Alcântara, Adriano A.; Carmo, Bruno A.; Clark, Haroldo R.; Guardia, Ronald R.; Rincon, Mauro A. Nonlinear wave equation with Dirichlet and acoustic boundary conditions: theoretical analysis and numerical simulation. (English) Zbl 07530563 Comput. Appl. Math. 41, No. 4, Paper No. 141, 21 p. (2022). MSC: 35L20 65M60 65M06 PDF BibTeX XML Cite \textit{A. A. Alcântara} et al., Comput. Appl. Math. 41, No. 4, Paper No. 141, 21 p. (2022; Zbl 07530563) Full Text: DOI OpenURL
Ezquerro, J. A.; Hernández-Verón, M. A.; Magreñán, Á. A. How to increase the accessibility of Newton’s method for operators with center-Lipschitz continuous first derivative. (English) Zbl 07525384 Numer. Funct. Anal. Optim. 43, No. 3, 350-363 (2022). MSC: 65H10 65J15 PDF BibTeX XML Cite \textit{J. A. Ezquerro} et al., Numer. Funct. Anal. Optim. 43, No. 3, 350--363 (2022; Zbl 07525384) Full Text: DOI OpenURL
Fang, Ming; Perng, Cherng-tiao A mean-variance acreage model. (English) Zbl 07510755 Appl. Anal. 101, No. 4, 1211-1224 (2022). MSC: 65H05 65D32 65C05 47H10 91B84 91G60 91G10 90-08 PDF BibTeX XML Cite \textit{M. Fang} and \textit{C.-t. Perng}, Appl. Anal. 101, No. 4, 1211--1224 (2022; Zbl 07510755) Full Text: DOI OpenURL
Wolff, Mareike A class of Newton maps with Julia sets of Lebesgue measure zero. (English) Zbl 07507831 Math. Z. 301, No. 1, 665-711 (2022). MSC: 37F10 30D05 PDF BibTeX XML Cite \textit{M. Wolff}, Math. Z. 301, No. 1, 665--711 (2022; Zbl 07507831) Full Text: DOI OpenURL
Balashov, M. V.; Tremba, A. A. Error bound conditions and convergence of optimization methods on smooth and proximally smooth manifolds. (English) Zbl 07507031 Optimization 71, No. 3, 711-735 (2022). MSC: 90C26 65K05 46N10 65K10 PDF BibTeX XML Cite \textit{M. V. Balashov} and \textit{A. A. Tremba}, Optimization 71, No. 3, 711--735 (2022; Zbl 07507031) Full Text: DOI OpenURL
Kouri, D. P. A matrix-free trust-region Newton algorithm for convex-constrained optimization. (English) Zbl 07500342 Optim. Lett. 16, No. 3, 983-997 (2022). MSC: 90C26 90C53 PDF BibTeX XML Cite \textit{D. P. Kouri}, Optim. Lett. 16, No. 3, 983--997 (2022; Zbl 07500342) Full Text: DOI OpenURL
Lavrova, Olga; Polevikov, Viktor Numerical study of the shielding properties of a ferrofluid taking into account magnitophoresis and particle interaction. (English) Zbl 07499250 Math. Model. Anal. 27, No. 1, 161-178 (2022). MSC: 65-XX 35K57 35Q60 65N06 65N38 PDF BibTeX XML Cite \textit{O. Lavrova} and \textit{V. Polevikov}, Math. Model. Anal. 27, No. 1, 161--178 (2022; Zbl 07499250) Full Text: DOI OpenURL
Zhadan, V. G. Primal-dual Newton method with steepest descent for the linear semidefinite programming problem: Newton’s system of equations. (English. Russian original) Zbl 07492852 Comput. Math. Math. Phys. 62, No. 2, 232-247 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 2, 232-248 (2022). MSC: 90C22 90C53 PDF BibTeX XML Cite \textit{V. G. Zhadan}, Comput. Math. Math. Phys. 62, No. 2, 232--247 (2022; Zbl 07492852); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 2, 232--248 (2022) Full Text: DOI OpenURL
Comemuang, Chalermwut; Orosram, Wachirarak Fourth order iterative methods for solving nonlinear equations. (English) Zbl 07491357 Int. J. Math. Comput. Sci. 17, No. 1, 163-172 (2022). MSC: 41A25 65D99 PDF BibTeX XML Cite \textit{C. Comemuang} and \textit{W. Orosram}, Int. J. Math. Comput. Sci. 17, No. 1, 163--172 (2022; Zbl 07491357) Full Text: Link OpenURL
Trachoo, K.; Prathumwan, D.; Chaiya, I. An efficient two-step iterative method with fifth-order convergence for solving non-linear equations. (English) Zbl 07490585 J. Anal. Appl. 20, No. 1, 81-90 (2022). MSC: 41A25 65D99 PDF BibTeX XML Cite \textit{K. Trachoo} et al., J. Anal. Appl. 20, No. 1, 81--90 (2022; Zbl 07490585) Full Text: Link OpenURL
Wang, Jiaxi; Ouyang, Wei Newton’s method for solving generalized equations without Lipschitz condition. (English) Zbl 07490442 J. Optim. Theory Appl. 192, No. 2, 510-532 (2022). MSC: 49J53 49M15 65K10 90C48 PDF BibTeX XML Cite \textit{J. Wang} and \textit{W. Ouyang}, J. Optim. Theory Appl. 192, No. 2, 510--532 (2022; Zbl 07490442) Full Text: DOI OpenURL
Sadkane, Miloud Inexact inverse subspace iteration with preconditioning applied to quadratic matrix polynomials. (English) Zbl 1481.65078 Comput. Methods Appl. Math. 22, No. 1, 181-197 (2022). MSC: 65H17 65F15 65F08 PDF BibTeX XML Cite \textit{M. Sadkane}, Comput. Methods Appl. Math. 22, No. 1, 181--197 (2022; Zbl 1481.65078) Full Text: DOI OpenURL
Lee, Eunjung; Na, Hyesun Dual system least-squares finite element method for a hyperbolic problem. (English) Zbl 1482.65213 Comput. Methods Appl. Math. 22, No. 1, 113-131 (2022). MSC: 65N30 65N12 PDF BibTeX XML Cite \textit{E. Lee} and \textit{H. Na}, Comput. Methods Appl. Math. 22, No. 1, 113--131 (2022; Zbl 1482.65213) Full Text: DOI OpenURL
Tian, Jiayue; Zhao, Xueyan; Deng, Feiqi Incremental Newton’s iterative algorithm for optimal control of Itô stochastic systems. (English) Zbl 07484262 Appl. Math. Comput. 421, Article ID 126958, 11 p. (2022). MSC: 93Exx 93Bxx 65Fxx PDF BibTeX XML Cite \textit{J. Tian} et al., Appl. Math. Comput. 421, Article ID 126958, 11 p. (2022; Zbl 07484262) Full Text: DOI OpenURL
Mai, Tina; Mortari, Daniele Theory of functional connections applied to quadratic and nonlinear programming under equality constraints. (English) Zbl 07472418 J. Comput. Appl. Math. 406, Article ID 113912, 22 p. (2022). MSC: 65N99 PDF BibTeX XML Cite \textit{T. Mai} and \textit{D. Mortari}, J. Comput. Appl. Math. 406, Article ID 113912, 22 p. (2022; Zbl 07472418) Full Text: DOI arXiv OpenURL
Kelley, C. T. Newton’s method in mixed precision. (English) Zbl 07468746 SIAM Rev. 64, No. 1, 191-211 (2022). MSC: 65H10 45G10 65G50 PDF BibTeX XML Cite \textit{C. T. Kelley}, SIAM Rev. 64, No. 1, 191--211 (2022; Zbl 07468746) Full Text: DOI OpenURL
Behl, Ramandeep; Arora, Himani CMMSE: a novel scheme having seventh-order convergence for nonlinear systems. (English) Zbl 1481.65074 J. Comput. Appl. Math. 404, Article ID 113301, 16 p. (2022). MSC: 65H10 65Y20 PDF BibTeX XML Cite \textit{R. Behl} and \textit{H. Arora}, J. Comput. Appl. Math. 404, Article ID 113301, 16 p. (2022; Zbl 1481.65074) Full Text: DOI OpenURL
Candelario, Giro; Cordero, Alicia; Torregrosa, Juan R.; Vassileva, María P. An optimal and low computational cost fractional Newton-type method for solving nonlinear equations. (English) Zbl 07443295 Appl. Math. Lett. 124, Article ID 107650, 8 p. (2022). Reviewer: Juan Ramón Torregrosa Sánchez (Valencia) MSC: 65H05 26A33 PDF BibTeX XML Cite \textit{G. Candelario} et al., Appl. Math. Lett. 124, Article ID 107650, 8 p. (2022; Zbl 07443295) Full Text: DOI OpenURL
Akrivis, Georgios; Li, Buyang Linearization of the finite element method for gradient flows by Newton’s method. (English) Zbl 07528281 IMA J. Numer. Anal. 41, No. 2, 1411-1440 (2021). MSC: 65-XX PDF BibTeX XML Cite \textit{G. Akrivis} and \textit{B. Li}, IMA J. Numer. Anal. 41, No. 2, 1411--1440 (2021; Zbl 07528281) Full Text: DOI OpenURL
Burachik, Regina S.; Caldwell, Bethany I.; Kaya, C. Yalçın A generalized multivariable Newton method. (English) Zbl 07525619 Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 15, 31 p. (2021). MSC: 49M15 65H04 65H10 PDF BibTeX XML Cite \textit{R. S. Burachik} et al., Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 15, 31 p. (2021; Zbl 07525619) Full Text: DOI OpenURL
Li, Jiawei; Tomin, Pavel; Tchelepi, Hamdi Sequential fully implicit Newton method for compositional flow and transport. (English) Zbl 07515443 J. Comput. Phys. 444, Article ID 110541, 20 p. (2021). MSC: 76Mxx 76Sxx 65Fxx PDF BibTeX XML Cite \textit{J. Li} et al., J. Comput. Phys. 444, Article ID 110541, 20 p. (2021; Zbl 07515443) Full Text: DOI OpenURL
Yaslan. H., Cerdik Numerical solution of the multi-term variable-order space fractional nonlinear partial differential equations. (English) Zbl 07493466 Miskolc Math. Notes 22, No. 2, 1027-1038 (2021). MSC: 35G31 35R11 65M70 PDF BibTeX XML Cite \textit{C. Yaslan. H.}, Miskolc Math. Notes 22, No. 2, 1027--1038 (2021; Zbl 07493466) Full Text: DOI OpenURL
Mohd, Ismail Bin; Dasril, Yosza Bin A globally convergent interval Newton’s method for computing and bounding real roots of a function with one variable. (English) Zbl 07488830 Int. J. Math. Oper. Res. 20, No. 4, 521-547 (2021). MSC: 65H05 PDF BibTeX XML Cite \textit{I. B. Mohd} and \textit{Y. B. Dasril}, Int. J. Math. Oper. Res. 20, No. 4, 521--547 (2021; Zbl 07488830) Full Text: DOI OpenURL
Iben, U.; Dörr, A.; Boeru, E.; Astrakhantsev, N. Inversion of equations of state by combining multi-task neural networks and Newton’s method. (English) Zbl 07484767 Inverse Probl. Sci. Eng. 29, No. 13, 3490-3508 (2021). MSC: 76Mxx 76Nxx 76Jxx PDF BibTeX XML Cite \textit{U. Iben} et al., Inverse Probl. Sci. Eng. 29, No. 13, 3490--3508 (2021; Zbl 07484767) Full Text: DOI OpenURL
Usurelu, Gabriela Ioana; Bejenaru, Andreea; Postolache, Mihai Newton-like methods and polynomiographic visualization of modified Thakur processes. (English) Zbl 07476604 Int. J. Comput. Math. 98, No. 5, 1049-1068 (2021). MSC: 47H09 47J05 47J25 PDF BibTeX XML Cite \textit{G. I. Usurelu} et al., Int. J. Comput. Math. 98, No. 5, 1049--1068 (2021; Zbl 07476604) Full Text: DOI OpenURL
Argyros, Ioannis K.; George, Santhosh Expanding the applicability of Newton’s method and of a robust modified Newton’s method. (English) Zbl 1480.65116 Appl. Math. 48, No. 1, 89-100 (2021). MSC: 65H05 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. George}, Appl. Math. 48, No. 1, 89--100 (2021; Zbl 1480.65116) Full Text: DOI OpenURL
Torkashvand, Vali; Araghi, Mohammad Ali Fariborzi Construction of iterative adaptive methods with memory with 100% improvement of convergence order. (English) Zbl 1478.65039 J. Math. Ext. 15, No. 3, Paper No. 16, 32 p. (2021). MSC: 65H05 PDF BibTeX XML Cite \textit{V. Torkashvand} and \textit{M. A. F. Araghi}, J. Math. Ext. 15, No. 3, Paper No. 16, 32 p. (2021; Zbl 1478.65039) Full Text: DOI Link OpenURL
Sharma, Debasis; Parhi, Sanjaya Kumar Local convergence of two Newton-like methods under Hölder continuity condition in Banach spaces. (English) Zbl 1482.65083 Int. J. Math. Oper. Res. 19, No. 4, 500-514 (2021). MSC: 65J15 49M15 PDF BibTeX XML Cite \textit{D. Sharma} and \textit{S. K. Parhi}, Int. J. Math. Oper. Res. 19, No. 4, 500--514 (2021; Zbl 1482.65083) Full Text: DOI OpenURL
Avakov, E. R.; Magaril-Il’yaev, G. G. A note on the classical implicit function theorem. (English. Russian original) Zbl 1481.58006 Math. Notes 110, No. 6, 942-946 (2021); translation from Mat. Zametki 110, No. 6, 911-915 (2021). Reviewer: Antonio Roberto da Silva (Rio de Janeiro) MSC: 58C15 PDF BibTeX XML Cite \textit{E. R. Avakov} and \textit{G. G. Magaril-Il'yaev}, Math. Notes 110, No. 6, 942--946 (2021; Zbl 1481.58006); translation from Mat. Zametki 110, No. 6, 911--915 (2021) Full Text: DOI OpenURL
Zhou, Shenglong; Pan, Lili; Xiu, Naihua; Qi, Hou-Duo Quadratic convergence of smoothing Newton’s method for 0/1 loss optimization. (English) Zbl 1483.90126 SIAM J. Optim. 31, No. 4, 3184-3211 (2021). MSC: 90C26 90C30 65K05 PDF BibTeX XML Cite \textit{S. Zhou} et al., SIAM J. Optim. 31, No. 4, 3184--3211 (2021; Zbl 1483.90126) Full Text: DOI arXiv OpenURL
Yong, Longquan Advances in Newton’s iterative methods for nonlinear equation. (Chinese. English summary) Zbl 07448830 Math. Pract. Theory 51, No. 15, 240-249 (2021). MSC: 65H05 PDF BibTeX XML Cite \textit{L. Yong}, Math. Pract. Theory 51, No. 15, 240--249 (2021; Zbl 07448830) OpenURL
Zhang, Yingchao; Mei, Liangcai; Lin, Yingzhen A novel method for nonlinear boundary value problems based on multiscale orthogonal base. (English) Zbl 07446703 Int. J. Comput. Methods 18, No. 9, Article ID 2150036, 17 p. (2021). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{Y. Zhang} et al., Int. J. Comput. Methods 18, No. 9, Article ID 2150036, 17 p. (2021; Zbl 07446703) Full Text: DOI OpenURL
Kräutle, Serge; Hodai, Jan; Knabner, Peter Robust simulation of mineral precipitation-dissolution problems with variable mineral surface area. (English) Zbl 1476.92060 J. Eng. Math. 129, Paper No. 5, 26 p. (2021). MSC: 92E20 35K57 65M99 76S05 PDF BibTeX XML Cite \textit{S. Kräutle} et al., J. Eng. Math. 129, Paper No. 5, 26 p. (2021; Zbl 1476.92060) Full Text: DOI OpenURL
Weng, Peter Chang-Yi Solving two generalized nonlinear matrix equations. (English) Zbl 07435227 J. Appl. Math. Comput. 66, No. 1-2, 543-559 (2021). MSC: 65F45 PDF BibTeX XML Cite \textit{P. C. Y. Weng}, J. Appl. Math. Comput. 66, No. 1--2, 543--559 (2021; Zbl 07435227) Full Text: DOI OpenURL
Duc Thach Son Vu; Ben Gharbia, Ibtihel; Haddou, Mounir; Quang Huy Tran A new approach for solving nonlinear algebraic systems with complementarity conditions. Application to compositional multiphase equilibrium problems. (English) Zbl 07431569 Math. Comput. Simul. 190, 1243-1274 (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{Duc Thach Son Vu} et al., Math. Comput. Simul. 190, 1243--1274 (2021; Zbl 07431569) Full Text: DOI OpenURL
Alcântara, Adriano A.; Carmo, Bruno A.; Clark, Haroldo R.; Guardia, Ronald R.; Rincon, Mauro A. On a nonlinear problem with Dirichlet and acoustic boundary conditions. (English) Zbl 07426890 Appl. Math. Comput. 411, Article ID 126514, 19 p. (2021). MSC: 35L20 34B15 65M06 65M60 PDF BibTeX XML Cite \textit{A. A. Alcântara} et al., Appl. Math. Comput. 411, Article ID 126514, 19 p. (2021; Zbl 07426890) Full Text: DOI OpenURL
Singh, Manoj Kumar; Singh, Arvind K. On a Newton-type method under weak conditions with dynamics. (English) Zbl 1473.65058 Asian-Eur. J. Math. 14, No. 8, Article ID 2150145, 16 p. (2021). MSC: 65H05 PDF BibTeX XML Cite \textit{M. K. Singh} and \textit{A. K. Singh}, Asian-Eur. J. Math. 14, No. 8, Article ID 2150145, 16 p. (2021; Zbl 1473.65058) Full Text: DOI OpenURL
Hernández-Verón, M. A.; Yadav, Sonia; Martínez, Eulalia; Singh, Sukhjit Solving nonlinear integral equations with non-separable kernel via a high-order iterative process. (English) Zbl 07425014 Appl. Math. Comput. 409, Article ID 126385, 12 p. (2021). MSC: 45G10 47H99 65J15 PDF BibTeX XML Cite \textit{M. A. Hernández-Verón} et al., Appl. Math. Comput. 409, Article ID 126385, 12 p. (2021; Zbl 07425014) Full Text: DOI OpenURL
Denisov, D. V.; Evtushenko, Yu. G.; Tret’yakov, A. A. Some properties of smooth convex functions and Newton’s method. (English. Russian original) Zbl 1480.90192 Dokl. Math. 103, No. 2, 76-80 (2021); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 497, 12-17 (2021). MSC: 90C25 90C53 PDF BibTeX XML Cite \textit{D. V. Denisov} et al., Dokl. Math. 103, No. 2, 76--80 (2021; Zbl 1480.90192); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 497, 12--17 (2021) Full Text: DOI OpenURL
Bagrov, A. D.; Rybakov, A. A. Selection of a method for solving nonlinear equations in shallow-water icing model implementation. (English) Zbl 07422200 Lobachevskii J. Math. 42, No. 11, 2503-2509 (2021). MSC: 76-XX 86-XX PDF BibTeX XML Cite \textit{A. D. Bagrov} and \textit{A. A. Rybakov}, Lobachevskii J. Math. 42, No. 11, 2503--2509 (2021; Zbl 07422200) Full Text: DOI OpenURL
Lu, Di; Guo, Chun-Hua Explicit \(p\)-dependent convergence regions of Newton’s method for the matrix \(p\)th root. (English) Zbl 07413913 Appl. Math. Lett. 122, Article ID 107566, 6 p. (2021). MSC: 65-XX 90-XX PDF BibTeX XML Cite \textit{D. Lu} and \textit{C.-H. Guo}, Appl. Math. Lett. 122, Article ID 107566, 6 p. (2021; Zbl 07413913) Full Text: DOI OpenURL
Pchelintseva, Irina Yur’evna; Litovka, Yuriĭ Vladimirovich Mathematical model and numerical scheme for calculation of electric fields in galvanic baths with non-conductive screen. (Russian. English summary) Zbl 1478.78051 Differ. Uravn. Protsessy Upr. 2021, No. 3, 85-97 (2021). MSC: 78A57 78A55 35J05 78M20 65H10 PDF BibTeX XML Cite \textit{I. Y. Pchelintseva} and \textit{Y. V. Litovka}, Differ. Uravn. Protsessy Upr. 2021, No. 3, 85--97 (2021; Zbl 1478.78051) Full Text: Link OpenURL
Ezquerro, J. A.; Hernández-Verón, M. A. Restricted global convergence domains for integral equations of the Fredholm-Hammerstein type. (English) Zbl 1470.65213 Singh, Harendra (ed.) et al., Topics in integral and integro-differential equations. Theory and applications. Cham: Springer. Stud. Syst. Decis. Control 340, 125-148 (2021). MSC: 65R20 45B05 47H30 65J15 PDF BibTeX XML Cite \textit{J. A. Ezquerro} and \textit{M. A. Hernández-Verón}, Stud. Syst. Decis. Control 340, 125--148 (2021; Zbl 1470.65213) Full Text: DOI OpenURL
Yong, Longquan Newton’s iteration method with fifth-order convergence for absolute value equation. (Chinese. English summary) Zbl 07404438 Math. Pract. Theory 51, No. 7, 261-267 (2021). MSC: 65H10 PDF BibTeX XML Cite \textit{L. Yong}, Math. Pract. Theory 51, No. 7, 261--267 (2021; Zbl 07404438) OpenURL
Leeb, William Rapid evaluation of the spectral signal detection threshold and Stieltjes transform. (English) Zbl 07402265 Adv. Comput. Math. 47, No. 4, Paper No. 60, 29 p. (2021). MSC: 65K10 49M15 60B20 45G10 PDF BibTeX XML Cite \textit{W. Leeb}, Adv. Comput. Math. 47, No. 4, Paper No. 60, 29 p. (2021; Zbl 07402265) Full Text: DOI arXiv OpenURL
Shiraishi, Shunsuke; Obata, Tsuneshi On a maximum eigenvalue of third-order pairwise comparison matrix in analytic hierarchy process and convergence of Newton’s method. (English) Zbl 1472.90046 SN Oper. Res. Forum 2, No. 3, Paper No. 30, 11 p. (2021). MSC: 90B50 90C08 PDF BibTeX XML Cite \textit{S. Shiraishi} and \textit{T. Obata}, SN Oper. Res. Forum 2, No. 3, Paper No. 30, 11 p. (2021; Zbl 1472.90046) Full Text: DOI OpenURL
Gorbova, Tat’yana Vladimirovna Numerical algorithm for fractional order population dynamics model with delay. (Russian. English summary) Zbl 1473.65105 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 57, 91-103 (2021). MSC: 65M06 65M12 65M15 65Q20 PDF BibTeX XML Cite \textit{T. V. Gorbova}, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 57, 91--103 (2021; Zbl 1473.65105) Full Text: DOI MNR OpenURL
Zhao, Yong-Liang; Li, Meng; Ostermann, Alexander; Gu, Xian-Ming An efficient second-order energy stable BDF scheme for the space fractional Cahn-Hilliard equation. (English) Zbl 1481.65168 BIT 61, No. 3, 1061-1092 (2021). MSC: 65M06 65M12 65N06 65F08 65F10 65H10 15B05 26A33 35R11 35Q35 PDF BibTeX XML Cite \textit{Y.-L. Zhao} et al., BIT 61, No. 3, 1061--1092 (2021; Zbl 1481.65168) Full Text: DOI arXiv OpenURL
Ketabchi, Saeed; Moosaei, Hossein; Hladík, Milan On the minimum-norm solution of convex quadratic programming. (English) Zbl 1471.90106 RAIRO, Oper. Res. 55, No. 1, 247-260 (2021). MSC: 90C20 90C25 15A39 PDF BibTeX XML Cite \textit{S. Ketabchi} et al., RAIRO, Oper. Res. 55, No. 1, 247--260 (2021; Zbl 1471.90106) Full Text: DOI OpenURL
Zhou, Shenglong; Xiu, Naihua; Qi, Hou-Duo Global and quadratic convergence of Newton hard-thresholding pursuit. (English) Zbl 07370529 J. Mach. Learn. Res. 22, Paper No. 12, 45 p. (2021). MSC: 68T05 PDF BibTeX XML Cite \textit{S. Zhou} et al., J. Mach. Learn. Res. 22, Paper No. 12, 45 p. (2021; Zbl 07370529) Full Text: arXiv Link OpenURL
Mezzadri, F.; Galligani, E. A modulus-based nonsmooth Newton’s method for solving horizontal linear complementarity problems. (English) Zbl 1471.90150 Optim. Lett. 15, No. 5, 1785-1798 (2021). MSC: 90C33 90C53 PDF BibTeX XML Cite \textit{F. Mezzadri} and \textit{E. Galligani}, Optim. Lett. 15, No. 5, 1785--1798 (2021; Zbl 1471.90150) Full Text: DOI OpenURL
Agarwal, Naman; Boumal, Nicolas; Bullins, Brian; Cartis, Coralia Adaptive regularization with cubics on manifolds. (English) Zbl 1470.90087 Math. Program. 188, No. 1(A), 85-134 (2021). MSC: 90C26 53Z99 90C53 65K05 PDF BibTeX XML Cite \textit{N. Agarwal} et al., Math. Program. 188, No. 1(A), 85--134 (2021; Zbl 1470.90087) Full Text: DOI arXiv OpenURL
Plakhov, Alexander Method of nose stretching in Newton’s problem of minimal resistance. (English) Zbl 1467.49008 Nonlinearity 34, No. 7, 4716-4743 (2021). MSC: 49J35 52A15 49Q10 49K30 26B25 PDF BibTeX XML Cite \textit{A. Plakhov}, Nonlinearity 34, No. 7, 4716--4743 (2021; Zbl 1467.49008) Full Text: DOI arXiv OpenURL
Zhang, Xi; Zhao, Wenling; Zhou, Guanglu; Liu, Wanquan An accelerated monotonic convergent algorithm for a class of non-Lipschitzian NCP\((F)\) involving an \(M\)-matrix. (English) Zbl 07358610 J. Comput. Appl. Math. 397, Article ID 113624, 11 p. (2021). MSC: 47Jxx 90Cxx 90-XX 65Kxx PDF BibTeX XML Cite \textit{X. Zhang} et al., J. Comput. Appl. Math. 397, Article ID 113624, 11 p. (2021; Zbl 07358610) Full Text: DOI OpenURL
Li, Jiao-fen; Li, Wen; Duan, Xue-feng; Xiao, Mingqing Newton’s method for the parameterized generalized eigenvalue problem with nonsquare matrix pencils. (English) Zbl 1465.65029 Adv. Comput. Math. 47, No. 2, Paper No. 29, 50 p. (2021). MSC: 65F15 15A18 PDF BibTeX XML Cite \textit{J.-f. Li} et al., Adv. Comput. Math. 47, No. 2, Paper No. 29, 50 p. (2021; Zbl 1465.65029) Full Text: DOI OpenURL
Borregales Reverón, Manuel Antonio; Kumar, Kundan; Nordbotten, Jan Martin; Radu, Florin Adrian Iterative solvers for Biot model under small and large deformations. (English) Zbl 1460.65117 Comput. Geosci. 25, No. 2, 687-699 (2021). MSC: 65M60 65M22 76S05 PDF BibTeX XML Cite \textit{M. A. Borregales Reverón} et al., Comput. Geosci. 25, No. 2, 687--699 (2021; Zbl 1460.65117) Full Text: DOI arXiv OpenURL
Wu, Runxiong; Chen, Xin MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection. (English) Zbl 07345043 Comput. Stat. Data Anal. 155, Article ID 107089, 18 p. (2021). MSC: 62-XX PDF BibTeX XML Cite \textit{R. Wu} and \textit{X. Chen}, Comput. Stat. Data Anal. 155, Article ID 107089, 18 p. (2021; Zbl 07345043) Full Text: DOI arXiv OpenURL
Argyros, Ioannis K.; George, Santhosh; Erappa, Shobha M. Extending the applicability of Newton’s and secant methods under regular smoothness. (English) Zbl 1474.65152 Bol. Soc. Parana. Mat. (3) 39, No. 6, 195-210 (2021). MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros} et al., Bol. Soc. Parana. Mat. (3) 39, No. 6, 195--210 (2021; Zbl 1474.65152) Full Text: Link OpenURL
Qiu, Zhiping; Jiang, Nan An ellipsoidal Newton’s iteration method of nonlinear structural systems with uncertain-but-bounded parameters. (English) Zbl 07337783 Comput. Methods Appl. Mech. Eng. 373, Article ID 113501, 23 p. (2021). MSC: 65-XX 90-XX PDF BibTeX XML Cite \textit{Z. Qiu} and \textit{N. Jiang}, Comput. Methods Appl. Mech. Eng. 373, Article ID 113501, 23 p. (2021; Zbl 07337783) Full Text: DOI OpenURL
Dubeau, François High order fixed point and Newton’s methods in Banach space. (English) Zbl 1468.65063 Numer. Funct. Anal. Optim. 42, No. 3, 251-278 (2021). MSC: 65J15 PDF BibTeX XML Cite \textit{F. Dubeau}, Numer. Funct. Anal. Optim. 42, No. 3, 251--278 (2021; Zbl 1468.65063) Full Text: DOI OpenURL
Ma, Ru-Ru; Bai, Zheng-Jian A Riemannian inexact Newton-CG method for stochastic inverse singular value problems. (English) Zbl 07332750 Numer. Linear Algebra Appl. 28, No. 1, e2336, 18 p. (2021). MSC: 65F18 65F15 15A18 65K05 90C26 90C48 PDF BibTeX XML Cite \textit{R.-R. Ma} and \textit{Z.-J. Bai}, Numer. Linear Algebra Appl. 28, No. 1, e2336, 18 p. (2021; Zbl 07332750) Full Text: DOI OpenURL
Curtis, Frank E.; Robinson, Daniel P.; Royer, Clément W.; Wright, Stephen J. Trust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimization. (English) Zbl 1461.90107 SIAM J. Optim. 31, No. 1, 518-544 (2021). MSC: 90C26 49M05 49M15 65K05 90C60 PDF BibTeX XML Cite \textit{F. E. Curtis} et al., SIAM J. Optim. 31, No. 1, 518--544 (2021; Zbl 1461.90107) Full Text: DOI arXiv OpenURL
Harrach, Bastian Uniqueness, stability and global convergence for a discrete inverse elliptic Robin transmission problem. (English) Zbl 1459.35392 Numer. Math. 147, No. 1, 29-70 (2021). MSC: 35R30 39A12 35J25 65M32 58C15 PDF BibTeX XML Cite \textit{B. Harrach}, Numer. Math. 147, No. 1, 29--70 (2021; Zbl 1459.35392) Full Text: DOI arXiv OpenURL
Li, Po-Wei Space-time generalized finite difference nonlinear model for solving unsteady Burgers’ equations. (English) Zbl 1458.65110 Appl. Math. Lett. 114, Article ID 106896, 8 p. (2021). MSC: 65M06 35L02 76M20 PDF BibTeX XML Cite \textit{P.-W. Li}, Appl. Math. Lett. 114, Article ID 106896, 8 p. (2021; Zbl 1458.65110) Full Text: DOI OpenURL
Kong-ied, Butsakorn Two new eighth- and twelfth-order iterative methods for solving nonlinear equations. (English) Zbl 1450.65045 Int. J. Math. Comput. Sci. 16, No. 1, 333-344 (2021). MSC: 65H20 PDF BibTeX XML Cite \textit{B. Kong-ied}, Int. J. Math. Comput. Sci. 16, No. 1, 333--344 (2021; Zbl 1450.65045) Full Text: Link OpenURL
Ding, Jie; Wang, Zhongming; Zhou, Shenggao Structure-preserving and efficient numerical methods for ion transport. (English) Zbl 07506163 J. Comput. Phys. 418, Article ID 109597, 21 p. (2020). MSC: 65-XX 82-XX PDF BibTeX XML Cite \textit{J. Ding} et al., J. Comput. Phys. 418, Article ID 109597, 21 p. (2020; Zbl 07506163) Full Text: DOI OpenURL
Ghanbari, Behzad; Cattani, Carlo On fractional predator and prey models with mutualistic predation including non-local and nonsingular kernels. (English) Zbl 07501410 Chaos Solitons Fractals 136, Article ID 109823, 12 p. (2020). MSC: 92-XX 34-XX PDF BibTeX XML Cite \textit{B. Ghanbari} and \textit{C. Cattani}, Chaos Solitons Fractals 136, Article ID 109823, 12 p. (2020; Zbl 07501410) Full Text: DOI OpenURL
Alshomrani, Ali Saleh; Behl, Ramandeep; Argyros, Ioannis K. Ball convergence for a family of eight-order iterative schemes under hypotheses only of the first-order derivative. (English) Zbl 1480.65115 Int. J. Comput. Math. 97, No. 1-2, 444-454 (2020). MSC: 65H05 PDF BibTeX XML Cite \textit{A. S. Alshomrani} et al., Int. J. Comput. Math. 97, No. 1--2, 444--454 (2020; Zbl 1480.65115) Full Text: DOI OpenURL
Levin, Vladimir Anatol’evich; Zingerman, Konstantin Moiseevich; Krapivin, Kirill Yur’evich; Yakovlev, Maksim Yakovlevich Legendre spectral element for plastic localization problems at large scale strains. (Russian. English summary) Zbl 1473.74139 Chebyshevskiĭ Sb. 21, No. 3(75), 306-316 (2020). MSC: 74S25 74C05 PDF BibTeX XML Cite \textit{V. A. Levin} et al., Chebyshevskiĭ Sb. 21, No. 3(75), 306--316 (2020; Zbl 1473.74139) Full Text: MNR OpenURL
Dzhumabaev, Dulat S.; La, Yekatarina S.; Pussurmanova, Akmaral A.; Kisash, Zhanerke Zh. An algorithm for solving a nonlinear boundary value problem with parameter for the Mathieu equation. (English) Zbl 07406155 Mat. Zh. 20, No. 1, 95-102 (2020). MSC: 65L10 34B08 34B30 PDF BibTeX XML Cite \textit{D. S. Dzhumabaev} et al., Mat. Zh. 20, No. 1, 95--102 (2020; Zbl 07406155) OpenURL
Dalvand, Zeynab; Hajarian, Masoud Solving generalized inverse eigenvalue problems via L-BFGS-B method. (English) Zbl 1461.65053 Inverse Probl. Sci. Eng. 28, No. 12, 1719-1746 (2020). MSC: 65F18 15A18 15A29 PDF BibTeX XML Cite \textit{Z. Dalvand} and \textit{M. Hajarian}, Inverse Probl. Sci. Eng. 28, No. 12, 1719--1746 (2020; Zbl 1461.65053) Full Text: DOI OpenURL
Behl, Ramandeep; Gutiérrez, J. M.; Argyros, I. K.; Alshomrani, A. S. Efficient optimal families of higher-order iterative methods with local convergence. (English) Zbl 1474.65155 Appl. Anal. Discrete Math. 14, No. 3, 729-753 (2020). MSC: 65J15 PDF BibTeX XML Cite \textit{R. Behl} et al., Appl. Anal. Discrete Math. 14, No. 3, 729--753 (2020; Zbl 1474.65155) Full Text: DOI OpenURL
Dong, Ning; Yu, Bo; Meng, Zhaoyun Structured Shamanskii methods for Chandrasekhar equation arising from radiation. (English) Zbl 07348438 Proc. Est. Acad. Sci. 69, No. 2, 97-108 (2020). MSC: 65D20 65H10 PDF BibTeX XML Cite \textit{N. Dong} et al., Proc. Est. Acad. Sci. 69, No. 2, 97--108 (2020; Zbl 07348438) Full Text: DOI OpenURL
Li, Ming; Zheng, Zhoushun; Pan, Kejia; Yue, Xiaoqiang An efficient Newton multiscale multigrid method for 2D semilinear Poisson equations. (English) Zbl 1468.65219 East Asian J. Appl. Math. 10, No. 3, 620-634 (2020). MSC: 65N55 65N06 65N50 65B05 65H10 35J05 35J61 35Q20 35Q60 PDF BibTeX XML Cite \textit{M. Li} et al., East Asian J. Appl. Math. 10, No. 3, 620--634 (2020; Zbl 1468.65219) Full Text: DOI OpenURL
Zhadan, Vitaly Dual Newton’s methods for linear second-order cone programming. (English) Zbl 07335035 Kononov, Alexander (ed.) et al., Mathematical optimization theory and operations research. 19th international conference, MOTOR 2020, Novosibirsk, Russia, July 6–10, 2020. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 12095, 19-32 (2020). MSC: 90C05 90C30 PDF BibTeX XML Cite \textit{V. Zhadan}, Lect. Notes Comput. Sci. 12095, 19--32 (2020; Zbl 07335035) Full Text: DOI OpenURL
Sète, Olivier; Zur, Jan A Newton method for harmonic mappings in the plane. (English) Zbl 1464.65046 IMA J. Numer. Anal. 40, No. 4, 2777-2801 (2020). MSC: 65H05 PDF BibTeX XML Cite \textit{O. Sète} and \textit{J. Zur}, IMA J. Numer. Anal. 40, No. 4, 2777--2801 (2020; Zbl 1464.65046) Full Text: DOI arXiv OpenURL
Singh, Manoj Kumar; Singh, Arvind K. Variant of Newton’s method using Simpson’s 3/8th rule. (English) Zbl 1461.65070 Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 20, 13 p. (2020). MSC: 65H04 65H05 PDF BibTeX XML Cite \textit{M. K. Singh} and \textit{A. K. Singh}, Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 20, 13 p. (2020; Zbl 1461.65070) Full Text: DOI OpenURL
Chaiya, Malinee; Chaiya, Somjate On the distance to a root of complex polynomials under Newton’s method. (English) Zbl 1456.30018 J. Korean Math. Soc. 57, No. 5, 1119-1133 (2020). MSC: 30C15 30C10 PDF BibTeX XML Cite \textit{M. Chaiya} and \textit{S. Chaiya}, J. Korean Math. Soc. 57, No. 5, 1119--1133 (2020; Zbl 1456.30018) Full Text: DOI OpenURL
Mantzaflaris, Angelos; Mourrain, Bernard; Szanto, Agnes Punctual Hilbert scheme and certified approximate singularities. (English) Zbl 07300089 Mantzaflaris, Angelos (ed.), Proceedings of the 45th international symposium on symbolic and algebraic computation, ISSAC ’20, Kalamata, Greece, July 20–23, 2020. New York, NY: Association for Computing Machinery (ACM). 336-343 (2020). MSC: 68W30 PDF BibTeX XML Cite \textit{A. Mantzaflaris} et al., in: Proceedings of the 45th international symposium on symbolic and algebraic computation, ISSAC '20, Kalamata, Greece, July 20--23, 2020. New York, NY: Association for Computing Machinery (ACM). 336--343 (2020; Zbl 07300089) Full Text: DOI arXiv OpenURL
Kaysar, Rahman One class of third-order iteration methods for solving nonlinear equations. (Chinese. English summary) Zbl 1463.65115 J. Jiangxi Norm. Univ., Nat. Sci. Ed. 44, No. 2, 206-208 (2020). MSC: 65H05 PDF BibTeX XML Cite \textit{R. Kaysar}, J. Jiangxi Norm. Univ., Nat. Sci. Ed. 44, No. 2, 206--208 (2020; Zbl 1463.65115) Full Text: DOI OpenURL
Burke, James V.; Engle, Abraham Strong metric (sub)regularity of Karush-Kuhn-Tucker mappings for piecewise linear-quadratic convex-composite optimization and the quadratic convergence of Newton’s method. (English) Zbl 1456.90123 Math. Oper. Res. 45, No. 3, 1164-1192 (2020). MSC: 90C25 90C53 90C46 PDF BibTeX XML Cite \textit{J. V. Burke} and \textit{A. Engle}, Math. Oper. Res. 45, No. 3, 1164--1192 (2020; Zbl 1456.90123) Full Text: DOI OpenURL
Cornelis, Jeffrey; Vanroose, W. Projected Newton method for noise constrained \(\ell_p\) regularization. (English) Zbl 1455.65048 Inverse Probl. 36, No. 12, Article ID 125004, 32 p. (2020). MSC: 65F22 65F10 65K05 49M15 PDF BibTeX XML Cite \textit{J. Cornelis} and \textit{W. Vanroose}, Inverse Probl. 36, No. 12, Article ID 125004, 32 p. (2020; Zbl 1455.65048) Full Text: DOI arXiv OpenURL
Kaushik, Aditya; Kumar, Vijayant; Sharma, Manju; Vashishth, Anil K. A higher order finite element method with modified graded mesh for singularly perturbed two-parameter problems. (English) Zbl 1455.65121 Math. Methods Appl. Sci. 43, No. 15, 8644-8656 (2020). MSC: 65L60 65L11 65L20 65L50 PDF BibTeX XML Cite \textit{A. Kaushik} et al., Math. Methods Appl. Sci. 43, No. 15, 8644--8656 (2020; Zbl 1455.65121) Full Text: DOI OpenURL
Yan, Yinqiao; Li, Qingna An efficient augmented Lagrangian method for support vector machine. (English) Zbl 1454.90091 Optim. Methods Softw. 35, No. 4, 855-883 (2020). MSC: 90C30 PDF BibTeX XML Cite \textit{Y. Yan} and \textit{Q. Li}, Optim. Methods Softw. 35, No. 4, 855--883 (2020; Zbl 1454.90091) Full Text: DOI arXiv OpenURL
Berahas, Albert S.; Bollapragada, Raghu; Nocedal, Jorge An investigation of Newton-sketch and subsampled Newton methods. (English) Zbl 1454.90112 Optim. Methods Softw. 35, No. 4, 661-680 (2020). MSC: 90C53 90C30 65K05 PDF BibTeX XML Cite \textit{A. S. Berahas} et al., Optim. Methods Softw. 35, No. 4, 661--680 (2020; Zbl 1454.90112) Full Text: DOI arXiv OpenURL
Shemyakov, Sergey; Chernov, Roman; Rumiantsau, Dzmitry; Schleicher, Dierk; Schmitt, Simon; Shemyakov, Anton Finding polynomial roots by dynamical systems – a case study. (English) Zbl 1456.37106 Discrete Contin. Dyn. Syst. 40, No. 12, 6945-6965 (2020). Reviewer: Anton Iliev (Plovdiv) MSC: 37N30 37F10 65H04 PDF BibTeX XML Cite \textit{S. Shemyakov} et al., Discrete Contin. Dyn. Syst. 40, No. 12, 6945--6965 (2020; Zbl 1456.37106) Full Text: DOI arXiv OpenURL
Wang, Yang; Zhao, Zhi; Bai, Zheng-Jian Riemannian Newton-CG methods for constructing a positive doubly stochastic matrix from spectral data. (English) Zbl 1460.15023 Inverse Probl. 36, No. 11, Article ID 115006, 26 p. (2020). MSC: 15A29 15A18 15B51 65F18 PDF BibTeX XML Cite \textit{Y. Wang} et al., Inverse Probl. 36, No. 11, Article ID 115006, 26 p. (2020; Zbl 1460.15023) Full Text: DOI arXiv OpenURL
Carmon, Yair; Duchi, John C.; Hinder, Oliver; Sidford, Aaron Lower bounds for finding stationary points I. (English) Zbl 1451.90128 Math. Program. 184, No. 1-2 (A), 71-120 (2020). MSC: 90C26 90C06 90C60 68Q25 PDF BibTeX XML Cite \textit{Y. Carmon} et al., Math. Program. 184, No. 1--2 (A), 71--120 (2020; Zbl 1451.90128) Full Text: DOI arXiv OpenURL
Li, Wenbin; Qian, Jianliang Newton-type Gauss-Seidel Lax-Friedrichs high-order fast sweeping methods for solving generalized eikonal equations at large-scale discretization. (English) Zbl 1443.65284 Comput. Math. Appl. 79, No. 4, 1222-1239 (2020). MSC: 65N06 35F21 35F30 PDF BibTeX XML Cite \textit{W. Li} and \textit{J. Qian}, Comput. Math. Appl. 79, No. 4, 1222--1239 (2020; Zbl 1443.65284) Full Text: DOI OpenURL
De Leo, Roberto Dynamics of Newton maps of quadratic polynomial maps of \(\mathbb{R}^2\) into itself. (English) Zbl 1451.37108 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2030027, 21 p. (2020). MSC: 37M21 37E30 37F10 PDF BibTeX XML Cite \textit{R. De Leo}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2030027, 21 p. (2020; Zbl 1451.37108) Full Text: DOI OpenURL
Argyros, Ioannis K.; George, Santhosh; Sahu, Daya Ram Extensions of Kantorovich-type theorems for Newton’s method. (English) Zbl 1468.65062 Appl. Math. 47, No. 1, 145-153 (2020). MSC: 65J15 49M15 PDF BibTeX XML Cite \textit{I. K. Argyros} et al., Appl. Math. 47, No. 1, 145--153 (2020; Zbl 1468.65062) Full Text: DOI OpenURL
Brenner, Konstantin Acceleration of Newton’s method using nonlinear Jacobi preconditioning. (English) Zbl 1454.65075 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer. Springer Proc. Math. Stat. 323, 395-403 (2020). MSC: 65M08 65M22 65M06 65H10 65F08 76S05 PDF BibTeX XML Cite \textit{K. Brenner}, Springer Proc. Math. Stat. 323, 395--403 (2020; Zbl 1454.65075) Full Text: DOI HAL OpenURL
Bartłomiejczyk, Agnieszka; Wrzosek, Monika Newton’s method for the McKendrick-von Foerster equation. (English) Zbl 07238035 Banasiak, Jacek (ed.) et al., Semigroups of operators – theory and applications. Selected papers based on the presentations at the conference, SOTA 2018, Kazimierz Dolny, Poland, September 30 – October 5, 2018. In honour of Jan Kisyński’s 85th birthday. Cham: Springer. Springer Proc. Math. Stat. 325, 137-146 (2020). MSC: 47-XX PDF BibTeX XML Cite \textit{A. Bartłomiejczyk} and \textit{M. Wrzosek}, Springer Proc. Math. Stat. 325, 137--146 (2020; Zbl 07238035) Full Text: DOI OpenURL
Sang, Haifeng; Li, Min; Liu, Panpan; Wang, Chunyan; Luan, Tian Credibility verification of \(Z\)-eigenpairs of symmetric tensors based on inverse-free Newton’s method. (Chinese. English summary) Zbl 1449.15062 J. Jilin Univ., Sci. 58, No. 1, 90-94 (2020). MSC: 15A69 15A18 65F15 PDF BibTeX XML Cite \textit{H. Sang} et al., J. Jilin Univ., Sci. 58, No. 1, 90--94 (2020; Zbl 1449.15062) Full Text: DOI OpenURL
Hinterer, Fabian; Hubmer, Simon; Ramlau, Ronny A note on the minimization of a Tikhonov functional with \(\ell^1\)-penalty. (English) Zbl 1455.65086 Inverse Probl. 36, No. 7, Article ID 074001, 19 p. (2020). Reviewer: Bangti Jin (London) MSC: 65J22 65J20 47J06 PDF BibTeX XML Cite \textit{F. Hinterer} et al., Inverse Probl. 36, No. 7, Article ID 074001, 19 p. (2020; Zbl 1455.65086) Full Text: DOI arXiv OpenURL
Bolte, Jérôme; Chen, Zheng; Pauwels, Edouard The multiproximal linearization method for convex composite problems. (English) Zbl 1445.90081 Math. Program. 182, No. (1-2 (A)), 1-36 (2020). MSC: 90C25 90C30 90C47 PDF BibTeX XML Cite \textit{J. Bolte} et al., Math. Program. 182, No. (1--2 (A)), 1--36 (2020; Zbl 1445.90081) Full Text: DOI arXiv OpenURL
Argyros, I. K.; Ceballos, J.; González, D.; Gutiérrez, J. M. Extending the applicability of Newton’s method for a class of boundary value problems using the shooting method. (English) Zbl 1474.65151 Appl. Math. Comput. 384, Article ID 125378, 10 p. (2020). MSC: 65J15 PDF BibTeX XML Cite \textit{I. K. Argyros} et al., Appl. Math. Comput. 384, Article ID 125378, 10 p. (2020; Zbl 1474.65151) Full Text: DOI OpenURL
Carmon, Yair; Duchi, John C. First-order methods for nonconvex quadratic minimization. (English) Zbl 1459.65082 SIAM Rev. 62, No. 2, 395-436 (2020). Reviewer: Nada Djuranović-Miličić (Beograd) MSC: 65K05 90C06 90C20 90C26 90C30 PDF BibTeX XML Cite \textit{Y. Carmon} and \textit{J. C. Duchi}, SIAM Rev. 62, No. 2, 395--436 (2020; Zbl 1459.65082) Full Text: DOI arXiv OpenURL
Alshomrani, Ali Saleh; Argyros, Ioannis K.; Behl, Ramandeep An optimal reconstruction of Chebyshev-Halley-type methods with local convergence analysis. (English) Zbl 07205459 Int. J. Comput. Methods 17, No. 5, Article ID 1940017, 23 p. (2020). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{A. S. Alshomrani} et al., Int. J. Comput. Methods 17, No. 5, Article ID 1940017, 23 p. (2020; Zbl 07205459) Full Text: DOI OpenURL
Leszczyński, Henryk; Wrzosek, Monika Newton’s method for nonlinear stochastic wave equations. (English) Zbl 1434.60161 Forum Math. 32, No. 3, 595-605 (2020). MSC: 60H15 35R60 35R10 65C30 PDF BibTeX XML Cite \textit{H. Leszczyński} and \textit{M. Wrzosek}, Forum Math. 32, No. 3, 595--605 (2020; Zbl 1434.60161) Full Text: DOI OpenURL