Dudás, János; Krisztin, Tibor Global stability for the three-dimensional logistic map. (English) Zbl 07312089 Nonlinearity 34, No. 2, 894-938 (2021). MSC: 39A30 39A28 65Q10 65G40 37C75 PDF BibTeX XML Cite \textit{J. Dudás} and \textit{T. Krisztin}, Nonlinearity 34, No. 2, 894--938 (2021; Zbl 07312089) Full Text: DOI
Ferchichi, Mohamed R.; Yousfi, Abla On some properties in the parameter space of a planar discrete dynamical system. (English) Zbl 07302972 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 2, 61-76 (2021). MSC: 37G35 37D45 PDF BibTeX XML Cite \textit{M. R. Ferchichi} and \textit{A. Yousfi}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 2, 61--76 (2021; Zbl 07302972) Full Text: Link
Ma, Rui; Bai, Yuzhen; Wang, Fei Dynamical behavior analysis of a two-dimensional discrete predator-prey model with prey refuge and fear factor. (English) Zbl 07315432 J. Appl. Anal. Comput. 10, No. 4, 1683-1697 (2020). MSC: 39A28 39A30 37N25 92D25 PDF BibTeX XML Cite \textit{R. Ma} et al., J. Appl. Anal. Comput. 10, No. 4, 1683--1697 (2020; Zbl 07315432) Full Text: DOI
Gümüş, Özlem Ak Neimark-Sacker bifurcation and stability of a prey-predator system. (English) Zbl 07307843 Miskolc Math. Notes 21, No. 2, 873-885 (2020). MSC: 37N25 39A10 39A28 39A30 39A33 PDF BibTeX XML Cite \textit{Ö. A. Gümüş}, Miskolc Math. Notes 21, No. 2, 873--885 (2020; Zbl 07307843) Full Text: DOI
Kalabušić, Senada; Drino, Džana; Pilav, Esmir Period-doubling and Neimark-Sacker bifurcations of a Beddington host-parasitoid model with a host refuge effect. (English) Zbl 07306786 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2050254, 30 p. (2020). MSC: 35Q92 92D25 35B32 92-08 PDF BibTeX XML Cite \textit{S. Kalabušić} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2050254, 30 p. (2020; Zbl 07306786) Full Text: DOI
Tigan, Gheorghe; Lugojan, Sorin; Ciurdariu, Loredana Analysis of degenerate chenciner bifurcation. (English) Zbl 07306778 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2050245, 11 p. (2020). MSC: 37 93 PDF BibTeX XML Cite \textit{G. Tigan} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2050245, 11 p. (2020; Zbl 07306778) Full Text: DOI
Dou, Zhongli; Wang, Rui Stability and Neimark-Sacker bifurcation behavior of predator-prey model with refuge. (Chinese. English summary) Zbl 07267309 Math. Pract. Theory 49, No. 24, 246-252 (2020). MSC: 34D20 34C23 92D25 PDF BibTeX XML Cite \textit{Z. Dou} and \textit{R. Wang}, Math. Pract. Theory 49, No. 24, 246--252 (2020; Zbl 07267309)
Singh, Anuraj; Deolia, Preeti Dynamical analysis and chaos control in discrete-time prey-predator model. (English) Zbl 1451.92267 Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105313, 23 p. (2020). MSC: 92D25 34H10 34C23 93B52 PDF BibTeX XML Cite \textit{A. Singh} and \textit{P. Deolia}, Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105313, 23 p. (2020; Zbl 1451.92267) Full Text: DOI
Fleurantin, Emmanuel; James, J. D. Mireles Resonant tori, transport barriers, and chaos in a vector field with a Neimark-Sacker bifurcation. (English) Zbl 1453.34020 Commun. Nonlinear Sci. Numer. Simul. 85, Article ID 105226, 28 p. (2020). MSC: 34A34 34C45 37M20 37M21 34C23 34C28 PDF BibTeX XML Cite \textit{E. Fleurantin} and \textit{J. D. M. James}, Commun. Nonlinear Sci. Numer. Simul. 85, Article ID 105226, 28 p. (2020; Zbl 1453.34020) Full Text: DOI
Din, Qamar; Haider, Kamran Discretization, bifurcation analysis and chaos control for Schnakenberg model. (English) Zbl 1447.39008 J. Math. Chem. 58, No. 8, 1615-1649 (2020). MSC: 39A60 39A28 92B05 92C50 PDF BibTeX XML Cite \textit{Q. Din} and \textit{K. Haider}, J. Math. Chem. 58, No. 8, 1615--1649 (2020; Zbl 1447.39008) Full Text: DOI
Baydemir, Pinar; Merdan, Huseyin; Karaoglu, Esra; Sucu, Gokce Complex dynamics of a discrete-time prey-predator system with Leslie type: stability, bifurcation analyses and chaos. (English) Zbl 1453.39014 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 10, Article ID 2050149, 21 p. (2020). Reviewer: Yuming Chen (Waterloo) MSC: 39A60 65L05 65L06 65P20 37N25 39A30 39A28 92D25 PDF BibTeX XML Cite \textit{P. Baydemir} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 10, Article ID 2050149, 21 p. (2020; Zbl 1453.39014) Full Text: DOI
Gyllenberg, Mats; Jiang, Jifa; Niu, Lei Chaotic attractors in Atkinson-Allen model of four competing species. (English) Zbl 1447.92340 J. Biol. Dyn. 14, No. 1, 440-453 (2020). MSC: 92D25 92D40 34D45 PDF BibTeX XML Cite \textit{M. Gyllenberg} et al., J. Biol. Dyn. 14, No. 1, 440--453 (2020; Zbl 1447.92340) Full Text: DOI
Bešo, E.; Kalabušić, S.; Mujić, N.; Pilav, E. Stability of a certain class of a host-parasitoid models with a spatial refuge effect. (English) Zbl 1448.92174 J. Biol. Dyn. 14, No. 1, 1-31 (2020). MSC: 92D25 39A30 39A28 PDF BibTeX XML Cite \textit{E. Bešo} et al., J. Biol. Dyn. 14, No. 1, 1--31 (2020; Zbl 1448.92174) Full Text: DOI
Kalabušić, S.; Drino, Dž.; Pilav, E. Global behavior and bifurcation in a class of host-parasitoid models with a constant host refuge. (English) Zbl 1441.39016 Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 66, 37 p. (2020). MSC: 39A60 39A30 39A28 37N25 92D25 PDF BibTeX XML Cite \textit{S. Kalabušić} et al., Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 66, 37 p. (2020; Zbl 1441.39016) Full Text: DOI
Aarset, Christian; Pötzsche, Christian Bifurcations in periodic integrodifference equations in \(C(\Omega)\): II. Discrete torus bifurcations. (English) Zbl 1441.39011 Commun. Pure Appl. Anal. 19, No. 4, 1847-1874 (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 39A28 37G15 39A23 37N25 92D25 PDF BibTeX XML Cite \textit{C. Aarset} and \textit{C. Pötzsche}, Commun. Pure Appl. Anal. 19, No. 4, 1847--1874 (2020; Zbl 1441.39011) Full Text: DOI
Wang, JinRong; Fečkan, Michal Dynamics of a discrete nonlinear prey-predator model. (English) Zbl 1442.37106 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 4, Article ID 2050055, 15 p. (2020). MSC: 37N25 92D25 39A28 39A30 PDF BibTeX XML Cite \textit{J. Wang} and \textit{M. Fečkan}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 4, Article ID 2050055, 15 p. (2020; Zbl 1442.37106) Full Text: DOI
Blé, Gamaliel; Dela-Rosa, Miguel Angel; Loreto-Hernández, Iván Neimark-Sacker bifurcation analysis in an intraguild predation model with general functional responses. (English) Zbl 1439.37085 J. Difference Equ. Appl. 26, No. 2, 223-243 (2020). MSC: 37N25 37G15 34C23 39A28 92D25 PDF BibTeX XML Cite \textit{G. Blé} et al., J. Difference Equ. Appl. 26, No. 2, 223--243 (2020; Zbl 1439.37085) Full Text: DOI
AlSharawi, Ziyad; Pal, Saheb; Pal, Nikhil; Chattopadhyay, Joydev A discrete-time model with non-monotonic functional response and strong Allee effect in prey. (English) Zbl 1435.92049 J. Difference Equ. Appl. 26, No. 3, 404-431 (2020). MSC: 92D25 34C23 PDF BibTeX XML Cite \textit{Z. AlSharawi} et al., J. Difference Equ. Appl. 26, No. 3, 404--431 (2020; Zbl 1435.92049) Full Text: DOI
Gyllenberg, Mats; Jiang, Jifa; Niu, Lei; Yan, Ping Permanence and universal classification of discrete-time competitive systems via the carrying simplex. (English) Zbl 1432.37116 Discrete Contin. Dyn. Syst. 40, No. 3, 1621-1663 (2020). MSC: 37N25 37C15 92D25 PDF BibTeX XML Cite \textit{M. Gyllenberg} et al., Discrete Contin. Dyn. Syst. 40, No. 3, 1621--1663 (2020; Zbl 1432.37116) Full Text: DOI
Hilker, Frank M.; Sun, T. A.; Allen, L. J. S.; Hamelin, F. M. Separate seasons of infection and reproduction can lead to multi-year population cycles. (English) Zbl 1430.92103 J. Theor. Biol. 489, Article ID 110158, 10 p. (2020). MSC: 92D30 92D25 92D40 PDF BibTeX XML Cite \textit{F. M. Hilker} et al., J. Theor. Biol. 489, Article ID 110158, 10 p. (2020; Zbl 1430.92103) Full Text: DOI
Liu, Wei; Jiang, Yaolin Flip bifurcation and Neimark-Sacker bifurcation in a discrete predator-prey model with harvesting. (English) Zbl 1433.37082 Int. J. Biomath. 13, No. 1, Article ID 1950093, 37 p. (2020). MSC: 37N25 92D25 39A28 PDF BibTeX XML Cite \textit{W. Liu} and \textit{Y. Jiang}, Int. J. Biomath. 13, No. 1, Article ID 1950093, 37 p. (2020; Zbl 1433.37082) Full Text: DOI
Cândido, Murilo R.; Novaes, Douglas D. On the torus bifurcation in averaging theory. (English) Zbl 07163248 J. Differ. Equations 268, No. 8, 4555-4576 (2020). Reviewer: Alois Steindl (Wien) MSC: 34C23 34C29 34C45 34C25 34D45 37C27 37C55 PDF BibTeX XML Cite \textit{M. R. Cândido} and \textit{D. D. Novaes}, J. Differ. Equations 268, No. 8, 4555--4576 (2020; Zbl 07163248) Full Text: DOI
Zhang, Ming; Wang, Guanghui; Xu, Jin; Qu, Cunquan Dynamic contest model with bounded rationality. (English) Zbl 1433.91032 Appl. Math. Comput. 370, Article ID 124909, 15 p. (2020). MSC: 91A22 37N40 91A26 PDF BibTeX XML Cite \textit{M. Zhang} et al., Appl. Math. Comput. 370, Article ID 124909, 15 p. (2020; Zbl 1433.91032) Full Text: DOI
Blé, Gamaliel; Dela-Rosa, Miguel Angel Neimark-Sacker bifurcation in a tritrophic model with defense in the prey. (English) Zbl 1448.92175 Chaos Solitons Fractals 123, 124-139 (2019). MSC: 92D25 34C23 34D05 34C60 PDF BibTeX XML Cite \textit{G. Blé} and \textit{M. A. Dela-Rosa}, Chaos Solitons Fractals 123, 124--139 (2019; Zbl 1448.92175) Full Text: DOI
Balcı, Ercan; Öztürk, İlhan; Kartal, Senol Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative. (English) Zbl 1448.92095 Chaos Solitons Fractals 123, 43-51 (2019). MSC: 92C50 34A08 34D05 34C23 34C60 PDF BibTeX XML Cite \textit{E. Balcı} et al., Chaos Solitons Fractals 123, 43--51 (2019; Zbl 1448.92095) Full Text: DOI
Shabbir, Muhammad Sajjad; Din, Qamar; Safeer, Muhammad; Khan, Muhammad Asif; Ahmad, Khalil A dynamically consistent nonstandard finite difference scheme for a predator – prey model. (English) Zbl 07254395 Adv. Difference Equ. 2019, Paper No. 381, 17 p. (2019). MSC: 39A30 40A05 92D25 92C50 PDF BibTeX XML Cite \textit{M. S. Shabbir} et al., Adv. Difference Equ. 2019, Paper No. 381, 17 p. (2019; Zbl 07254395) Full Text: DOI
Wang, Jinliang; Li, You; Zhong, Shihong; Hou, Xiaojie Analysis of bifurcation, chaos and pattern formation in a discrete time and space Gierer Meinhardt system. (English) Zbl 1442.35214 Chaos Solitons Fractals 118, 1-17 (2019). MSC: 35K57 37M20 35B36 35B32 37G15 PDF BibTeX XML Cite \textit{J. Wang} et al., Chaos Solitons Fractals 118, 1--17 (2019; Zbl 1442.35214) Full Text: DOI
Din, Qamar; Shabbir, M. Sajjad; Khan, M. Asif; Ahmad, Khalil Bifurcation analysis and chaos control for a plant-herbivore model with weak predator functional response. (English) Zbl 1448.92371 J. Biol. Dyn. 13, No. 1, 481-501 (2019). MSC: 92D40 34H10 34C23 39A30 PDF BibTeX XML Cite \textit{Q. Din} et al., J. Biol. Dyn. 13, No. 1, 481--501 (2019; Zbl 1448.92371) Full Text: DOI
Abdelaziz, Mahmoud A. M.; Ismail, Ahmad Izani; Abdullah, Farah A.; Mohd, Mohd Hafiz Analysis of a discrete-time fractional order SIR epidemic model for childhood diseases. (English) Zbl 1444.92104 Mohd, Mohd Hafiz (ed.) et al., Dynamical systems, bifurcation analysis and applications. Collected papers of the SEAMS school 2018 on dynamical systems and bifurcation analysis, DySBA, Penang, Malaysia, August 6–13, 2018. Singapore: Springer. Springer Proc. Math. Stat. 295, 69-88 (2019). MSC: 92D30 92C60 34C23 34C28 PDF BibTeX XML Cite \textit{M. A. M. Abdelaziz} et al., Springer Proc. Math. Stat. 295, 69--88 (2019; Zbl 1444.92104) Full Text: DOI
Stankevich, Nataliya; Kuznetsov, Alexander; Popova, Elena; Seleznev, Evgeniy Chaos and hyperchaos via secondary Neimark-Sacker bifurcation in a model of radiophysical generator. (English) Zbl 1430.37042 Nonlinear Dyn. 97, No. 4, 2355-2370 (2019). MSC: 37D45 37G10 PDF BibTeX XML Cite \textit{N. Stankevich} et al., Nonlinear Dyn. 97, No. 4, 2355--2370 (2019; Zbl 1430.37042) Full Text: DOI
Yin, Shan; Ji, Jinchen; Deng, Shuning; Wen, Guilin Degenerate grazing bifurcations in a three-degree-of-freedom impact oscillator. (English) Zbl 1430.34055 Nonlinear Dyn. 97, No. 1, 525-539 (2019). MSC: 34C23 34C15 37G10 PDF BibTeX XML Cite \textit{S. Yin} et al., Nonlinear Dyn. 97, No. 1, 525--539 (2019; Zbl 1430.34055) Full Text: DOI
Din, Qamar; Hussain, Mushtaq Controlling chaos and Neimark-Sacker bifurcation in a host-parasitoid model. (English) Zbl 1431.92123 Asian J. Control 21, No. 3, 1202-1215 (2019). MSC: 92D25 92D40 34H10 34C23 93B52 93D20 PDF BibTeX XML Cite \textit{Q. Din} and \textit{M. Hussain}, Asian J. Control 21, No. 3, 1202--1215 (2019; Zbl 1431.92123) Full Text: DOI
Ali, Irfan; Saeed, Umer; Din, Qamar Bifurcation analysis and chaos control in a discrete-time plant quality and larch budmoth interaction model with Ricker equation. (English) Zbl 1431.37074 Math. Methods Appl. Sci. 42, No. 18, 7395-7410 (2019). MSC: 37N35 37G10 34H10 93C55 PDF BibTeX XML Cite \textit{I. Ali} et al., Math. Methods Appl. Sci. 42, No. 18, 7395--7410 (2019; Zbl 1431.37074) Full Text: DOI
Mazrooei-Sebdani, Reza; Eskandari, Zohreh Neimark-Sacker bifurcation with \(\mathbb{Z}_n\)-symmetry and a neural application. (English) Zbl 1428.37082 Qual. Theory Dyn. Syst. 18, No. 3, 931-946 (2019). MSC: 37M20 37G10 37G05 PDF BibTeX XML Cite \textit{R. Mazrooei-Sebdani} and \textit{Z. Eskandari}, Qual. Theory Dyn. Syst. 18, No. 3, 931--946 (2019; Zbl 1428.37082) Full Text: DOI
Zhong, Shihong; Wang, Jinliang; Li, You; Jiang, Nan Bifurcation, chaos and Turing instability analysis for a space-time discrete toxic phytoplankton-zooplankton model with self-diffusion. (English) Zbl 1432.39014 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 13, Article ID 1950184, 23 p. (2019). MSC: 39A60 92D40 39A12 39A30 39A28 PDF BibTeX XML Cite \textit{S. Zhong} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 13, Article ID 1950184, 23 p. (2019; Zbl 1432.39014) Full Text: DOI
Gyllenberg, Mats; Jiang, Jifa; Niu, Lei; Yan, Ping On the dynamics of multi-species Ricker models admitting a carrying simplex. (English) Zbl 1429.37010 J. Difference Equ. Appl. 25, No. 11, 1489-1530 (2019). MSC: 37C05 37C29 37C15 37G10 37G15 PDF BibTeX XML Cite \textit{M. Gyllenberg} et al., J. Difference Equ. Appl. 25, No. 11, 1489--1530 (2019; Zbl 1429.37010) Full Text: DOI
Bešo, Emin; Kalabušić, Senada; Mujić, Naida; Pilav, Esmir Neimark-Sacker bifurcation and stability of a certain class of host-parasitoid models with host refuge effect. (English) Zbl 1432.39008 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 12, Article ID 1950169, 19 p. (2019). MSC: 39A60 92D25 39A30 PDF BibTeX XML Cite \textit{E. Bešo} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 12, Article ID 1950169, 19 p. (2019; Zbl 1432.39008) Full Text: DOI
Weide, Vinicius; Varriale, Maria C.; Hilker, Frank M. Hydra effect and paradox of enrichment in discrete-time predator-prey models. (English) Zbl 1425.92166 Math. Biosci. 310, 120-127 (2019). MSC: 92D25 92D40 39A60 PDF BibTeX XML Cite \textit{V. Weide} et al., Math. Biosci. 310, 120--127 (2019; Zbl 1425.92166) Full Text: DOI
Rech, Paulo C. Nonlinear dynamics of two discrete-time versions of the continuous-time Brusselator model. (English) Zbl 1435.39001 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 10, Article ID 1950142, 7 p. (2019). MSC: 39A10 39A12 39A28 PDF BibTeX XML Cite \textit{P. C. Rech}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 10, Article ID 1950142, 7 p. (2019; Zbl 1435.39001) Full Text: DOI
Mohammadinejad, Haji Mohammad; Motlagh, Omid Rabiei; Darvishi, Mohammad Neimark-Sacker bifurcation control for delayed Nicholson’s equation. (English) Zbl 1426.34109 Appl. Sci. 21, 170-174 (2019). MSC: 34K35 34H20 34K18 PDF BibTeX XML Cite \textit{H. M. Mohammadinejad} et al., Appl. Sci. 21, 170--174 (2019; Zbl 1426.34109) Full Text: Link
Elsayed, E. M.; Din, Qamar Period-doubling and Neimark-Sacker bifurcations of plant-herbivore models. (English) Zbl 07078747 Adv. Difference Equ. 2019, Paper No. 271, 34 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{E. M. Elsayed} and \textit{Q. Din}, Adv. Difference Equ. 2019, Paper No. 271, 34 p. (2019; Zbl 07078747) Full Text: DOI
Dudás, János Global stability for the 2-dimensional logistic map. (English) Zbl 1411.39008 J. Difference Equ. Appl. 25, No. 2, 179-201 (2019). MSC: 39A30 65Q10 65G40 39A28 PDF BibTeX XML Cite \textit{J. Dudás}, J. Difference Equ. Appl. 25, No. 2, 179--201 (2019; Zbl 1411.39008) Full Text: DOI arXiv
Li, Bo; He, Qizhi Bifurcation analysis of a two-dimensional discrete Hindmarsh-Rose type model. (English) Zbl 07048536 Adv. Difference Equ. 2019, Paper No. 124, 17 p. (2019). MSC: 37G05 37G35 39A10 92C20 PDF BibTeX XML Cite \textit{B. Li} and \textit{Q. He}, Adv. Difference Equ. 2019, Paper No. 124, 17 p. (2019; Zbl 07048536) Full Text: DOI
Feng, Zonghong; Wu, Xinxing; Yang, Luo Stability of a mathematical model with piecewise constant arguments for tumor-immune interaction under drug therapy. (English) Zbl 1415.34128 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 1, Article ID 1950009, 11 p. (2019). MSC: 34K60 92C37 34K20 34K18 34K23 PDF BibTeX XML Cite \textit{Z. Feng} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 1, Article ID 1950009, 11 p. (2019; Zbl 1415.34128) Full Text: DOI
Liu, Weiyi; Cai, Donghan Bifurcation, chaos analysis and control in a discrete-time predator-prey system. (English) Zbl 07012079 Adv. Difference Equ. 2019, Paper No. 11, 22 p. (2019). MSC: 37N25 34H10 34H15 34H20 37M20 39A28 PDF BibTeX XML Cite \textit{W. Liu} and \textit{D. Cai}, Adv. Difference Equ. 2019, Paper No. 11, 22 p. (2019; Zbl 07012079) Full Text: DOI
Işık, Seval A study of stability and bifurcation analysis in discrete-time predator-prey system involving the Allee effect. (English) Zbl 1405.39008 Int. J. Biomath. 12, No. 1, Article ID 1950011, 15 p. (2019). MSC: 39A28 39A33 37G35 39A30 37N25 PDF BibTeX XML Cite \textit{S. Işık}, Int. J. Biomath. 12, No. 1, Article ID 1950011, 15 p. (2019; Zbl 1405.39008) Full Text: DOI
Li, Wei; Li, Xianyi Neimark-Sacker bifurcation of a semi-discrete hematopoiesis model. (English) Zbl 07303509 J. Appl. Anal. Comput. 8, No. 6, 1679-1693 (2018). MSC: 37N25 39A28 92C17 92B05 PDF BibTeX XML Cite \textit{W. Li} and \textit{X. Li}, J. Appl. Anal. Comput. 8, No. 6, 1679--1693 (2018; Zbl 07303509) Full Text: DOI
Agliari, Anna; Naimzada, Ahmad; Pecora, Nicolò Bifurcation structures of a cobweb model with memory and competing technologies. (English) Zbl 07263308 Commun. Nonlinear Sci. Numer. Simul. 58, 78-91 (2018). MSC: 00 PDF BibTeX XML Cite \textit{A. Agliari} et al., Commun. Nonlinear Sci. Numer. Simul. 58, 78--91 (2018; Zbl 07263308) Full Text: DOI
Darlai, Rachadawan; Moore, Elvin J.; Koonprasert, Sanoe Andronov-Hopf and Neimark-Sacker bifurcations in time-delay models of HIV transmission. (English) Zbl 07247585 Thai J. Math., Spec. Iss.: Annual Meeting in Mathematics 2017, 239-259 (2018). MSC: 92D30 34K18 34K20 PDF BibTeX XML Cite \textit{R. Darlai} et al., Thai J. Math. , 239--259 (2018; Zbl 07247585) Full Text: Link
Elsadany, A. A.; Yousef, A. M.; Elsonbaty, Amr Further analytical bifurcation analysis and applications of coupled logistic maps. (English) Zbl 1427.39008 Appl. Math. Comput. 338, 314-336 (2018). MSC: 39A33 37D45 PDF BibTeX XML Cite \textit{A. A. Elsadany} et al., Appl. Math. Comput. 338, 314--336 (2018; Zbl 1427.39008) Full Text: DOI
Saeed, Umer; Ali, Irfan; Din, Qamar Neimark-Sacker bifurcation and chaos control in discrete-time predator-prey model with parasites. (English) Zbl 1422.92128 Nonlinear Dyn. 94, No. 4, 2527-2536 (2018). MSC: 92D25 37N25 34C23 34H10 PDF BibTeX XML Cite \textit{U. Saeed} et al., Nonlinear Dyn. 94, No. 4, 2527--2536 (2018; Zbl 1422.92128) Full Text: DOI
Borisov, Alexey V.; Mamaev, Ivan S.; Vetchanin, Eugeny V. Dynamics of a smooth profile in a medium with friction in the presence of parametric excitation. (English) Zbl 1411.70027 Regul. Chaotic Dyn. 23, No. 4, 480-502 (2018). MSC: 70H08 70Exx 76Bxx 76Dxx PDF BibTeX XML Cite \textit{A. V. Borisov} et al., Regul. Chaotic Dyn. 23, No. 4, 480--502 (2018; Zbl 1411.70027) Full Text: DOI
Zhu, Chunmei; Li, Yan Dynamics behavior of discrete SIR model with a nonlinear incidence rate. (English) Zbl 1424.39045 J. Sichuan Univ., Nat. Sci. Ed. 55, No. 3, 445-451 (2018). MSC: 39A60 39A28 39A30 37N25 92D30 PDF BibTeX XML Cite \textit{C. Zhu} and \textit{Y. Li}, J. Sichuan Univ., Nat. Sci. Ed. 55, No. 3, 445--451 (2018; Zbl 1424.39045) Full Text: DOI
Wang, Yuanyuan PD control at Neimark-Sacker bifurcations in a MacKey-Glass system. (English) Zbl 1448.93188 Adv. Difference Equ. 2018, Paper No. 411, 16 p. (2018). MSC: 93C55 37N35 37G15 93B52 PDF BibTeX XML Cite \textit{Y. Wang}, Adv. Difference Equ. 2018, Paper No. 411, 16 p. (2018; Zbl 1448.93188) Full Text: DOI
Abdelaziz, Mahmoud A. M.; Ismail, Ahmad Izani; Abdullah, Farah A.; Mohd, Mohd Hafiz Bifurcations and chaos in a discrete SI epidemic model with fractional order. (English) Zbl 1445.37061 Adv. Difference Equ. 2018, Paper No. 44, 19 p. (2018). MSC: 37N25 92D30 PDF BibTeX XML Cite \textit{M. A. M. Abdelaziz} et al., Adv. Difference Equ. 2018, Paper No. 44, 19 p. (2018; Zbl 1445.37061) Full Text: DOI
Liu, Xijuan; Chu, Yandong; Liu, Yun Bifurcation and chaos in a host-parasitoid model with a lower bound for the host. (English) Zbl 1445.37065 Adv. Difference Equ. 2018, Paper No. 31, 15 p. (2018). MSC: 37N25 92D25 92D30 PDF BibTeX XML Cite \textit{X. Liu} et al., Adv. Difference Equ. 2018, Paper No. 31, 15 p. (2018; Zbl 1445.37065) Full Text: DOI
Zhuang, Xiaolan; Wang, Qi; Wen, Jiechang Numerical dynamics of nonstandard finite difference method for nonlinear delay differential equation. (English) Zbl 1403.34052 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 11, Article ID 1850133, 12 p. (2018). MSC: 34K18 34K20 65L03 65L12 34K28 PDF BibTeX XML Cite \textit{X. Zhuang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 11, Article ID 1850133, 12 p. (2018; Zbl 1403.34052) Full Text: DOI
Cheng, Lifang; Wei, Xiukun; Cao, Hongjun Two-parameter bifurcation analysis of limit cycles of a simplified railway wheelset model. (English) Zbl 1398.34053 Nonlinear Dyn. 93, No. 4, 2415-2431 (2018). MSC: 34C23 37G10 34C05 PDF BibTeX XML Cite \textit{L. Cheng} et al., Nonlinear Dyn. 93, No. 4, 2415--2431 (2018; Zbl 1398.34053) Full Text: DOI
Dou, Zhongli; Wang, Rui Stability and Neimark-Sacker bifurcation of a predator-prey model with piecewise constant arguments. (Chinese. English summary) Zbl 1413.34273 J. Sichuan Norm. Univ., Nat. Sci. 41, No. 2, 169-175 (2018). MSC: 34K60 92D25 34K20 34K18 PDF BibTeX XML Cite \textit{Z. Dou} and \textit{R. Wang}, J. Sichuan Norm. Univ., Nat. Sci. 41, No. 2, 169--175 (2018; Zbl 1413.34273) Full Text: DOI
Dou, Zhongli; Wang, Rui Stability and Neimark-Sacker bifurcation behavior of logistic model with piecewise constant arguments. (Chinese. English summary) Zbl 1413.34272 J. Northeast Norm. Univ., Nat. Sci. Ed. 50, No. 1, 25-31 (2018). MSC: 34K60 34K20 34K18 92D25 PDF BibTeX XML Cite \textit{Z. Dou} and \textit{R. Wang}, J. Northeast Norm. Univ., Nat. Sci. Ed. 50, No. 1, 25--31 (2018; Zbl 1413.34272) Full Text: DOI
de Oliveira Antunes, Manuella; de Almeida Prado, Fernando Pigeard A housing price dynamics model using heterogeneous interacting agents. (English) Zbl 1429.60060 SIAM J. Appl. Math. 78, No. 5, 2648-2671 (2018). MSC: 60J20 91B42 91B52 91B69 PDF BibTeX XML Cite \textit{M. de Oliveira Antunes} and \textit{F. P. de Almeida Prado}, SIAM J. Appl. Math. 78, No. 5, 2648--2671 (2018; Zbl 1429.60060) Full Text: DOI
Zhang, Limin; Zhang, Chaofeng Codimension one and two bifurcations of a discrete stage-structured population model with self-limitation. (English) Zbl 1400.39015 J. Difference Equ. Appl. 24, No. 8, 1210-1246 (2018). MSC: 39A28 37N25 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{C. Zhang}, J. Difference Equ. Appl. 24, No. 8, 1210--1246 (2018; Zbl 1400.39015) Full Text: DOI
Yang, Yujing; Tang, Wenzhe Research on a 3D predator-prey evolutionary system in real estate market. (English) Zbl 1398.91465 Complexity 2018, Article ID 6154940, 13 p. (2018). MSC: 91B74 91A22 34H10 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{W. Tang}, Complexity 2018, Article ID 6154940, 13 p. (2018; Zbl 1398.91465) Full Text: DOI
Zhong, Jiyu; Deng, Shengfu Two codimension-two bifurcations of a second-order difference equation from macroeconomics. (English) Zbl 1401.39015 Discrete Contin. Dyn. Syst., Ser. B 23, No. 4, 1581-1600 (2018). Reviewer: Fengqin Zhang (Yuncheng) MSC: 39A28 39A10 39A60 PDF BibTeX XML Cite \textit{J. Zhong} and \textit{S. Deng}, Discrete Contin. Dyn. Syst., Ser. B 23, No. 4, 1581--1600 (2018; Zbl 1401.39015) Full Text: DOI
Shareef, A.; Aloqeili, M. Neimark-Sacker bifurcation of a fourth order difference equation. (English) Zbl 1394.39014 Math. Methods Appl. Sci. 41, No. 13, 5190-5202 (2018). MSC: 39A28 39A30 PDF BibTeX XML Cite \textit{A. Shareef} and \textit{M. Aloqeili}, Math. Methods Appl. Sci. 41, No. 13, 5190--5202 (2018; Zbl 1394.39014) Full Text: DOI
Khan, A. Q. Supercritical Neimark-Sacker bifurcation of a discrete-time Nicholson-Bailey model. (English) Zbl 1394.39013 Math. Methods Appl. Sci. 41, No. 12, 4841-4852 (2018). MSC: 39A28 39A30 39A10 40A05 92D25 70K50 35B35 PDF BibTeX XML Cite \textit{A. Q. Khan}, Math. Methods Appl. Sci. 41, No. 12, 4841--4852 (2018; Zbl 1394.39013) Full Text: DOI
Din, Qamar; Elsadany, A. A.; Ibrahim, Samia Bifurcation analysis and chaos control in a second-order rational difference equation. (English) Zbl 1401.39014 Int. J. Nonlinear Sci. Numer. Simul. 19, No. 1, 53-68 (2018). MSC: 39A28 39A30 39A33 65Q10 PDF BibTeX XML Cite \textit{Q. Din} et al., Int. J. Nonlinear Sci. Numer. Simul. 19, No. 1, 53--68 (2018; Zbl 1401.39014) Full Text: DOI
Gritli, Hassène; Belghith, Safya Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: rise of the Neimark-Sacker bifurcation. (English) Zbl 1391.70062 Chaos Solitons Fractals 110, 158-168 (2018). MSC: 70Q05 93C30 93B52 37N35 37G15 PDF BibTeX XML Cite \textit{H. Gritli} and \textit{S. Belghith}, Chaos Solitons Fractals 110, 158--168 (2018; Zbl 1391.70062) Full Text: DOI
Pecora, Nicolò Analysis of 1:4 resonance in a monopoly model with memory. (English) Zbl 1394.91145 Chaos Solitons Fractals 110, 95-104 (2018). MSC: 91B24 37N40 37G15 PDF BibTeX XML Cite \textit{N. Pecora}, Chaos Solitons Fractals 110, 95--104 (2018; Zbl 1394.91145) Full Text: DOI
Wu, Xiaoqin P.; Wang, Liancheng Analysis of oscillatory patterns of a discrete-time Rosenzweig-MacArthur model. (English) Zbl 1395.39002 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 6, Article ID 1850075, 18 p. (2018). MSC: 39A12 39A28 92D25 PDF BibTeX XML Cite \textit{X. P. Wu} and \textit{L. Wang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 6, Article ID 1850075, 18 p. (2018; Zbl 1395.39002) Full Text: DOI
Zhang, Limin; Zou, Lan Bifurcations and control in a discrete predator-prey model with strong Allee effects. (English) Zbl 1390.39060 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 5, Article ID 1850062, 29 p. (2018). MSC: 39A60 92D25 39A28 93C55 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{L. Zou}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 5, Article ID 1850062, 29 p. (2018; Zbl 1390.39060) Full Text: DOI
Kartal, Senol Multiple bifurcations in an early brain tumor model with piecewise constant arguments. (English) Zbl 1392.39008 Int. J. Biomath. 11, No. 4, Article ID 1850055, 19 p. (2018). Reviewer: Fengqin Zhang (Yuncheng) MSC: 39A28 39A30 92B05 37N25 PDF BibTeX XML Cite \textit{S. Kartal}, Int. J. Biomath. 11, No. 4, Article ID 1850055, 19 p. (2018; Zbl 1392.39008) Full Text: DOI
Huang, Jicai; Liu, Sanhong; Ruan, Shigui; Xiao, Dongmei Bifurcations in a discrete predator-prey model with nonmonotonic functional response. (English) Zbl 1392.92077 J. Math. Anal. Appl. 464, No. 1, 201-230 (2018). MSC: 92D25 34C23 PDF BibTeX XML Cite \textit{J. Huang} et al., J. Math. Anal. Appl. 464, No. 1, 201--230 (2018; Zbl 1392.92077) Full Text: DOI
Din, Qamar Bifurcation analysis and chaos control in discrete-time glycolysis models. (English) Zbl 1384.92030 J. Math. Chem. 56, No. 3, 904-931 (2018). MSC: 92C40 37N25 34C23 PDF BibTeX XML Cite \textit{Q. Din}, J. Math. Chem. 56, No. 3, 904--931 (2018; Zbl 1384.92030) Full Text: DOI
Gyllenberg, Mats; Jiang, Jifa; Niu, Lei; Yan, Ping On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. (English) Zbl 1381.37030 Discrete Contin. Dyn. Syst. 38, No. 2, 615-650 (2018). Reviewer: Carlo Laing (Auckland) MSC: 37C29 37C75 37N25 92D25 PDF BibTeX XML Cite \textit{M. Gyllenberg} et al., Discrete Contin. Dyn. Syst. 38, No. 2, 615--650 (2018; Zbl 1381.37030) Full Text: DOI
Atabaigi, Ali Bifurcation and chaos in a discrete time predator-prey system of Leslie type with generalized Holling type III functional response. (English) Zbl 07309531 J. Appl. Anal. Comput. 7, No. 2, 411-426 (2017). MSC: 35L65 35L67 PDF BibTeX XML Cite \textit{A. Atabaigi}, J. Appl. Anal. Comput. 7, No. 2, 411--426 (2017; Zbl 07309531) Full Text: DOI
Din, Qamar Complexity and chaos control in a discrete-time prey-predator model. (English) Zbl 07261051 Commun. Nonlinear Sci. Numer. Simul. 49, 113-134 (2017). MSC: 93 92 PDF BibTeX XML Cite \textit{Q. Din}, Commun. Nonlinear Sci. Numer. Simul. 49, 113--134 (2017; Zbl 07261051) Full Text: DOI
Din, Qamar; Khan, M. Asif Neimark-Sacker bifurcation and chaos control in a modified Nicholson-Bailey model. (English) Zbl 1413.39026 Acta Univ. Apulensis, Math. Inform. 49, 93-109 (2017). MSC: 39A28 39A60 92D30 PDF BibTeX XML Cite \textit{Q. Din} and \textit{M. A. Khan}, Acta Univ. Apulensis, Math. Inform. 49, 93--109 (2017; Zbl 1413.39026)
Ren, Jingli; Yu, Liping; Siegmund, Stefan Bifurcations and chaos in a discrete predator-prey model with Crowley-Martin functional response. (English) Zbl 1390.37084 Nonlinear Dyn. 90, No. 1, 19-41 (2017). MSC: 37G10 92D25 37N25 39A28 37M20 34H10 PDF BibTeX XML Cite \textit{J. Ren} et al., Nonlinear Dyn. 90, No. 1, 19--41 (2017; Zbl 1390.37084) Full Text: DOI
Din, Qamar; Saeed, Umer Bifurcation analysis and chaos control in a host-parasitoid model. (English) Zbl 1383.92066 Math. Methods Appl. Sci. 40, No. 14, 5391-5406 (2017). MSC: 92D25 39A30 PDF BibTeX XML Cite \textit{Q. Din} and \textit{U. Saeed}, Math. Methods Appl. Sci. 40, No. 14, 5391--5406 (2017; Zbl 1383.92066) Full Text: DOI
Memarbashi, Reza; Alipour, Farhad; Ghasemabadi, Atena A nonstandard finite difference scheme for a SEI epidemic model. (English) Zbl 1381.92093 J. Math., Punjab Univ. 49, No. 3, 133-147 (2017). MSC: 92D30 65L12 PDF BibTeX XML Cite \textit{R. Memarbashi} et al., J. Math., Punjab Univ. 49, No. 3, 133--147 (2017; Zbl 1381.92093) Full Text: Link
Din, Qamar Global stability of Beddington model. (English) Zbl 1383.92065 Qual. Theory Dyn. Syst. 16, No. 2, 391-415 (2017). MSC: 92D25 39A30 PDF BibTeX XML Cite \textit{Q. Din}, Qual. Theory Dyn. Syst. 16, No. 2, 391--415 (2017; Zbl 1383.92065) Full Text: DOI
AlSharawi, Ziyad; Amleh, Amal The impact of constant effort harvesting on the dynamics of a discrete-time contest competition model. (English) Zbl 1382.92213 Math. Methods Appl. Sci. 40, No. 18, 6747-6759 (2017). MSC: 92D25 39A10 PDF BibTeX XML Cite \textit{Z. AlSharawi} and \textit{A. Amleh}, Math. Methods Appl. Sci. 40, No. 18, 6747--6759 (2017; Zbl 1382.92213) Full Text: DOI
Liu, Chao; Wang, Luping; Zhang, Qingling Complex dynamics and stability analysis in a discrete hybrid bioeconomic system with double time delays. (English) Zbl 1380.49056 J. Franklin Inst. 354, No. 11, 4519-4548 (2017). MSC: 49N75 91A24 93C55 49N90 PDF BibTeX XML Cite \textit{C. Liu} et al., J. Franklin Inst. 354, No. 11, 4519--4548 (2017; Zbl 1380.49056) Full Text: DOI
Wu, Daiyong; Zhao, Hongyong Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect. (English) Zbl 1382.92230 J. Difference Equ. Appl. 23, No. 11, 1765-1806 (2017). MSC: 92D25 39A30 37G15 PDF BibTeX XML Cite \textit{D. Wu} and \textit{H. Zhao}, J. Difference Equ. Appl. 23, No. 11, 1765--1806 (2017; Zbl 1382.92230) Full Text: DOI
De Silva, T. Mihiri M.; Jang, Sophia R.-J. Period-doubling and Neimark-Sacker bifurcations in a larch budmoth population model. (English) Zbl 1381.92075 J. Difference Equ. Appl. 23, No. 10, 1619-1639 (2017). MSC: 92D25 39A28 PDF BibTeX XML Cite \textit{T. M. M. De Silva} and \textit{S. R. J. Jang}, J. Difference Equ. Appl. 23, No. 10, 1619--1639 (2017; Zbl 1381.92075) Full Text: DOI
Zhong, Jiyu; Zhang, Liming; Tigan, Gheorghe Bifurcations of a discrete-time neuron model. (English) Zbl 1386.39012 J. Difference Equ. Appl. 23, No. 9, 1508-1528 (2017). MSC: 39A10 39A28 37G10 PDF BibTeX XML Cite \textit{J. Zhong} et al., J. Difference Equ. Appl. 23, No. 9, 1508--1528 (2017; Zbl 1386.39012) Full Text: DOI
Matouk, A. E.; Elsadany, A. A.; Xin, Baogui Neimark-Sacker bifurcation analysis and complex nonlinear dynamics in a heterogeneous quadropoly game with an isoelastic demand function. (English) Zbl 1377.37121 Nonlinear Dyn. 89, No. 4, 2533-2552 (2017). MSC: 37N40 39A28 39A33 37G10 91A06 PDF BibTeX XML Cite \textit{A. E. Matouk} et al., Nonlinear Dyn. 89, No. 4, 2533--2552 (2017; Zbl 1377.37121) Full Text: DOI
Cheng, Lifang; Cao, Hongjun Effect of higher order terms on the bifurcation structure of coupled Rulkov neurons. (English) Zbl 1379.92006 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 11, Article ID 1750178, 19 p. (2017). MSC: 92C20 PDF BibTeX XML Cite \textit{L. Cheng} and \textit{H. Cao}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 11, Article ID 1750178, 19 p. (2017; Zbl 1379.92006) Full Text: DOI
Rahman, Aminur; Blackmore, Denis Threshold voltage dynamics of chaotic RS flip-flops. (English) Zbl 1375.37054 Chaos Solitons Fractals 103, 555-566 (2017). MSC: 37C05 37C29 37D45 94C05 PDF BibTeX XML Cite \textit{A. Rahman} and \textit{D. Blackmore}, Chaos Solitons Fractals 103, 555--566 (2017; Zbl 1375.37054) Full Text: DOI
Herrera, Leonardo; Montano, Oscar; Orlov, Yury Hopf bifurcation of hybrid van der Pol oscillators. (English) Zbl 1386.34070 Nonlinear Anal., Hybrid Syst. 26, 225-238 (2017). Reviewer: Alois Steindl (Wien) MSC: 34C23 34C15 34C25 34C05 37G15 PDF BibTeX XML Cite \textit{L. Herrera} et al., Nonlinear Anal., Hybrid Syst. 26, 225--238 (2017; Zbl 1386.34070) Full Text: DOI
Ma, Tianshan; Su, Huan; Ding, Xiaohua The equivalence of Hopf bifurcation for second-order ordinary differential equation with Newmark method. (Chinese. English summary) Zbl 1389.34116 J. Nat. Sci. Heilongjiang Univ. 34, No. 1, 12-18 (2017). MSC: 34C23 34D20 39A12 39A28 PDF BibTeX XML Cite \textit{T. Ma} et al., J. Nat. Sci. Heilongjiang Univ. 34, No. 1, 12--18 (2017; Zbl 1389.34116) Full Text: DOI
Yue, Dandan; Guan, Zhi-Hong; Chen, Jie; Ling, Guang; Wu, Yonghong Bifurcations and chaos of a discrete-time model in genetic regulatory networks. (English) Zbl 1371.92056 Nonlinear Dyn. 87, No. 1, 567-586 (2017). MSC: 92C40 92C42 34C23 34C28 34D20 PDF BibTeX XML Cite \textit{D. Yue} et al., Nonlinear Dyn. 87, No. 1, 567--586 (2017; Zbl 1371.92056) Full Text: DOI
Ahamed, A. Ishaq; Lakshmanan, M. Discontinuity induced Hopf and Neimark-Sacker bifurcations in a memristive Murali-Lakshmanan-Chua circuit. (English) Zbl 1370.34080 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 6, Article ID 1730021, 22 p. (2017). MSC: 34C60 94C05 34A36 34C23 34C05 34C37 34C45 PDF BibTeX XML Cite \textit{A. I. Ahamed} and \textit{M. Lakshmanan}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 6, Article ID 1730021, 22 p. (2017; Zbl 1370.34080) Full Text: DOI
Rana, S. M. Sohel; Kulsum, Umme Bifurcation analysis and chaos control in a discrete-time predator-prey system of Leslie type with simplified Holling type IV functional response. (English) Zbl 1370.92145 Discrete Dyn. Nat. Soc. 2017, Article ID 9705985, 11 p. (2017). MSC: 92D25 34C23 PDF BibTeX XML Cite \textit{S. M. S. Rana} and \textit{U. Kulsum}, Discrete Dyn. Nat. Soc. 2017, Article ID 9705985, 11 p. (2017; Zbl 1370.92145) Full Text: DOI
Kartal, S. Flip and Neimark-Sacker bifurcation in a differential equation with piecewise constant arguments model. (English) Zbl 1377.92058 J. Difference Equ. Appl. 23, No. 4, 763-778 (2017). MSC: 92C99 39A30 PDF BibTeX XML Cite \textit{S. Kartal}, J. Difference Equ. Appl. 23, No. 4, 763--778 (2017; Zbl 1377.92058) Full Text: DOI
Din, Qamar Neimark-Sacker bifurcation and chaos control in Hassell-Varley model. (English) Zbl 1377.92067 J. Difference Equ. Appl. 23, No. 4, 741-762 (2017). MSC: 92D25 PDF BibTeX XML Cite \textit{Q. Din}, J. Difference Equ. Appl. 23, No. 4, 741--762 (2017; Zbl 1377.92067) Full Text: DOI
Atabaigi, Ali; Akrami, Mohammad Hossein Dynamics and bifurcations of a host-parasite model. (English) Zbl 1373.92098 Int. J. Biomath. 10, No. 6, Article ID 1750089, 16 p. (2017). MSC: 92D25 34D05 34C23 92D30 PDF BibTeX XML Cite \textit{A. Atabaigi} and \textit{M. H. Akrami}, Int. J. Biomath. 10, No. 6, Article ID 1750089, 16 p. (2017; Zbl 1373.92098) Full Text: DOI
Din, Qamar; Elsadany, A. A.; Khalil, Hammad Neimark-Sacker bifurcation and chaos control in a fractional-order plant-herbivore model. (English) Zbl 1369.92092 Discrete Dyn. Nat. Soc. 2017, Article ID 6312964, 15 p. (2017). MSC: 92D25 92D40 34C23 93B52 PDF BibTeX XML Cite \textit{Q. Din} et al., Discrete Dyn. Nat. Soc. 2017, Article ID 6312964, 15 p. (2017; Zbl 1369.92092) Full Text: DOI
Chen, Xueli; Ren, Lishun Bifurcation analysis and chaos control in a discrete-time parasite-host model. (English) Zbl 1369.92089 Discrete Dyn. Nat. Soc. 2017, Article ID 9275474, 17 p. (2017). MSC: 92D25 92D30 34K23 34K18 37G10 PDF BibTeX XML Cite \textit{X. Chen} and \textit{L. Ren}, Discrete Dyn. Nat. Soc. 2017, Article ID 9275474, 17 p. (2017; Zbl 1369.92089) Full Text: DOI