×

An implicit matrix-free discontinuous Galerkin solver for viscous and turbulent aerodynamic simulations. (English) Zbl 1271.76164

Summary: This paper presents some recent advancements of the computational efficiency of a Discontinuous Galerkin (DG) solver for the Navier-Stokes (NS) and Reynolds Averaged Navier Stokes (RANS) equations. The implementation and the performance of a Newton-Krylov matrix-free (MF) method is presented and compared with the matrix based (MB) counterpart. Moreover two solution strategies, developed in order to increase the solver efficiency, are discussed and experimented. Numerical results of some test cases proposed within the EU ADIGMA (Adaptive Higher-Order Variational Methods for Aerodynamic Applications in Industry) project demonstrate the capabilities of the method.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
76F60 \(k\)-\(\varepsilon\) modeling in turbulence

Software:

METIS; TAU; PETSc; NITSOL
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Bassi, F.; Rebay, S., A high order discontinuous Galerkin method for compressible turbulent flows, (Cockburn, C.-W. S.B.; Karniadakis, G. E., Discontinuous Galerkin methods. Theory, computation and applications. Discontinuous Galerkin methods. Theory, computation and applications, Lecture notes in computational science and engineering, vol. 11 (2000), Springer-Verlag), [First internation symposium on discontinuous Galerkin Methods, May 24-26, 1999, Newport, RI, USA] · Zbl 0991.76039
[2] Bassi, F.; Crivellini, A.; Rebay, S.; Savini, M., Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and \(k-ω\) turbulence model equations, Comput Fluids, 34, 507-540 (2005) · Zbl 1138.76043
[3] Landmann, B.; Kessler, M.; Wagner, S.; Krämer, E., A parallel, high-order discontinuous Galerkin code for laminar and turbulent flows, Comput Fluids, 37, 4, 427-438 (2008), [Turbulent flow and noise generation] · Zbl 1237.76071
[4] Persson, P. O.; Peraire, J., Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-Stokes equations, SIAM J Sci Comput Arch, 30, 2709-2733 (2008) · Zbl 1362.76052
[5] Diosady, L.; Darmofal, D., Preconditioning methods for discontinuous Galerkin solutions of the Navier-Stokes equations, J Comput Phys, 228, 3917-3935 (2009) · Zbl 1185.76812
[6] Shahbazi, K.; Mavriplis, D. J.; Burgess, N. K., Multigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations, J Comput Phys, 228, 21, 7917-7940 (2009) · Zbl 1391.65181
[7] Fidkowski, K. J.; Oliver, T. A.; Lu, J.; Darmofal, D. L., P-multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations, J Comput Phys, 207, 1, 92-113 (2005) · Zbl 1177.76194
[8] Nastase, C. R.; Mavriplis, D. J., High-order discontinuous Galerkin methods using an hp-multigrid approach, J Comput Phys, 213, 1, 330-357 (2006) · Zbl 1089.65100
[9] Bassi, F.; Ghidoni, A.; Rebay, S.; Tesini, P., High-order accurate p-multigrid discontinuous Galerkin solution of Euler the equations, Int J Numer Methods Fluids, 60, 847-865 (2009) · Zbl 1165.76022
[10] Luo, H.; Baum, J. D.; Löhner, R., A p-multigrid discontinuous Galerkin method for the Euler equations on unstructured grids, J Comput Phys, 211, 2, 767-783 (2006) · Zbl 1138.76408
[11] Hillewaert, K.; Chevaugeon, N.; Geuzaine, P.; Remacle, J. F., Hierarchic multigrid iteration strategy for the discontinuous Galerkin solution of the steady Euler equations, Int J Numer Methods Fluids, 51, 1157-1176 (2006) · Zbl 1139.76033
[12] Bassi, F.; Colombo, A.; Franchina, N.; Ghidoni, A.; Rebay, S., Robust and efficient implementation of very high-order discontinuous Galerkin methods in CFD, (ADIGMA GA European initiative on the development of adaptive higher-order variational methods for aerospace applications. ADIGMA GA European initiative on the development of adaptive higher-order variational methods for aerospace applications, Notes on numerical fluid mechanics and multidisciplinary design, vol. 113 (2010), Springer-Verlag) · Zbl 1426.76497
[13] Bassi F, Colombo A, Franchina N, Ghidoni A, Rebay S. High-order accurate p-multigrid discontinuous Galerkin solution of the RANS and \(k Ω; \); Bassi F, Colombo A, Franchina N, Ghidoni A, Rebay S. High-order accurate p-multigrid discontinuous Galerkin solution of the RANS and \(k Ω; \)
[14] Rasetarinera, P.; Hussaini, M. Y., An efficient implicit discontinuous spectral Galerkin method, J Comput Phys, 172, 2, 718-738 (2001) · Zbl 0986.65093
[15] Hillewaert K, Remacle JF, Chevaugeon N, Geuzaine PEBP. Analysis of a hybrid P-multigrid method for the discontinuous Galerkin discretisation of the Euler equation. In: Wesseling P, Onate E, Périaux J, editors. European conference on computational fluid dynamics, Egmond aan Zee, The Netherlands, September 5-8, 2006, TU Delft, The Netherlands; 2006.; Hillewaert K, Remacle JF, Chevaugeon N, Geuzaine PEBP. Analysis of a hybrid P-multigrid method for the discontinuous Galerkin discretisation of the Euler equation. In: Wesseling P, Onate E, Périaux J, editors. European conference on computational fluid dynamics, Egmond aan Zee, The Netherlands, September 5-8, 2006, TU Delft, The Netherlands; 2006.
[16] Kennedy, J. G.; Behr, M.; Kalro, V.; Tezduyar, T. E., Implementation of implicit finite element methods for incompressible flows on the CM-5, Comput Methods Appl Mech Eng, 95-111 (1994) · Zbl 0848.76037
[17] Behara, S.; Mittal, S., Parallel finite element computation of incompressible flows, Parallel Comput, 35, 4, 195-212 (2009)
[18] Wilcox, D. C., Turbulence modelling for CFD (1993), DCW Industries Inc.: DCW Industries Inc. La Cañada (CA 91011, USA)
[19] Brezzi, F.; Manzini, G.; Marini, D.; Pietra, P.; Russo, A., Discontinuous Galerkin approximations for elliptic problems, Numer Methods Partial Differ Eqs, 16, 365-378 (2000) · Zbl 0957.65099
[20] Hänel D, Schwane R, Seider G. On the accuracy of upwind schemes for the solution of the Navier-Stokes equations. In: AIAA paper 87-1105 CP, AIAA, proceedings of the AIAA 8th computational fluid dynamics conference; July 1987.; Hänel D, Schwane R, Seider G. On the accuracy of upwind schemes for the solution of the Navier-Stokes equations. In: AIAA paper 87-1105 CP, AIAA, proceedings of the AIAA 8th computational fluid dynamics conference; July 1987.
[21] Bassi, F.; Rebay, S.; Mariotti, G.; Pedinotti, S.; Savini, M., A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, (Decuypere, R.; Dibelius, G., 2nd European conference on turbomachinery fluid dynamics and thermodynamics (1997), Technologisch Instituut: Technologisch Instituut Antwerpen, Belgium), 99-108
[22] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J Numer Anal, 39, 5, 1749-1779 (2002) · Zbl 1008.65080
[23] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, J Comput Phys, 138, 251-285 (1997) · Zbl 0902.76056
[24] Knoll, D.; Keyes, D., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J Comput Phys, 193, 2, 357-397 (2004) · Zbl 1036.65045
[25] Pernice, M.; Walker, H. F., NITSOL: a Newton iterative solver for nonlinear systems, SIAM J Sci Stat Comput, 19, 302-318 (1998) · Zbl 0916.65049
[26] Chisholm, T. T.; Zingg, D. W., A Jacobian-free Newton-Krylov algorithm for compressible turbulent fluid flows, J Comput Phys, 228, 3490-3507 (2009) · Zbl 1319.76033
[27] Shende, S.; Malony, A. D., The TAU parallel performance system, Int J High Perform Comput Appl, 20, 2, 287-331 (2009)
[28] Balay, S.; Buschelman, K.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C., PETSc (2001), <http://www.mcs.anl.gov/petsc>
[29] Karypis G, Kumar V. METIS, a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, Technical report version 4.0, University of Minnesota, Department of Computer Science/Army HPC Research Center; 1998.; Karypis G, Kumar V. METIS, a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, Technical report version 4.0, University of Minnesota, Department of Computer Science/Army HPC Research Center; 1998.
[30] Third AIAA computational fluid dynamics drag prediction workshop; June 2007. <http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop3; Third AIAA computational fluid dynamics drag prediction workshop; June 2007. <http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop3
[31] Bassi, F.; Crivellini, A.; Ghidoni, A.; Rebay, S., High-order discontinuous Galerkin discretization of transonic turbulent flows, (47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition (2009), AIAA: AIAA Orlando, FL) · Zbl 1220.65130
[32] Bassi, F.; Colombo, A.; Crivellini, A.; Franchina, N.; Ghidoni, A.; Rebay, S., Very high-order accurate discontinuous Galerkin computation of transonic turbulent flows on aeronautical configuration, (ADIGMA GA European initiative on the development of adaptive higher-order variational methods for aerospace applications. ADIGMA GA European initiative on the development of adaptive higher-order variational methods for aerospace applications, Notes on numerical fluid mechanics and multidisciplinary design, vol. 113 (2010), Springer-Verlag) · Zbl 1426.76497
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.