Li, Yang Singular limit for rotating compressible fluids with centrifugal force in a finite cylinder. (English) Zbl 07330422 J. Math. Fluid Mech. 23, No. 1, Paper No. 27, 12 p. (2021). MSC: 76U05 76N10 76N06 35Q30 PDF BibTeX XML Cite \textit{Y. Li}, J. Math. Fluid Mech. 23, No. 1, Paper No. 27, 12 p. (2021; Zbl 07330422) Full Text: DOI
Li, Zijin; Pan, Xinghong Liouville theorem of the 3D stationary MHD system: for D-solutions converging to non-zero constant vectors. (English) Zbl 07321627 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 2, Paper No. 12, 15 p. (2021). MSC: 35Q30 76D05 76W05 35B53 PDF BibTeX XML Cite \textit{Z. Li} and \textit{X. Pan}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 2, Paper No. 12, 15 p. (2021; Zbl 07321627) Full Text: DOI
Liu, Ning; Zhang, Ping Global small analytic solutions of MHD boundary layer equations. (English) Zbl 07319414 J. Differ. Equations 281, 199-257 (2021). Reviewer: Gelu Paşa (Bucureşti) MSC: 35Q30 76D05 76D03 76D10 76W05 42B25 35M13 35A01 35B45 PDF BibTeX XML Cite \textit{N. Liu} and \textit{P. Zhang}, J. Differ. Equations 281, 199--257 (2021; Zbl 07319414) Full Text: DOI
Arizmendi Gutiérrez, Bárbara; Noce, Alberto Della; Gallia, Mariachiara; Bellosta, Tommaso; Guardone, Alberto Numerical simulation of a thermal ice protection system including state-of-the-art liquid film model. (English) Zbl 07319225 J. Comput. Appl. Math. 391, Article ID 113454, 19 p. (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 80A19 76T10 76A20 76D05 76D08 76M12 80M12 76G25 PDF BibTeX XML Cite \textit{B. Arizmendi Gutiérrez} et al., J. Comput. Appl. Math. 391, Article ID 113454, 19 p. (2021; Zbl 07319225) Full Text: DOI
Maltese, David; Novotný, Antonín Implicit MAC scheme for compressible Navier-Stokes equations: low Mach asymptotic error estimates. (English) Zbl 07315148 IMA J. Numer. Anal. 41, No. 1, 122-163 (2021). MSC: 65M06 65M08 76N06 PDF BibTeX XML Cite \textit{D. Maltese} and \textit{A. Novotný}, IMA J. Numer. Anal. 41, No. 1, 122--163 (2021; Zbl 07315148) Full Text: DOI
Zhai, Xiaoping; Li, Yongsheng Global large solutions and optimal time-decay estimates to the Korteweg system. (English) Zbl 07314914 Discrete Contin. Dyn. Syst. 41, No. 3, 1387-1413 (2021). MSC: 35Q35 76N06 35B45 35A01 76D05 PDF BibTeX XML Cite \textit{X. Zhai} and \textit{Y. Li}, Discrete Contin. Dyn. Syst. 41, No. 3, 1387--1413 (2021; Zbl 07314914) Full Text: DOI
Feireisl, Eduard; Rocca, Elisabetta; Schimperna, Giulio; Zarnescu, Arghir Weak sequential stability for a nonlinear model of nematic electrolytes. (English) Zbl 1454.35365 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 219-241 (2021). MSC: 35Q60 76D05 35B45 PDF BibTeX XML Cite \textit{E. Feireisl} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 219--241 (2021; Zbl 1454.35365) Full Text: DOI
Novo, Julia; Rubino, Samuele Error analysis of proper orthogonal decomposition stabilized methods for incompressible flows. (English) Zbl 07314374 SIAM J. Numer. Anal. 59, No. 1, 334-369 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 76B75 65M60 65M20 65M15 PDF BibTeX XML Cite \textit{J. Novo} and \textit{S. Rubino}, SIAM J. Numer. Anal. 59, No. 1, 334--369 (2021; Zbl 07314374) Full Text: DOI
Kwon, Young-Sam; Novotny, Antonin Dissipative solutions to compressible Navier-Stokes equations with general inflow-outflow data: existence, stability and weak strong uniqueness. (English) Zbl 07312806 J. Math. Fluid Mech. 23, No. 1, Paper No. 23, 28 p. (2021). MSC: 76 PDF BibTeX XML Cite \textit{Y.-S. Kwon} and \textit{A. Novotny}, J. Math. Fluid Mech. 23, No. 1, Paper No. 23, 28 p. (2021; Zbl 07312806) Full Text: DOI
Dreyfuss, Pierre; Houamed, Haroune Uniqueness result for the 3-D Navier-Stokes-Boussinesq equations with horizontal dissipation. (English) Zbl 07312802 J. Math. Fluid Mech. 23, No. 1, Paper No. 19, 24 p. (2021). MSC: 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{P. Dreyfuss} and \textit{H. Houamed}, J. Math. Fluid Mech. 23, No. 1, Paper No. 19, 24 p. (2021; Zbl 07312802) Full Text: DOI
Li, Jian; Li, Rui; Zhao, Xin; Chen, Zhangxin A second-order fractional time-stepping method for a coupled Stokes/Darcy system. (English) Zbl 07309632 J. Comput. Appl. Math. 390, Article ID 113329, 15 p. (2021). MSC: 35J05 35J25 65N08 76D05 PDF BibTeX XML Cite \textit{J. Li} et al., J. Comput. Appl. Math. 390, Article ID 113329, 15 p. (2021; Zbl 07309632) Full Text: DOI
Lu, Yong; Pokorný, Milan Homogenization of stationary Navier-Stokes-Fourier system in domains with tiny holes. (English) Zbl 07303715 J. Differ. Equations 278, 463-492 (2021). Reviewer: Adrian Muntean (Karlstad) MSC: 35B27 35Q35 76N10 76D05 35Q30 PDF BibTeX XML Cite \textit{Y. Lu} and \textit{M. Pokorný}, J. Differ. Equations 278, 463--492 (2021; Zbl 07303715) Full Text: DOI
Fan, Jishan; Li, Fucai; Nakamura, Gen Uniform regularity of the compressible full Navier-Stokes-Maxwell system. (English) Zbl 07298440 Z. Angew. Math. Phys. 72, No. 1, Paper No. 3, 10 p. (2021). MSC: 76W05 35Q30 35Q60 PDF BibTeX XML Cite \textit{J. Fan} et al., Z. Angew. Math. Phys. 72, No. 1, Paper No. 3, 10 p. (2021; Zbl 07298440) Full Text: DOI
Dong, Hongjie; Phan, Tuoc Mixed-norm \(L_p\)-estimates for non-stationary Stokes systems with singular VMO coefficients and applications. (English) Zbl 07297753 J. Differ. Equations 276, 342-367 (2021). MSC: 76D03 76D05 76D07 35K67 35K40 PDF BibTeX XML Cite \textit{H. Dong} and \textit{T. Phan}, J. Differ. Equations 276, 342--367 (2021; Zbl 07297753) Full Text: DOI
Granero-Belinchón, Rafael; Scrobogna, Stefano Well-posedness of the water-wave with viscosity problem. (English) Zbl 07297746 J. Differ. Equations 276, 96-148 (2021). MSC: 35Q35 76D05 35R35 35Q55 35A01 35A02 35L25 PDF BibTeX XML Cite \textit{R. Granero-Belinchón} and \textit{S. Scrobogna}, J. Differ. Equations 276, 96--148 (2021; Zbl 07297746) Full Text: DOI
Li, Xiaojun Uniform random attractors for 2D non-autonomous stochastic Navier-Stokes equations. (English) Zbl 07297744 J. Differ. Equations 276, 1-42 (2021). MSC: 35Q30 35B40 37B55 35B41 35B65 76D05 60J65 37L30 37L05 35R60 PDF BibTeX XML Cite \textit{X. Li}, J. Differ. Equations 276, 1--42 (2021; Zbl 07297744) Full Text: DOI
Colombo, Maria; Haffter, Silja Global regularity for the hyperdissipative Navier-Stokes equation below the critical order. (English) Zbl 07291358 J. Differ. Equations 275, 815-836 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q35 35R11 35B65 PDF BibTeX XML Cite \textit{M. Colombo} and \textit{S. Haffter}, J. Differ. Equations 275, 815--836 (2021; Zbl 07291358) Full Text: DOI
Zhang, Qian; Zheng, Xiaoxin Global well-posedness of axisymmetric solution to the 3D axisymmetric chemotaxis-Navier-Stokes equations with logistic source. (English) Zbl 07289112 J. Differ. Equations 274, 576-612 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q35 35Q92 35K55 92C17 35B40 76D05 35B07 35A02 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{X. Zheng}, J. Differ. Equations 274, 576--612 (2021; Zbl 07289112) Full Text: DOI
Zheng, Jiashan A new result for the global existence (and boundedness) and regularity of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization. (English) Zbl 1455.35273 J. Differ. Equations 272, 164-202 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35Q35 35K55 92C17 PDF BibTeX XML Cite \textit{J. Zheng}, J. Differ. Equations 272, 164--202 (2021; Zbl 1455.35273) Full Text: DOI
Hong, Hakho; Choe, Chunhyok Asymptotic behavior of solutions for the 1-D isentropic Navier-Stokes-Korteweg equations with free boundary. (English) Zbl 1455.35173 Nonlinear Anal., Real World Appl. 58, Article ID 103210, 27 p. (2021). MSC: 35Q30 76N15 76N06 76L05 35A02 35D35 35B40 35R35 PDF BibTeX XML Cite \textit{H. Hong} and \textit{C. Choe}, Nonlinear Anal., Real World Appl. 58, Article ID 103210, 27 p. (2021; Zbl 1455.35173) Full Text: DOI
Donatelli, Donatella; Marcati, Pierangelo; Mensah, Prince Romeo Dissipative martingale solutions of the stochastically forced Navier-Stokes-Poisson system on domains without boundary. (English) Zbl 07284898 Nonlinear Anal., Real World Appl. 57, Article ID 103201, 52 p. (2021). MSC: 35Q30 76N06 35D30 35R60 60H15 PDF BibTeX XML Cite \textit{D. Donatelli} et al., Nonlinear Anal., Real World Appl. 57, Article ID 103201, 52 p. (2021; Zbl 07284898) Full Text: DOI
Matsui, Tatsuya; Nakasato, Ryosuke; Ogawa, Takayoshi Singular limit for the magnetohydrodynamics of the damped wave type in the critical Fourier-Sobolev space. (English) Zbl 1455.35201 J. Differ. Equations 271, 414-446 (2021). MSC: 35Q35 35Q60 76W05 76D05 35K05 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{T. Matsui} et al., J. Differ. Equations 271, 414--446 (2021; Zbl 1455.35201) Full Text: DOI
Duarte-Rodríguez, Abelardo; Ferreira, Lucas C. F.; Villamizar-Roa, Élder J. Global existence for an attraction-repulsion chemotaxis-fluid system in a framework of Besov-Morrey type. (English) Zbl 07328653 J. Math. Fluid Mech. 22, No. 4, Paper No. 63, 18 p. (2020). MSC: 35K55 35Q35 35Q92 92C17 PDF BibTeX XML Cite \textit{A. Duarte-Rodríguez} et al., J. Math. Fluid Mech. 22, No. 4, Paper No. 63, 18 p. (2020; Zbl 07328653) Full Text: DOI
Wen, Zhihong; Ye, Zhuan Regularity results for the Navier-Stokes-Maxwell system. (English) Zbl 07327452 Commun. Math. Sci. 18, No. 2, 339-358 (2020). MSC: 35Q 35B45 35B65 35Q35 76W05 PDF BibTeX XML Cite \textit{Z. Wen} and \textit{Z. Ye}, Commun. Math. Sci. 18, No. 2, 339--358 (2020; Zbl 07327452) Full Text: DOI
Seck, Aliou; Sy, Alassane; Seck, Diaraf Coupling between shape gradient and topological derivative in 2D incompressible Navier-Stokes flows. (English) Zbl 07326567 Seck, Diaraf (ed.) et al., Nonlinear analysis, geometry and applications. Proceedings of the first biennial international research symposium, NLAGA-BIRS, Dakar, Senegal, June 24–28, 2019. Cham: Birkhäuser (ISBN 978-3-030-57335-5/hbk; 978-3-030-57336-2/ebook). Trends in Mathematics, 359-377 (2020). MSC: 35Q30 41A60 65M60 65M60 PDF BibTeX XML Cite \textit{A. Seck} et al., in: Nonlinear analysis, geometry and applications. Proceedings of the first biennial international research symposium, NLAGA-BIRS, Dakar, Senegal, June 24--28, 2019. Cham: Birkhäuser. 359--377 (2020; Zbl 07326567) Full Text: DOI
Březina, Jan; Feireisl, Eduard; Novotný, Antonín Globally bounded trajectories for the barotropic Navier-Stokes system with general boundary conditions. (English) Zbl 07324179 Commun. Partial Differ. Equations 45, No. 12, 1820-1832 (2020). MSC: 35Q30 37L15 76N15 PDF BibTeX XML Cite \textit{J. Březina} et al., Commun. Partial Differ. Equations 45, No. 12, 1820--1832 (2020; Zbl 07324179) Full Text: DOI
Kreml, Ondřej; Nečasová, Šárka; Piasecki, Tomasz Local existence of strong solutions and weak-strong uniqueness for the compressible Navier-Stokes system on moving domains. (English) Zbl 07316333 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2255-2300 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 76N10 35D35 PDF BibTeX XML Cite \textit{O. Kreml} et al., Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2255--2300 (2020; Zbl 07316333) Full Text: DOI
Choi, Young-Pil; Jung, Jinwook Asymptotic analysis for Vlasov-Fokker-Planck/compressible Navier-Stokes equations with a density-dependent viscosity. (English) Zbl 07315459 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 145-163 (2020). MSC: 35Q70 35Q83 35B25 PDF BibTeX XML Cite \textit{Y.-P. Choi} and \textit{J. Jung}, AIMS Ser. Appl. Math. 10, 145--163 (2020; Zbl 07315459)
Yamazaki, Kazuo Irreducibility of the three, and two and a half dimensional Hall-magnetohydrodynamics system. (English) Zbl 1453.76182 Physica D 401, Article ID 132199, 21 p. (2020). MSC: 76M35 76W05 76M30 37A25 PDF BibTeX XML Cite \textit{K. Yamazaki}, Physica D 401, Article ID 132199, 21 p. (2020; Zbl 1453.76182) Full Text: DOI
Liu, Chen; Frank, Florian; Thiele, Christopher; Alpak, Faruk O.; Berg, Steffen; Chapman, Walter; Riviere, Beatrice An efficient numerical algorithm for solving viscosity contrast Cahn-Hilliard-Navier-Stokes system in porous media. (English) Zbl 1453.76078 J. Comput. Phys. 400, Article ID 108948, 17 p. (2020). MSC: 76M10 76S05 76T06 76D45 65M60 PDF BibTeX XML Cite \textit{C. Liu} et al., J. Comput. Phys. 400, Article ID 108948, 17 p. (2020; Zbl 1453.76078) Full Text: DOI
Galdi, Giovanni P. On the self-propulsion of a rigid body in a viscous liquid by time-periodic boundary data. (English) Zbl 07299336 J. Math. Fluid Mech. 22, No. 4, Paper No. 61, 33 p. (2020). MSC: 76D07 35Q30 PDF BibTeX XML Cite \textit{G. P. Galdi}, J. Math. Fluid Mech. 22, No. 4, Paper No. 61, 33 p. (2020; Zbl 07299336) Full Text: DOI
Basarić, Danica Vanishing viscosity limit for the compressible Navier-Stokes system via measure-valued solutions. (English) Zbl 07296659 NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 6, Paper No. 57, 30 p. (2020). Reviewer: Piotr Biler (Wrocław) MSC: 76N10 35Q30 35Q31 35D99 PDF BibTeX XML Cite \textit{D. Basarić}, NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 6, Paper No. 57, 30 p. (2020; Zbl 07296659) Full Text: DOI
Wang, Heyuan; Li, Jia; Wang, Meiyu; Song, Siqi; Wang, Xiaofan; Cao, Tingting Dynamical behavior analysis and numerical simulation of new five-mode Lorenz-like equations. (Chinese. English summary) Zbl 07295671 J. Shenyang Norm. Univ., Nat. Sci. 38, No. 2, 164-170 (2020). MSC: 35Q30 37D45 65P40 PDF BibTeX XML Cite \textit{H. Wang} et al., J. Shenyang Norm. Univ., Nat. Sci. 38, No. 2, 164--170 (2020; Zbl 07295671) Full Text: DOI
Wang, Heyuan Dynamical mechanism and energy evolution of a five-modes system of the Navier-Stokes equations for a two-dimensional incompressible fluid on a torus. (Chinese. English summary) Zbl 07294862 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 315-327 (2020). MSC: 35Q30 76D05 PDF BibTeX XML Cite \textit{H. Wang}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 315--327 (2020; Zbl 07294862)
Maity, Debayan; Raymond, Jean-Pierre; Roy, Arnab Maximal-in-time existence and uniqueness of strong solution of a 3D fluid-structure interaction model. (English) Zbl 07289140 SIAM J. Math. Anal. 52, No. 6, 6338-6378 (2020). Reviewer: Mohamed Majdoub (Dammam) MSC: 35Q35 76D05 35Q30 74F10 74K25 35D35 35A01 35A02 PDF BibTeX XML Cite \textit{D. Maity} et al., SIAM J. Math. Anal. 52, No. 6, 6338--6378 (2020; Zbl 07289140) Full Text: DOI
Murata, Miho; Shibata, Yoshihiro The global well-posedness for the compressible fluid model of Korteweg type. (English) Zbl 1455.35202 SIAM J. Math. Anal. 52, No. 6, 6313-6337 (2020). MSC: 35Q35 76N06 35D35 35B65 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{M. Murata} and \textit{Y. Shibata}, SIAM J. Math. Anal. 52, No. 6, 6313--6337 (2020; Zbl 1455.35202) Full Text: DOI
Wang, Yongfu Weak Serrin-type criterion for the three-dimensional viscous compressible Navier-Stokes system. (English) Zbl 1455.35178 J. Lond. Math. Soc., II. Ser. 102, No. 1, 125-142 (2020). MSC: 35Q30 35B65 35B44 35D35 35B45 76N10 PDF BibTeX XML Cite \textit{Y. Wang}, J. Lond. Math. Soc., II. Ser. 102, No. 1, 125--142 (2020; Zbl 1455.35178) Full Text: DOI
Chernov, Andreĭ Vladimirovich On preservation of global solvability of controlled second kind operator equation. (Russian. English summary) Zbl 07281891 Ufim. Mat. Zh. 12, No. 1, 56-82 (2020); translation in Ufa Math. J. 12, No. 1, 56-81 (2020). MSC: 47J05 47J35 47N10 PDF BibTeX XML Cite \textit{A. V. Chernov}, Ufim. Mat. Zh. 12, No. 1, 56--82 (2020; Zbl 07281891); translation in Ufa Math. J. 12, No. 1, 56--81 (2020) Full Text: DOI MNR
Benner, Peter; Trautwein, Christoph Optimal control of the stochastic Navier-Stokes equations. (English) Zbl 1454.49031 Grecksch, Wilfried (ed.) et al., Infinite dimensional and finite dimensional stochastic equations and applications in physics. Hackensack, NJ: World Scientific. 161-211 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 49K45 35Q30 35R60 60H30 PDF BibTeX XML Cite \textit{P. Benner} and \textit{C. Trautwein}, in: Infinite dimensional and finite dimensional stochastic equations and applications in physics. Hackensack, NJ: World Scientific. 161--211 (2020; Zbl 1454.49031) Full Text: DOI
Giorgini, Andrea; Temam, Roger Weak and strong solutions to the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system. (English. French summary) Zbl 1452.35151 J. Math. Pures Appl. (9) 144, 194-249 (2020). MSC: 35Q35 76D03 76D05 76T06 35A01 PDF BibTeX XML Cite \textit{A. Giorgini} and \textit{R. Temam}, J. Math. Pures Appl. (9) 144, 194--249 (2020; Zbl 1452.35151) Full Text: DOI
Lasiecka, Irena; Priyasad, Buddhika; Triggiani, Roberto Uniform stabilization of Boussinesq systems in critical \(\mathbf{L}^q \)-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls. (English) Zbl 1452.35229 Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 4071-4117 (2020). MSC: 35Q93 35B35 35K40 93C20 93B52 76D05 80A17 PDF BibTeX XML Cite \textit{I. Lasiecka} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 4071--4117 (2020; Zbl 1452.35229) Full Text: DOI
Colombo, Rinaldo M.; Garavello, Mauro On the 1D modeling of fluid flowing through a junction. (English) Zbl 1452.35138 Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3917-3929 (2020). MSC: 35Q31 35L65 76N06 35R02 PDF BibTeX XML Cite \textit{R. M. Colombo} and \textit{M. Garavello}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3917--3929 (2020; Zbl 1452.35138) Full Text: DOI
Breit, Dominic; Feireisl, Eduard; Hofmanová, Martina Generalized solutions to models of inviscid fluids. (English) Zbl 1452.35136 Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3831-3842 (2020). MSC: 35Q31 35D30 35A01 76N06 PDF BibTeX XML Cite \textit{D. Breit} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3831--3842 (2020; Zbl 1452.35136) Full Text: DOI
Gubinelli, M.; Turra, M. Hyperviscous stochastic Navier-Stokes equations with white noise invariant measure. (English) Zbl 1448.60138 Stoch. Dyn. 20, No. 6, Article ID 2040005, 39 p. (2020). Reviewer: Piotr Biler (Wrocław) MSC: 60H15 35Q30 60H40 35R60 PDF BibTeX XML Cite \textit{M. Gubinelli} and \textit{M. Turra}, Stoch. Dyn. 20, No. 6, Article ID 2040005, 39 p. (2020; Zbl 1448.60138) Full Text: DOI
Kukavica, Igor; Wang, Weinan Long time behavior of solutions to the 2D Boussinesq equations with zero diffusivity. (English) Zbl 1452.35039 J. Dyn. Differ. Equations 32, No. 4, 2061-2077 (2020). MSC: 35B40 35Q35 PDF BibTeX XML Cite \textit{I. Kukavica} and \textit{W. Wang}, J. Dyn. Differ. Equations 32, No. 4, 2061--2077 (2020; Zbl 1452.35039) Full Text: DOI
Flandoli, Franco; Olivera, Christian; Simon, Marielle Uniform approximation of 2 dimensional Navier-Stokes equation by stochastic interacting particle systems. (English) Zbl 07269949 SIAM J. Math. Anal. 52, No. 6, 5339-5362 (2020). MSC: 60H20 60H10 35Q30 35R60 PDF BibTeX XML Cite \textit{F. Flandoli} et al., SIAM J. Math. Anal. 52, No. 6, 5339--5362 (2020; Zbl 07269949) Full Text: DOI
Pan, Xinghong; Li, Zijin Liouville theorem of axially symmetric Navier-Stokes equations with growing velocity at infinity. (English) Zbl 1451.35040 Nonlinear Anal., Real World Appl. 56, Article ID 103159, 8 p. (2020). MSC: 35B53 35Q30 PDF BibTeX XML Cite \textit{X. Pan} and \textit{Z. Li}, Nonlinear Anal., Real World Appl. 56, Article ID 103159, 8 p. (2020; Zbl 1451.35040) Full Text: DOI
Liang, Siyu; Zhang, Ping; Zhu, Rongchan Remark on the lifespan of solutions to 3-D anisotropic Navier-Stokes equations. (English) Zbl 07266473 Commun. Math. Res. 36, No. 1, 31-50 (2020). MSC: 35Q30 76D05 PDF BibTeX XML Cite \textit{S. Liang} et al., Commun. Math. Res. 36, No. 1, 31--50 (2020; Zbl 07266473) Full Text: DOI
Kwon, Young-Sam; Novotny, Antonin; Cheng, C. H. Arthur On weak solutions to a dissipative Baer-Nunziato-type system for a mixture of two compressible heat conducting gases. (English) Zbl 1450.35218 Math. Models Methods Appl. Sci. 30, No. 8, 1517-1553 (2020). MSC: 35Q35 35Q49 76N06 76N15 80A19 35B35 35D30 PDF BibTeX XML Cite \textit{Y.-S. Kwon} et al., Math. Models Methods Appl. Sci. 30, No. 8, 1517--1553 (2020; Zbl 1450.35218) Full Text: DOI
Yang, Junxiang; Kim, Junseok A phase-field method for two-phase fluid flow in arbitrary domains. (English) Zbl 1443.65150 Comput. Math. Appl. 79, No. 6, 1857-1874 (2020). MSC: 65M06 76D05 82C26 PDF BibTeX XML Cite \textit{J. Yang} and \textit{J. Kim}, Comput. Math. Appl. 79, No. 6, 1857--1874 (2020; Zbl 1443.65150) Full Text: DOI
Yuan, Xiaolei; Chai, Zhenhua; Wang, Huili; Shi, Baochang A generalized lattice Boltzmann model for fluid flow system and its application in two-phase flows. (English) Zbl 1443.76188 Comput. Math. Appl. 79, No. 6, 1759-1780 (2020). MSC: 76M28 76D05 76T10 PDF BibTeX XML Cite \textit{X. Yuan} et al., Comput. Math. Appl. 79, No. 6, 1759--1780 (2020; Zbl 1443.76188) Full Text: DOI
Fanelli, Francesco; Feireisl, Eduard Statistical solutions to the barotropic Navier-Stokes system. (English) Zbl 1455.35172 J. Stat. Phys. 181, No. 1, 212-245 (2020). Reviewer: Il’ya Sh. Mogilevskii (Tver’) MSC: 35Q30 76N06 35R60 35D30 35B65 37A50 60H30 PDF BibTeX XML Cite \textit{F. Fanelli} and \textit{E. Feireisl}, J. Stat. Phys. 181, No. 1, 212--245 (2020; Zbl 1455.35172) Full Text: DOI
Ju, Guoliang; Li, Jingzhi; Li, Kaitai A novel variational method for 3D viscous flow in flow channel of turbomachines based on differential geometry. (English) Zbl 1447.76038 Appl. Anal. 99, No. 13, 2322-2338 (2020). MSC: 76U05 76D05 76M30 76M20 53Z05 PDF BibTeX XML Cite \textit{G. Ju} et al., Appl. Anal. 99, No. 13, 2322--2338 (2020; Zbl 1447.76038) Full Text: DOI
Fan, Xiaoting; Xu, Wen-Qing; Wang, Shu; Wang, Wei Boundary layers associated with the 3-D Boussinesq system for Rayleigh-Bénard convection. (English) Zbl 1448.35392 Appl. Anal. 99, No. 12, 2026-2044 (2020). MSC: 35Q35 76R10 76U60 76D05 35C20 35B25 PDF BibTeX XML Cite \textit{X. Fan} et al., Appl. Anal. 99, No. 12, 2026--2044 (2020; Zbl 1448.35392) Full Text: DOI
Nowakowski, Bernard; Ströhmer, Gerhard In-flow and out-flow problem for the Stokes system. (English) Zbl 1448.35369 J. Math. Fluid Mech. 22, No. 4, Paper No. 58, 15 p. (2020). MSC: 35Q30 35B65 76D03 76D05 76D07 PDF BibTeX XML Cite \textit{B. Nowakowski} and \textit{G. Ströhmer}, J. Math. Fluid Mech. 22, No. 4, Paper No. 58, 15 p. (2020; Zbl 1448.35369) Full Text: DOI
Yue, Gaocheng; Wang, Jintao Attractors of the velocity-vorticity-Voigt model of the 3D Navier-Stokes equations with damping. (English) Zbl 1440.35249 Comput. Math. Appl. 80, No. 3, 434-452 (2020). MSC: 35Q30 35B41 76D05 PDF BibTeX XML Cite \textit{G. Yue} and \textit{J. Wang}, Comput. Math. Appl. 80, No. 3, 434--452 (2020; Zbl 1440.35249) Full Text: DOI
Liu, Yanlin; Zhang, Ping Global well-posedness of 3-D anisotropic Navier-Stokes system with large vertical viscous coefficient. (English) Zbl 1447.35249 J. Funct. Anal. 279, No. 10, Article ID 108736, 33 p. (2020). MSC: 35Q30 76D05 42B25 35A01 35A02 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{P. Zhang}, J. Funct. Anal. 279, No. 10, Article ID 108736, 33 p. (2020; Zbl 1447.35249) Full Text: DOI
Charve, Frédéric Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data. (English) Zbl 1446.35120 Pure Appl. Anal. 2, No. 2, 477-517 (2020). MSC: 35Q35 35B40 35Q86 76U60 76D05 86A05 PDF BibTeX XML Cite \textit{F. Charve}, Pure Appl. Anal. 2, No. 2, 477--517 (2020; Zbl 1446.35120) Full Text: DOI
Lou, Shuai; Chen, Shu-sheng; Lin, Bo-xi; Yu, Jian; Yan, Chao Effective high-order energy stable flux reconstruction methods for first-order hyperbolic linear and nonlinear systems. (English) Zbl 1440.76076 J. Comput. Phys. 414, Article ID 109475, 27 p. (2020). MSC: 76M10 65M60 76R50 35L40 PDF BibTeX XML Cite \textit{S. Lou} et al., J. Comput. Phys. 414, Article ID 109475, 27 p. (2020; Zbl 1440.76076) Full Text: DOI
Ballew, Joshua Asymptotic analysis for a homogeneous bubbling regime Vlasov-Fokker-Planck/Navier-Stokes system. (English) Zbl 1446.35207 Z. Angew. Math. Phys. 71, No. 4, Paper No. 131, 22 p. (2020). MSC: 35Q83 35Q84 35Q30 35Q31 35B40 76N06 76T10 PDF BibTeX XML Cite \textit{J. Ballew}, Z. Angew. Math. Phys. 71, No. 4, Paper No. 131, 22 p. (2020; Zbl 1446.35207) Full Text: DOI
Burmasheva, N. V.; Prosviryakov, E. Yu. A class of exact solutions for two-dimensional equations of geophysical hydrodynamics with two Coriolis parameters. (Russian. English summary) Zbl 1446.35211 Izv. Irkutsk. Gos. Univ., Ser. Mat. 32, 33-48 (2020). MSC: 35Q86 86A05 35Q35 35N10 76D05 76D17 76U60 76D50 35N99 PDF BibTeX XML Cite \textit{N. V. Burmasheva} and \textit{E. Yu. Prosviryakov}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 32, 33--48 (2020; Zbl 1446.35211) Full Text: DOI Link
Li, Kexin; Shu, Xuanlin; Xu, Xiaojing Global existence of strong solutions to compressible Navier-Stokes system with degenerate heat conductivity in unbounded domains. (English) Zbl 1446.35128 Math. Methods Appl. Sci. 43, No. 4, 1543-1554 (2020). MSC: 35Q35 76N10 76N15 35D35 80A19 PDF BibTeX XML Cite \textit{K. Li} et al., Math. Methods Appl. Sci. 43, No. 4, 1543--1554 (2020; Zbl 1446.35128) Full Text: DOI
Huang, Feimin; Hong, Hakho; Shi, Xiaoding Existence of smooth solutions for the compressible barotropic Navier-Stokes-Korteweg system without increasing pressure law. (English) Zbl 1446.35101 Math. Methods Appl. Sci. 43, No. 8, 5073-5096 (2020). MSC: 35Q30 35B35 35L65 76N06 35A01 35A02 PDF BibTeX XML Cite \textit{F. Huang} et al., Math. Methods Appl. Sci. 43, No. 8, 5073--5096 (2020; Zbl 1446.35101) Full Text: DOI
Pérez-López, Jhean E.; Rueda-Gómez, Diego A.; Villamizar-Roa, Élder J. On the Rayleigh-Bénard-Marangoni problem: theoretical and numerical analysis. (English) Zbl 1446.35137 J. Comput. Dyn. 7, No. 1, 159-181 (2020). MSC: 35Q35 76D03 76D05 35D30 65L60 65L70 65M60 65M06 65N30 65M12 65M15 PDF BibTeX XML Cite \textit{J. E. Pérez-López} et al., J. Comput. Dyn. 7, No. 1, 159--181 (2020; Zbl 1446.35137) Full Text: DOI
Liu, Yanlin; Paicu, Marius; Zhang, Ping Global well-posedness of 3-D anisotropic Navier-Stokes system with small unidirectional derivative. (English) Zbl 1446.35103 Arch. Ration. Mech. Anal. 238, No. 2, 805-843 (2020). MSC: 35Q30 35A20 35A01 35A02 76B03 PDF BibTeX XML Cite \textit{Y. Liu} et al., Arch. Ration. Mech. Anal. 238, No. 2, 805--843 (2020; Zbl 1446.35103) Full Text: DOI
Du, Hengrong; Hu, Xianpeng; Wang, Changyou Suitable weak solutions for the co-rotational Beris-Edwards system in dimension three. (English) Zbl 1446.35123 Arch. Ration. Mech. Anal. 238, No. 2, 749-803 (2020). MSC: 35Q35 35Q30 35B65 76A15 76U05 PDF BibTeX XML Cite \textit{H. Du} et al., Arch. Ration. Mech. Anal. 238, No. 2, 749--803 (2020; Zbl 1446.35123) Full Text: DOI
Mizerová, Hana; She, Bangwei Convergence and error estimates for a finite difference scheme for the multi-dimensional compressible Navier-Stokes system. (English) Zbl 07229478 J. Sci. Comput. 84, No. 1, Paper No. 25, 39 p. (2020). MSC: 65Q10 35Q30 76D05 76N10 PDF BibTeX XML Cite \textit{H. Mizerová} and \textit{B. She}, J. Sci. Comput. 84, No. 1, Paper No. 25, 39 p. (2020; Zbl 07229478) Full Text: DOI
Liu, Ling; Zheng, Jiashan; Bao, Gui Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization. (English) Zbl 1439.35244 Discrete Contin. Dyn. Syst., Ser. B 25, No. 9, 3437-3460 (2020). MSC: 35K55 35Q92 35Q35 92C17 PDF BibTeX XML Cite \textit{L. Liu} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 9, 3437--3460 (2020; Zbl 1439.35244) Full Text: DOI
Ciuperca, Ionel Sorin; Feireisl, Eduard; Jai, Mohammed; Petrov, Adrien Stationary solutions of the Navier-Stokes-Fourier system in planar domains with impermeable boundary. (English. French summary) Zbl 1446.35122 J. Math. Pures Appl. (9) 140, 110-138 (2020). MSC: 35Q35 35B65 76N10 35B45 80A19 PDF BibTeX XML Cite \textit{I. S. Ciuperca} et al., J. Math. Pures Appl. (9) 140, 110--138 (2020; Zbl 1446.35122) Full Text: DOI
Ju, Guoliang; Chen, Can; Chen, Rongliang; Li, Jingzhi; Li, Kaitai; Zhang, Shaohui Numerical simulation for 3D flow in flow channel of aeroengine turbine fan based on dimension splitting method. (English) Zbl 1453.65327 Electron Res. Arch. 28, No. 2, 837-851 (2020). MSC: 65M60 65M06 65N30 65M32 65M30 76D05 76N06 76U05 PDF BibTeX XML Cite \textit{G. Ju} et al., Electron Res. Arch. 28, No. 2, 837--851 (2020; Zbl 1453.65327) Full Text: DOI
Hishida, Toshiaki Decay estimates of gradient of a generalized Oseen evolution operator arising from time-dependent rigid motions in exterior domains. (English) Zbl 1446.35100 Arch. Ration. Mech. Anal. 238, No. 1, 215-254 (2020). MSC: 35Q30 76D05 76D07 76U05 35B40 76M60 PDF BibTeX XML Cite \textit{T. Hishida}, Arch. Ration. Mech. Anal. 238, No. 1, 215--254 (2020; Zbl 1446.35100) Full Text: DOI
Dreyer, Wolfgang; Druet, Pierre-Étienne; Gajewski, Paul; Guhlke, Clemens Analysis of improved Nernst-Planck-Poisson models of compressible isothermal electrolytes. (English) Zbl 1442.35332 Z. Angew. Math. Phys. 71, No. 4, Paper No. 119, 68 p. (2020). MSC: 35Q35 76T30 78A57 35Q30 76N10 35M33 35D30 35B45 PDF BibTeX XML Cite \textit{W. Dreyer} et al., Z. Angew. Math. Phys. 71, No. 4, Paper No. 119, 68 p. (2020; Zbl 1442.35332) Full Text: DOI
Wu, Zhigang; Wang, Weike Generalized Huygens’ principle for bipolar non-isentropic compressible Navier-Stokes-Poisson system in dimension three. (English) Zbl 1446.35144 J. Differ. Equations 269, No. 10, 7906-7930 (2020). MSC: 35Q35 35A09 35B40 35J08 76N10 76W05 35P30 78A35 35Q60 35Q49 PDF BibTeX XML Cite \textit{Z. Wu} and \textit{W. Wang}, J. Differ. Equations 269, No. 10, 7906--7930 (2020; Zbl 1446.35144) Full Text: DOI
Gao, Jincheng; Lyu, Zeyu; Yao, Zheng-an Lower bound of decay rate for higher-order derivatives of solution to the compressible fluid models of Korteweg type. (English) Zbl 1442.35337 Z. Angew. Math. Phys. 71, No. 4, Paper No. 108, 19 p. (2020). MSC: 35Q35 35B40 76N10 PDF BibTeX XML Cite \textit{J. Gao} et al., Z. Angew. Math. Phys. 71, No. 4, Paper No. 108, 19 p. (2020; Zbl 1442.35337) Full Text: DOI
Kang, Moon-Jin; Vasseur, Alexis F. Global smooth solutions for 1D barotropic Navier-Stokes equations with a large class of degenerate viscosities. (English) Zbl 1442.35339 J. Nonlinear Sci. 30, No. 4, 1703-1721 (2020). MSC: 35Q35 76N10 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{M.-J. Kang} and \textit{A. F. Vasseur}, J. Nonlinear Sci. 30, No. 4, 1703--1721 (2020; Zbl 1442.35339) Full Text: DOI
Beck, Margaret; Cooper, Eric; Lord, Gabriel; Spiliopoulos, Konstantinos Selection of quasi-stationary states in the stochastically forced Navier-Stokes equation on the torus. (English) Zbl 1446.37064 J. Nonlinear Sci. 30, No. 4, 1677-1702 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 37L55 37N10 37H10 35Q30 76D05 76D06 76D17 PDF BibTeX XML Cite \textit{M. Beck} et al., J. Nonlinear Sci. 30, No. 4, 1677--1702 (2020; Zbl 1446.37064) Full Text: DOI
Colombo, Maria; De Lellis, Camillo; Massaccesi, Annalisa The generalized Caffarelli-Kohn-Nirenberg theorem for the hyperdissipative Navier-Stokes system. (English) Zbl 1442.35298 Commun. Pure Appl. Math. 73, No. 3, 609-663 (2020). MSC: 35Q30 35D30 35B65 76D05 PDF BibTeX XML Cite \textit{M. Colombo} et al., Commun. Pure Appl. Math. 73, No. 3, 609--663 (2020; Zbl 1442.35298) Full Text: DOI
Arndt, Rafael; Ceretani, Andrea N.; Rautenberg, Carlos N. On existence and uniqueness of solutions to a Boussinesq system with nonlinear and mixed boundary conditions. (English) Zbl 1442.35320 J. Math. Anal. Appl. 490, No. 1, Article ID 124201, 28 p. (2020). MSC: 35Q35 76D05 35D30 80A19 PDF BibTeX XML Cite \textit{R. Arndt} et al., J. Math. Anal. Appl. 490, No. 1, Article ID 124201, 28 p. (2020; Zbl 1442.35320) Full Text: DOI
Yang, Dongcheng Decay rate to contact discontinuities for the 1-d compressible Navier-Stokes system. (English) Zbl 1440.35247 J. Differ. Equations 269, No. 9, 6529-6558 (2020). MSC: 35Q30 35B35 35B40 76L05 76N10 PDF BibTeX XML Cite \textit{D. Yang}, J. Differ. Equations 269, No. 9, 6529--6558 (2020; Zbl 1440.35247) Full Text: DOI
Kuksin, Sergei; Zhang, Huilin Exponential mixing for dissipative PDEs with bounded non-degenerate noise. (English) Zbl 1440.35272 Stochastic Processes Appl. 130, No. 8, 4721-4745 (2020). MSC: 35Q35 35Q56 35K59 37A25 37L55 60F05 60H15 76D05 PDF BibTeX XML Cite \textit{S. Kuksin} and \textit{H. Zhang}, Stochastic Processes Appl. 130, No. 8, 4721--4745 (2020; Zbl 1440.35272) Full Text: DOI
Sokrani, Saoussen On the global well-posedness of 3-D density-dependent MHD system. (English) Zbl 1434.76026 Acta Appl. Math. 167, No. 1, 1-38 (2020). MSC: 76D03 35B33 35Q35 76D05 PDF BibTeX XML Cite \textit{S. Sokrani}, Acta Appl. Math. 167, No. 1, 1--38 (2020; Zbl 1434.76026) Full Text: DOI
Breit, Dominic; Feireisl, Eduard; Hofmanová, Martina Dissipative solutions and semiflow selection for the complete Euler system. (English) Zbl 1441.35188 Commun. Math. Phys. 376, No. 2, 1471-1497 (2020). MSC: 35Q31 76N06 35D35 35B35 35A01 PDF BibTeX XML Cite \textit{D. Breit} et al., Commun. Math. Phys. 376, No. 2, 1471--1497 (2020; Zbl 1441.35188) Full Text: DOI
Süli, Endre; Wróblewska-Kamińska, Aneta The incompressible limit of compressible finitely extensible nonlinear bead-spring chain models for dilute polymeric fluids. (English) Zbl 1442.35311 J. Differ. Equations 269, No. 6, 5110-5141 (2020). MSC: 35Q30 35Q84 76N06 76D05 35D30 PDF BibTeX XML Cite \textit{E. Süli} and \textit{A. Wróblewska-Kamińska}, J. Differ. Equations 269, No. 6, 5110--5141 (2020; Zbl 1442.35311) Full Text: DOI
Tan, Changhui On the Euler-alignment system with weakly singular communication weights. (English) Zbl 1442.35479 Nonlinearity 33, No. 4, 1907-1924 (2020). MSC: 35Q92 35Q30 92C15 35B44 35B65 PDF BibTeX XML Cite \textit{C. Tan}, Nonlinearity 33, No. 4, 1907--1924 (2020; Zbl 1442.35479) Full Text: DOI
Luo, Ting; Yin, Haiyan; Zhu, Changjiang Stability of the composite wave for compressible Navier-Stokes/Allen-Cahn system. (English) Zbl 1442.35348 Math. Models Methods Appl. Sci. 30, No. 2, 343-385 (2020). MSC: 35Q35 35M10 35B40 35B35 76N15 35Q30 PDF BibTeX XML Cite \textit{T. Luo} et al., Math. Models Methods Appl. Sci. 30, No. 2, 343--385 (2020; Zbl 1442.35348) Full Text: DOI
Htwe, Myowin; Pang, Peter Y. H.; Wang, Yifu Asymptotic behavior of classical solutions of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization. (English) Zbl 1442.35031 Z. Angew. Math. Phys. 71, No. 3, Paper No. 90, 25 p. (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35B40 35K55 35K51 92C17 35Q30 PDF BibTeX XML Cite \textit{M. Htwe} et al., Z. Angew. Math. Phys. 71, No. 3, Paper No. 90, 25 p. (2020; Zbl 1442.35031) Full Text: DOI
Hong, Hakho Strong solutions for the compressible barotropic fluid model of Korteweg type in the bounded domain. (English) Zbl 1434.35054 Z. Angew. Math. Phys. 71, No. 3, Paper No. 85, 25 p. (2020). MSC: 35Q30 35B35 35L65 76D33 74J40 PDF BibTeX XML Cite \textit{H. Hong}, Z. Angew. Math. Phys. 71, No. 3, Paper No. 85, 25 p. (2020; Zbl 1434.35054) Full Text: DOI
Paicu, Marius; Zhang, Ping Striated regularity of 2-d inhomogeneous incompressible Navier-Stokes system with variable viscosity. (English) Zbl 1439.35375 Commun. Math. Phys. 376, No. 1, 385-439 (2020). MSC: 35Q30 76D05 76T30 35B65 35D35 35A01 35A02 PDF BibTeX XML Cite \textit{M. Paicu} and \textit{P. Zhang}, Commun. Math. Phys. 376, No. 1, 385--439 (2020; Zbl 1439.35375) Full Text: DOI
Winkler, Michael Small-mass solutions in the two-dimensional Keller-Segel system coupled to the Navier-Stokes equations. (English) Zbl 1441.35079 SIAM J. Math. Anal. 52, No. 2, 2041-2080 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35B45 92C17 35Q30 35B40 PDF BibTeX XML Cite \textit{M. Winkler}, SIAM J. Math. Anal. 52, No. 2, 2041--2080 (2020; Zbl 1441.35079) Full Text: DOI
Elman, Howard C.; Su, Tengfei A low-rank solver for the stochastic unsteady Navier-Stokes problem. (English) Zbl 1442.76065 Comput. Methods Appl. Mech. Eng. 364, Article ID 112948, 19 p. (2020). MSC: 76M10 65M60 35R60 60H35 65F10 65M75 76D06 76M35 PDF BibTeX XML Cite \textit{H. C. Elman} and \textit{T. Su}, Comput. Methods Appl. Mech. Eng. 364, Article ID 112948, 19 p. (2020; Zbl 1442.76065) Full Text: DOI
Breit, Dominic; Feireisl, Eduard Stochastic Navier-Stokes-Fourier equations. (English) Zbl 1452.35265 Indiana Univ. Math. J. 69, No. 3, 911-975 (2020). Reviewer: Prince Romeo Mensah (London) MSC: 35R60 60H15 76N10 35Q30 35D30 PDF BibTeX XML Cite \textit{D. Breit} and \textit{E. Feireisl}, Indiana Univ. Math. J. 69, No. 3, 911--975 (2020; Zbl 1452.35265) Full Text: DOI
Wang, Yulan Global solvability in a two-dimensional self-consistent chemotaxis-Navier-Stokes system. (English) Zbl 1442.35481 Discrete Contin. Dyn. Syst., Ser. S 13, No. 2, 329-349 (2020). MSC: 35Q92 35K55 35Q35 92C17 35A01 PDF BibTeX XML Cite \textit{Y. Wang}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 2, 329--349 (2020; Zbl 1442.35481) Full Text: DOI
Li, Yi; Hou, Yanren Error estimates of a second-order decoupled scheme for the evolutionary Stokes-Darcy system. (English) Zbl 1437.35584 Appl. Numer. Math. 154, 129-148 (2020). MSC: 35Q35 76S05 76D05 76M10 65N30 65L06 65M15 65M12 PDF BibTeX XML Cite \textit{Y. Li} and \textit{Y. Hou}, Appl. Numer. Math. 154, 129--148 (2020; Zbl 1437.35584) Full Text: DOI
Březina, Jan; Feireisl, Eduard; Novotný, Antonín Stability of strong solutions to the Navier-Stokes-Fourier system. (English) Zbl 1439.35365 SIAM J. Math. Anal. 52, No. 2, 1761-1785 (2020). MSC: 35Q30 35B35 76N15 35D35 35R06 PDF BibTeX XML Cite \textit{J. Březina} et al., SIAM J. Math. Anal. 52, No. 2, 1761--1785 (2020; Zbl 1439.35365) Full Text: DOI
Jiang, Ning; Luo, Yi-Long; Tang, Shaojun Convergence from two-fluid incompressible Navier-Stokes-Maxwell system with Ohm’s law to solenoidal Ohm’s law: classical solutions. (English) Zbl 1437.35538 J. Differ. Equations 269, No. 1, 349-376 (2020). MSC: 35Q30 35B25 35A09 35Q35 76D09 76W05 PDF BibTeX XML Cite \textit{N. Jiang} et al., J. Differ. Equations 269, No. 1, 349--376 (2020; Zbl 1437.35538) Full Text: DOI
Kuksin, Sergei; Nersesyan, Vahagn; Shirikyan, Armen Exponential mixing for a class of dissipative PDEs with bounded degenerate noise. (English) Zbl 1442.35437 Geom. Funct. Anal. 30, No. 1, 126-187 (2020). MSC: 35Q56 35Q30 35R60 37A25 37L55 60H15 76M35 93C20 PDF BibTeX XML Cite \textit{S. Kuksin} et al., Geom. Funct. Anal. 30, No. 1, 126--187 (2020; Zbl 1442.35437) Full Text: DOI
Chaudhuri, Nilasis On weak (measure-malued)-strong uniqueness for compressible Navier-Stokes system with non-monotone pressure law. (English) Zbl 1435.35273 J. Math. Fluid Mech. 22, No. 2, Paper No. 17, 13 p. (2020). MSC: 35Q30 35B30 76N10 35A02 35R06 PDF BibTeX XML Cite \textit{N. Chaudhuri}, J. Math. Fluid Mech. 22, No. 2, Paper No. 17, 13 p. (2020; Zbl 1435.35273) Full Text: DOI
Fan, Jishan; Ozawa, Tohru A blow-up criterion for the modified Navier-Stokes-Fourier equations. (English) Zbl 1437.76046 J. Math. Fluid Mech. 22, No. 2, Paper No. 16, 9 p. (2020). Reviewer: Song Jiang (Beijing) MSC: 76N10 35Q30 80A19 PDF BibTeX XML Cite \textit{J. Fan} and \textit{T. Ozawa}, J. Math. Fluid Mech. 22, No. 2, Paper No. 16, 9 p. (2020; Zbl 1437.76046) Full Text: DOI
Bekmaganbetov, Kuanysh A.; Chechkin, Gregory A.; Chepyzhov, Vladimir V. Strong convergence of trajectory attractors for reaction-diffusion systems with random rapidly oscillating terms. (English) Zbl 1435.35072 Commun. Pure Appl. Anal. 19, No. 5, 2419-2443 (2020). MSC: 35B41 35B27 35B45 35Q30 35R60 35K20 35K58 PDF BibTeX XML Cite \textit{K. A. Bekmaganbetov} et al., Commun. Pure Appl. Anal. 19, No. 5, 2419--2443 (2020; Zbl 1435.35072) Full Text: DOI
Breit, Dominic; Feireisl, Eduard; Hofmanová, Martina On solvability and ill-posedness of the compressible Euler system subject to stochastic forces. (English) Zbl 1435.35289 Anal. PDE 13, No. 2, 371-402 (2020). MSC: 35Q31 35D30 60H15 76N06 35R60 35R25 PDF BibTeX XML Cite \textit{D. Breit} et al., Anal. PDE 13, No. 2, 371--402 (2020; Zbl 1435.35289) Full Text: DOI