF BibTeX XML Cite \textit{L. Peng}, Stud. Appl. Math. 139, No. 3, 457--502 (2017; Zbl 1386.37064) Full Text: DOI
Mansfield, Elizabeth L.; Pryer, Tristan Noether-type discrete conserved quantities arising from a finite element approximation of a variational problem. (English) Zbl 1372.65194 Found. Comput. Math. 17, No. 3, 729-762 (2017). Reviewer: Hans Benker (Merseburg) MSC: 65K10 65N30 49M25 49J20 PDF BibTeX XML Cite \textit{E. L. Mansfield} and \textit{T. Pryer}, Found. Comput. Math. 17, No. 3, 729--762 (2017; Zbl 1372.65194) Full Text: DOI
Malinowska, Agnieszka B.; Odzijewicz, Tatiana Second Noether’s theorem with time delay. (English) Zbl 1372.49054 Appl. Anal. 96, No. 8, 1358-1378 (2017). Reviewer: Dian K. Palagachev (Bari) MSC: 49S05 49K05 PDF BibTeX XML Cite \textit{A. B. Malinowska} and \textit{T. Odzijewicz}, Appl. Anal. 96, No. 8, 1358--1378 (2017; Zbl 1372.49054) Full Text: DOI
Bridges, Thomas J. Symmetry, phase modulation and nonlinear waves. (English) Zbl 1383.76002 Cambridge Monographs on Applied and Computational Mathematics 31. Cambridge: Cambridge University Press (ISBN 978-1-107-18884-6/hbk; 978-1-316-98676-9/ebook). ix, 228 p. (2017). Reviewer: Willi-Hans Steeb (Johannesburg) MSC: 76-02 76Bxx 35Q53 35Q51 35Q55 PDF BibTeX XML Cite \textit{T. J. Bridges}, Symmetry, phase modulation and nonlinear waves. Cambridge: Cambridge University Press (2017; Zbl 1383.76002) Full Text: DOI
Ishikawa, Ai; Yaguchi, Takaharu Application of the variational principle to deriving energy-preserving schemes for the Hamilton equation. (English) Zbl 1412.65238 JSIAM Lett. 8, 53-56 (2016). MSC: 65P10 65M06 35A15 37J99 37C80 PDF BibTeX XML Cite \textit{A. Ishikawa} and \textit{T. Yaguchi}, JSIAM Lett. 8, 53--56 (2016; Zbl 1412.65238) Full Text: DOI
Rastogi, Vikas Effects of discrete damping on the dynamic behaviour of rotating shaft through extended Lagrangian formulation. (English) Zbl 1397.70037 J. Theor. Appl. Mech., Sofia 46, No. 3, 35-64 (2016). MSC: 70S10 PDF BibTeX XML Cite \textit{V. Rastogi}, J. Theor. Appl. Mech., Sofia 46, No. 3, 35--64 (2016; Zbl 1397.70037) Full Text: DOI
Cai, Ping-ping; Song, Duan; Fu, Jing-li Noether’s theorem of nonholonomic systems in optimal control. (English) Zbl 1359.37129 Acta Math. Appl. Sin., Engl. Ser. 32, No. 4, 875-882 (2016). MSC: 37K05 49S05 76M60 PDF BibTeX XML Cite \textit{P.-p. Cai} et al., Acta Math. Appl. Sin., Engl. Ser. 32, No. 4, 875--882 (2016; Zbl 1359.37129) Full Text: DOI
Frederico, G. S. F.; Lazo, M. J. Fractional Noether’s theorem with classical and Caputo derivatives: constants of motion for non-conservative systems. (English) Zbl 1355.49015 Nonlinear Dyn. 85, No. 2, 839-851 (2016). MSC: 49K05 26A33 34A08 70H33 PDF BibTeX XML Cite \textit{G. S. F. Frederico} and \textit{M. J. Lazo}, Nonlinear Dyn. 85, No. 2, 839--851 (2016; Zbl 1355.49015) Full Text: DOI
Bañados, Max; Reyes, Ignacio A short review on Noether’s theorems, gauge symmetries and boundary terms. (English) Zbl 1348.70001 Int. J. Mod. Phys. D 25, No. 10, Article ID 1630021, 74 p. (2016). MSC: 70-02 70S10 70S15 70S05 PDF BibTeX XML Cite \textit{M. Bañados} and \textit{I. Reyes}, Int. J. Mod. Phys. D 25, No. 10, Article ID 1630021, 74 p. (2016; Zbl 1348.70001) Full Text: DOI arXiv
Shimizu, Katsutaro Proposal for the proper gravitational energy-momentum tensor. (English) Zbl 1345.83012 Mod. Phys. Lett. A 31, No. 26, Article ID 1650151, 10 p. (2016). MSC: 83C40 PDF BibTeX XML Cite \textit{K. Shimizu}, Mod. Phys. Lett. A 31, No. 26, Article ID 1650151, 10 p. (2016; Zbl 1345.83012) Full Text: DOI
Bernard, Yann Noether’s theorem and the Willmore functional. (English) Zbl 1343.58008 Adv. Calc. Var. 9, No. 3, 217-234 (2016). Reviewer: Dumitru Motreanu (Perpignan) MSC: 58E15 58E30 49Q10 53A30 35R01 35J35 35J48 35J50 PDF BibTeX XML Cite \textit{Y. Bernard}, Adv. Calc. Var. 9, No. 3, 217--234 (2016; Zbl 1343.58008) Full Text: DOI arXiv
Santos, Simão P. S.; Martins, Natália.; Torres, Delfim F. M. Higher-order variational problems of Herglotz type with time delay. (English) Zbl 1341.49024 Pure Appl. Funct. Anal. 1, No. 2, 291-307 (2016). MSC: 49K15 49K05 49S05 34H05 PDF BibTeX XML Cite \textit{S. P. S. Santos} et al., Pure Appl. Funct. Anal. 1, No. 2, 291--307 (2016; Zbl 1341.49024) Full Text: Link
Karam, Sabah E. Rowlands’ duality principle: a generalization of Noether’s theorem? (English) Zbl 1334.81122 Amoroso, Richard L. (ed.) et al., Unified field mechanics: natural science beyond the veil of spacetime. Proceedings of the IX symposium honoring noted French mathematical physicist Jean-Pierre Vigier, Morgan State University, Baltimore, MD, USA, November 16–19, 2014. Hackensack, NJ: World Scientific (ISBN 978-981-4719-05-6/hbk; 978-981-4719-07-0/ebook). 102-107 (2016). MSC: 81V22 81V17 81T13 00A79 81R05 70H33 PDF BibTeX XML Cite \textit{S. E. Karam}, in: Unified field mechanics: natural science beyond the veil of spacetime. Proceedings of the IX symposium honoring noted French mathematical physicist Jean-Pierre Vigier, Morgan State University, Baltimore, MD, USA, November 16--19, 2014. Hackensack, NJ: World Scientific. 102--107 (2016; Zbl 1334.81122) Full Text: DOI
Amore, Paolo; Walecka, John Dirk Advanced modern physics. Solutions to problems. (English) Zbl 1333.81001 Hackensack, NJ: World Scientific (ISBN 978-981-4704-51-9/pbk). viii, 339 p. (2016). Reviewer: Claudia-Veronika Meister (Darmstadt) MSC: 81-01 81P05 00A07 00A79 81Qxx 81Txx 81Vxx PDF BibTeX XML Cite \textit{P. Amore} and \textit{J. D. Walecka}, Advanced modern physics. Solutions to problems. Hackensack, NJ: World Scientific (2016; Zbl 1333.81001) Full Text: DOI
Nucci, M. C.; Sanchini, G. Symmetries, Lagrangians and conservation laws of an Easter Island population model. (English) Zbl 1375.37148 Symmetry 7, No. 3, 1613-1632 (2015). MSC: 37J15 17B80 70G65 34C14 92D25 PDF BibTeX XML Cite \textit{M. C. Nucci} and \textit{G. Sanchini}, Symmetry 7, No. 3, 1613--1632 (2015; Zbl 1375.37148) Full Text: DOI
Fedorov, F. M.; Ivanova, O. F.; Pavlov, N. N. Particularities of infinite systems. (Russian. English summary) Zbl 1374.15005 Mat. Zamet. SVFU 22, No. 4, 62-78 (2015). MSC: 15A06 15A15 PDF BibTeX XML Cite \textit{F. M. Fedorov} et al., Mat. Zamet. SVFU 22, No. 4, 62--78 (2015; Zbl 1374.15005)
Peng, Linyu Self-adjointness and conservation laws of difference equations. (English) Zbl 1388.37071 Commun. Nonlinear Sci. Numer. Simul. 23, No. 1-3, 209-219 (2015). MSC: 37K05 39A12 PDF BibTeX XML Cite \textit{L. Peng}, Commun. Nonlinear Sci. Numer. Simul. 23, No. 1--3, 209--219 (2015; Zbl 1388.37071) Full Text: DOI arXiv
Khorshidi, Maryam; Nadjafikhah, Mehdi; Jafari, Hossein Fractional derivative generalization of Noether’s theorem. (English) Zbl 1397.70028 Open Math. 13, 940-947 (2015). MSC: 70H33 70G65 26A33 35R11 49K05 PDF BibTeX XML Cite \textit{M. Khorshidi} et al., Open Math. 13, 940--947 (2015; Zbl 1397.70028) Full Text: DOI
Kuzkin, Vitaly A. On angular momentum balance for particle systems with periodic boundary conditions. (English) Zbl 1333.70025 ZAMM, Z. Angew. Math. Mech. 95, No. 11, 1290-1295 (2015). MSC: 70F45 PDF BibTeX XML Cite \textit{V. A. Kuzkin}, ZAMM, Z. Angew. Math. Mech. 95, No. 11, 1290--1295 (2015; Zbl 1333.70025) Full Text: DOI
Torres, Delfim; Martins, Natália; Santos, Simão P. S. Noether’s theorem for higher-order variational problems of Herglotz type. (English) Zbl 1335.49034 Discrete Contin. Dyn. Syst. 2015, Suppl., 990-999 (2015). MSC: 49K15 49K05 49S05 34H05 PDF BibTeX XML Cite \textit{D. Torres} et al., Discrete Contin. Dyn. Syst. 2015, 990--999 (2015; Zbl 1335.49034) Full Text: DOI arXiv
Maugin, Gérard A.; Rousseau, Martine Wave momentum and quasi-particles in physical acoustics. (English) Zbl 1347.74004 World Scientific Series on Nonlinear Science Series A 88. Hackensack, NJ: World Scientific (ISBN 978-981-4663-78-6/hbk; 978-981-4663-80-9/ebook). xiii, 235 p. (2015). Reviewer: Johannes Giannoulis (Ioannina) MSC: 74-02 74J10 74J15 PDF BibTeX XML Cite \textit{G. A. Maugin} and \textit{M. Rousseau}, Wave momentum and quasi-particles in physical acoustics. Hackensack, NJ: World Scientific (2015; Zbl 1347.74004) Full Text: DOI
Santos, Simão P. S.; Martins, Natália; Torres, Delfim Variational problems of Herglotz type with time delay: DuBois-Reymond condition and Noether’s first theorem. (English) Zbl 1335.49032 Discrete Contin. Dyn. Syst. 35, No. 9, 4593-4610 (2015). MSC: 49K15 49S05 34H05 PDF BibTeX XML Cite \textit{S. P. S. Santos} et al., Discrete Contin. Dyn. Syst. 35, No. 9, 4593--4610 (2015; Zbl 1335.49032) Full Text: DOI arXiv
Abdulwahhab, Muhammad Alim Nonlinear self-adjointness and conservation laws of Klein-Gordon-Fock equation with central symmetry. (English) Zbl 1353.35187 Commun. Nonlinear Sci. Numer. Simul. 22, No. 1-3, 1331-1340 (2015). MSC: 35L10 35B06 PDF BibTeX XML Cite \textit{M. A. Abdulwahhab}, Commun. Nonlinear Sci. Numer. Simul. 22, No. 1--3, 1331--1340 (2015; Zbl 1353.35187) Full Text: DOI
Wei, Long Conservation laws for a modified lubrication equation. (English) Zbl 1331.35024 Nonlinear Anal., Real World Appl. 26, 44-55 (2015). MSC: 35B06 35G25 PDF BibTeX XML Cite \textit{L. Wei}, Nonlinear Anal., Real World Appl. 26, 44--55 (2015; Zbl 1331.35024) Full Text: DOI
Capriz, G.; Knops, R. J. Manifolds in a theory of microstructures. (English) Zbl 1352.37192 Chen, Gui-Qiang G. (ed.) et al., Differential geometry and continuum mechanics. Proceedings of the ICMS workshop, Edinburgh, UK, June 17–21, 2013. Cham: Springer (ISBN 978-3-319-18572-9/hbk; 978-3-319-18573-6/ebook). Springer Proceedings in Mathematics & Statistics 137, 167-201 (2015). MSC: 37N05 74A60 53Z05 PDF BibTeX XML Cite \textit{G. Capriz} and \textit{R. J. Knops}, in: Differential geometry and continuum mechanics. Proceedings of the ICMS workshop, Edinburgh, UK, June 17--21, 2013. Cham: Springer. 167--201 (2015; Zbl 1352.37192) Full Text: DOI
Ibragimov, Nail H. Tensors and Riemannian geometry. With applications to differential equations. (English) Zbl 1338.53002 De Gruyter Textbook. Berlin: De Gruyter; Beijing: Higher Education Press (ISBN 978-3-11-037949-5/pbk; 978-3-11-037950-1/ebook). x, 187 p. (2015). Reviewer: Eleutherius Symeonidis (Bucureşti) MSC: 53-01 53B20 53B50 35A30 53B30 PDF BibTeX XML Cite \textit{N. H. Ibragimov}, Tensors and Riemannian geometry. With applications to differential equations. Berlin: De Gruyter; Beijing: Higher Education Press (2015; Zbl 1338.53002) Full Text: DOI
Ferreira, Rui A. C.; Malinowska, Agnieszka B. A counterexample to a Frederico-Torres fractional Noether-type theorem. (English) Zbl 1344.49036 J. Math. Anal. Appl. 429, No. 2, 1370-1373 (2015). MSC: 49K15 34A08 26A33 PDF BibTeX XML Cite \textit{R. A. C. Ferreira} and \textit{A. B. Malinowska}, J. Math. Anal. Appl. 429, No. 2, 1370--1373 (2015; Zbl 1344.49036) Full Text: DOI
Wang, Yang; Wei, Long Auxiliary Lagrangian and conservation laws for a wave equation incorporating dissipation. (English) Zbl 1311.35134 Commun. Theor. Phys. 63, No. 4, 481-486 (2015). MSC: 35L05 35L65 70H33 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{L. Wei}, Commun. Theor. Phys. 63, No. 4, 481--486 (2015; Zbl 1311.35134) Full Text: DOI
Anzaldo-Meneses, A. On non-autonomous dynamical systems. (English) Zbl 1333.37069 J. Math. Phys. 56, No. 4, 042702, 20 p. (2015). Reviewer: Irina V. Konopleva (Ul’yanovsk) MSC: 37J05 37J15 37J25 58A20 37N20 34L25 81U05 PDF BibTeX XML Cite \textit{A. Anzaldo-Meneses}, J. Math. Phys. 56, No. 4, 042702, 20 p. (2015; Zbl 1333.37069) Full Text: DOI
Garrity, Thomas A. Electricity and magnetism for mathematicians. A guided path from Maxwell’s equations to Yang-Mills. (English) Zbl 1337.78001 Cambridge: Cambridge University Press (ISBN 978-1-107-07820-8/hbk; 978-1-107-43516-2/pbk; 978-1-139-93968-3/ebook). xiv, 282 p. (2015). Reviewer: Georg Hebermehl (Berlin) MSC: 78-01 78A02 81-01 53C07 53Z05 83A05 47N50 58A10 58Z05 81T13 PDF BibTeX XML Cite \textit{T. A. Garrity}, Electricity and magnetism for mathematicians. A guided path from Maxwell's equations to Yang-Mills. Cambridge: Cambridge University Press (2015; Zbl 1337.78001) Full Text: DOI
Bourdin, Loïc Nonshifted calculus of variations on time scales with \(\nabla\)-differentiable \(\sigma\). (English) Zbl 1338.49041 J. Math. Anal. Appl. 411, No. 2, 543-554 (2014). MSC: 49K15 34N05 PDF BibTeX XML Cite \textit{L. Bourdin}, J. Math. Anal. Appl. 411, No. 2, 543--554 (2014; Zbl 1338.49041) Full Text: DOI
Kawazura, Yohei; Yoshida, Zensho; Fukumoto, Yasuhide Relabeling symmetry in relativistic fluids and plasmas. (English) Zbl 1304.76062 J. Phys. A, Math. Theor. 47, No. 46, Article ID 465501, 17 p. (2014). MSC: 76X05 82D10 PDF BibTeX XML Cite \textit{Y. Kawazura} et al., J. Phys. A, Math. Theor. 47, No. 46, Article ID 465501, 17 p. (2014; Zbl 1304.76062) Full Text: DOI
Bluman, George; Yang, Zhengzheng Some recent developments in finding systematically conservation laws and nonlocal symmetries for partial differential equations. (English) Zbl 1303.76115 Ganghoffer, Jean-François (ed.) et al., Similarity and symmetry methods. Applications in elasticity and mechanics of materials. Lecture notes given at the EUROMECH workshop ‘Similarity, symmetry and group theoretical methods in mechanics, Varna, Bulgaria, June 6–9, 2013. Cham: Springer (ISBN 978-3-319-08295-0/hbk; 978-3-319-08296-7/ebook). Lecture Notes in Applied and Computational Mechanics 73, 1-59 (2014). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 76M60 35Q35 35B06 35Q74 PDF BibTeX XML Cite \textit{G. Bluman} and \textit{Z. Yang}, Lect. Notes Appl. Comput. Mech. 73, 1--59 (2014; Zbl 1303.76115) Full Text: DOI
Franciosi, Marco; Tenni, Elisa The canonical ring of a 3-connected curve. (English) Zbl 1333.14027 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 25, No. 1, 37-51 (2014). Reviewer: Luciana Ramella (Genova) MSC: 14H20 14C20 14H51 PDF BibTeX XML Cite \textit{M. Franciosi} and \textit{E. Tenni}, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 25, No. 1, 37--51 (2014; Zbl 1333.14027) Full Text: DOI arXiv
Rabei, Eqab M.; Al-Jamel, A.; Widyan, H.; Baleanu, D. Comment on “Maxwell’s equations and electromagnetic Lagrangian density in fractional form” [J. Math. Phys. 53, 033505 (2012)]. (English) Zbl 1290.78003 J. Math. Phys. 55, No. 3, 034101, 2 p. (2014). MSC: 78A25 70S05 26A33 70S10 PDF BibTeX XML Cite \textit{E. M. Rabei} et al., J. Math. Phys. 55, No. 3, 034101, 2 p. (2014; Zbl 1290.78003) Full Text: DOI
Frederico, Gastão S. F.; Odzijewicz, Tatiana; Torres, Delfim F. M. Noether’s theorem for non-smooth extremals of variational problems with time delay. (English) Zbl 1287.49018 Appl. Anal. 93, No. 1, 153-170 (2014). MSC: 49K05 49S05 PDF BibTeX XML Cite \textit{G. S. F. Frederico} et al., Appl. Anal. 93, No. 1, 153--170 (2014; Zbl 1287.49018) Full Text: DOI arXiv
Huang, Zaixing On conservation laws in nonlocal elasticity associated with internal long-range interactions. (English) Zbl 07280081 Math. Mech. Solids 18, No. 8, 861-875 (2013). MSC: 74 PDF BibTeX XML Cite \textit{Z. Huang}, Math. Mech. Solids 18, No. 8, 861--875 (2013; Zbl 07280081) Full Text: DOI
Malinowska, Agnieszka B. On fractional variational problems which admit local transformations. (English) Zbl 1349.49012 J. Vib. Control 19, No. 8, 1161-1169 (2013). MSC: 49J40 26A33 78M30 49S05 PDF BibTeX XML Cite \textit{A. B. Malinowska}, J. Vib. Control 19, No. 8, 1161--1169 (2013; Zbl 1349.49012) Full Text: DOI arXiv
Romero, Ignacio A characterization of conserved quantities in non-equilibrium thermodynamics. (English) Zbl 1383.80003 Entropy 15, No. 12, 5580-5596 (2013). MSC: 80A05 74F05 PDF BibTeX XML Cite \textit{I. Romero}, Entropy 15, No. 12, 5580--5596 (2013; Zbl 1383.80003) Full Text: DOI
Odzijewicz, Tatiana; Malinowska, Agnieszka B.; Torres, Delfim F. M. A generalized fractional calculus of variations. (English) Zbl 1318.49033 Control Cybern. 42, No. 2, 443-458 (2013). MSC: 49K15 34A08 PDF BibTeX XML Cite \textit{T. Odzijewicz} et al., Control Cybern. 42, No. 2, 443--458 (2013; Zbl 1318.49033)
Rybnikov, A. K. Nonvariational interpretation of Euler equations and Noether’s theorem. (English. Russian original) Zbl 1303.35065 Dokl. Math. 88, No. 3, 744-747 (2013); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 453, No. 6, 613-616 (2013). Reviewer: Cheng He (Beijing) MSC: 35Q31 58J99 PDF BibTeX XML Cite \textit{A. K. Rybnikov}, Dokl. Math. 88, No. 3, 744--747 (2013; Zbl 1303.35065); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 453, No. 6, 613--616 (2013) Full Text: DOI
Bourdin, Loïc; Cresson, Jacky; Greff, Isabelle; Inizan, Pierre Variational integrator for fractional Euler-Lagrange equations. (English) Zbl 1284.65183 Appl. Numer. Math. 71, 14-23 (2013). MSC: 65P10 70H03 37M15 34A08 PDF BibTeX XML Cite \textit{L. Bourdin} et al., Appl. Numer. Math. 71, 14--23 (2013; Zbl 1284.65183) Full Text: DOI
Grant, Timothy J.; Hydon, Peter E. Characteristics of conservation laws for difference equations. (English) Zbl 1273.39011 Found. Comput. Math. 13, No. 4, 667-692 (2013). MSC: 39A14 37K05 12H10 PDF BibTeX XML Cite \textit{T. J. Grant} and \textit{P. E. Hydon}, Found. Comput. Math. 13, No. 4, 667--692 (2013; Zbl 1273.39011) Full Text: DOI arXiv
Ferriero, Alessandro On the Tonelli’s partial regularity. (English) Zbl 1289.49041 Differ. Integral Equ. 26, No. 1-2, 1-9 (2013). Reviewer: Teemu Lukkari (Trondheim) MSC: 49N60 PDF BibTeX XML Cite \textit{A. Ferriero}, Differ. Integral Equ. 26, No. 1--2, 1--9 (2013; Zbl 1289.49041)
Frederico, Gastão S. F.; Torres, Delfim F. M. Fractional isoperimetric Noether’s theorem in the Riemann-Liouville sense. (English) Zbl 1277.49032 Rep. Math. Phys. 71, No. 3, 291-304 (2013). MSC: 49K21 49S05 26A33 PDF BibTeX XML Cite \textit{G. S. F. Frederico} and \textit{D. F. M. Torres}, Rep. Math. Phys. 71, No. 3, 291--304 (2013; Zbl 1277.49032) Full Text: DOI Link arXiv
Rajagopal, K. R.; Srinivasa, A. R. Restrictions placed on constitutive relations by angular momentum balance and Galilean invariance. (English) Zbl 1268.74005 Z. Angew. Math. Phys. 64, No. 2, 391-401 (2013). MSC: 74A20 PDF BibTeX XML Cite \textit{K. R. Rajagopal} and \textit{A. R. Srinivasa}, Z. Angew. Math. Phys. 64, No. 2, 391--401 (2013; Zbl 1268.74005) Full Text: DOI
Nadjafikhah, Mehdi; Ahangari, Fatemeh Symmetry analysis and conservation laws for the Hunter-Saxton equation. (English) Zbl 1264.35100 Commun. Theor. Phys. 59, No. 3, 335-348 (2013). MSC: 35G50 35B06 37K05 37K10 37K15 65H20 82D30 PDF BibTeX XML Cite \textit{M. Nadjafikhah} and \textit{F. Ahangari}, Commun. Theor. Phys. 59, No. 3, 335--348 (2013; Zbl 1264.35100) Full Text: DOI
Stein, Daniel; Newman, Charles M. Spin glasses and complexity. (English) Zbl 1277.82003 Princeton, NJ: Princeton University Press (ISBN 978-0-691-14733-8/pbk; 978-1-400-84563-7/ebook). xviii, 317 p. (2013). Reviewer: Georg Hebermehl (Berlin) MSC: 82-01 82D30 82B44 68Q15 PDF BibTeX XML Cite \textit{D. Stein} and \textit{C. M. Newman}, Spin glasses and complexity. Princeton, NJ: Princeton University Press (2013; Zbl 1277.82003)
Capobianco, Silvio; Toffoli, Tommaso Conserved quantities in discrete dynamics: what can be recovered from Noether’s theorem, how, and why? (English) Zbl 1332.37013 Nat. Comput. 11, No. 4, 565-577 (2012). MSC: 37B15 PDF BibTeX XML Cite \textit{S. Capobianco} and \textit{T. Toffoli}, Nat. Comput. 11, No. 4, 565--577 (2012; Zbl 1332.37013) Full Text: DOI
Shi, Weichen Conservation integrals in the sense of Noether’s theorem for an analytic function on a physical plane and application. (English) Zbl 1309.74066 Appl. Math. Comput. 219, No. 6, 3009-3016 (2012). MSC: 74R10 30E20 PDF BibTeX XML Cite \textit{W. Shi}, Appl. Math. Comput. 219, No. 6, 3009--3016 (2012; Zbl 1309.74066) Full Text: DOI
Weichen, Shi Higher order conservation integrals in elasticity and application. (English) Zbl 1291.74029 Appl. Math. Comput. 219, No. 4, 1522-1535 (2012). MSC: 74B05 35Q74 30C20 PDF BibTeX XML Cite \textit{S. Weichen}, Appl. Math. Comput. 219, No. 4, 1522--1535 (2012; Zbl 1291.74029) Full Text: DOI
Caraffini, G. L.; Galvani, M. Symmetries and exact solutions via conservation laws for some partial differential equations of mathematical physics. (English) Zbl 1293.35277 Appl. Math. Comput. 219, No. 4, 1474-1484 (2012). MSC: 35Q53 37K05 PDF BibTeX XML Cite \textit{G. L. Caraffini} and \textit{M. Galvani}, Appl. Math. Comput. 219, No. 4, 1474--1484 (2012; Zbl 1293.35277) Full Text: DOI
Sciarra, G.; Vidoli, S. The role of edge forces in conservation laws and energy release rates of strain-gradient solids. (English) Zbl 1291.74038 Math. Mech. Solids 17, No. 3, 266-278 (2012). MSC: 74B20 74R10 74G65 PDF BibTeX XML Cite \textit{G. Sciarra} and \textit{S. Vidoli}, Math. Mech. Solids 17, No. 3, 266--278 (2012; Zbl 1291.74038) Full Text: DOI
Bua, Lucía; Bucataru, Ioan; Salgado, Modesto Symmetries, Newtonoid vector fields and conservation laws in the Langrangian \(k\)-symplectic formalism. (English) Zbl 1321.53093 Rev. Math. Phys. 24, No. 10, Paper No. 1250030, 24 p. (2012). MSC: 53D05 58A20 58J60 70S05 PDF BibTeX XML Cite \textit{L. Bua} et al., Rev. Math. Phys. 24, No. 10, Paper No. 1250030, 24 p. (2012; Zbl 1321.53093) Full Text: DOI arXiv
Saccomandi, Giuseppe; Vitolo, Raffaele A translation of the T. Levi-Civita paper “Interpretazione gruppale degli integrali di un sistema canonico” (Rend. Acc. Lincei, 1899, s. \(3^{\text a}\), vol. VII, pp. 235–238). (English) Zbl 1273.01034 Regul. Chaotic Dyn. 17, No. 1, 105-112 (2012). Reviewer: Liesbeth De Mol (Gent) MSC: 01A55 01A60 PDF BibTeX XML Cite \textit{G. Saccomandi} and \textit{R. Vitolo}, Regul. Chaotic Dyn. 17, No. 1, 105--112 (2012; Zbl 1273.01034) Full Text: DOI arXiv
Frederico, Gastão S. F.; Torres, Delfim F. M. Noether’s symmetry theorem for variational and optimal control problems with time delay. (English) Zbl 1272.49033 Numer. Algebra Control Optim. 2, No. 3, 619-630 (2012). Reviewer: Antonio De Nicola (Coimbra) MSC: 49K05 49S05 70Q05 PDF BibTeX XML Cite \textit{G. S. F. Frederico} and \textit{D. F. M. Torres}, Numer. Algebra Control Optim. 2, No. 3, 619--630 (2012; Zbl 1272.49033) Full Text: DOI arXiv
Gubbiotti, G.; Nucci, M. C. Conservation laws for the Schrödinger-Newton equations. (English) Zbl 1251.35101 J. Nonlinear Math. Phys. 19, No. 3, 1220002, 8 p. (2012). MSC: 35Q41 81Q05 35L65 PDF BibTeX XML Cite \textit{G. Gubbiotti} and \textit{M. C. Nucci}, J. Nonlinear Math. Phys. 19, No. 3, 1220002, 8 p. (2012; Zbl 1251.35101) Full Text: DOI
Ebin, David G. Geodesics on the symplectomorphism group. (English) Zbl 1252.58006 Geom. Funct. Anal. 22, No. 1, 202-212 (2012). Reviewer: Renato G. Bettiol (Notre Dame) MSC: 58D05 53C22 53D05 53D25 53D35 58B10 58E10 PDF BibTeX XML Cite \textit{D. G. Ebin}, Geom. Funct. Anal. 22, No. 1, 202--212 (2012; Zbl 1252.58006) Full Text: DOI
Móczár, József; Márkus, Feren An economic application of the Lie symmetries. (Hungarian. English summary) Zbl 1289.70023 Alkalmazott Mat. Lapok 28, 77-94 (2011). MSC: 70G65 91B62 37N05 37N40 PDF BibTeX XML Cite \textit{J. Móczár} and \textit{F. Márkus}, Alkalmazott Mat. Lapok 28, 77--94 (2011; Zbl 1289.70023)
Gorni, Gianluca; Zampieri, Gaetano Variational aspects of analytical mechanics. (English) Zbl 1268.49055 São Paulo J. Math. Sci. 5, No. 2, 249-279 (2011). MSC: 49S05 70H03 70H25 70H33 49K20 PDF BibTeX XML Cite \textit{G. Gorni} and \textit{G. Zampieri}, São Paulo J. Math. Sci. 5, No. 2, 249--279 (2011; Zbl 1268.49055) Full Text: DOI arXiv
Bering, Klaus Noether’s theorem for a fixed region. (English) Zbl 1265.70033 Arch. Math., Brno 47, No. 5, 337-356 (2011). Reviewer: Martin Čadek (Brno) MSC: 70S10 PDF BibTeX XML Cite \textit{K. Bering}, Arch. Math., Brno 47, No. 5, 337--356 (2011; Zbl 1265.70033) Full Text: arXiv