Qin, Dongdong; Tang, Xianhua On the planar Choquard equation with indefinite potential and critical exponential growth. (English) Zbl 07332786 J. Differ. Equations 285, 40-98 (2021). MSC: 35J20 35J62 35Q55 PDF BibTeX XML Cite \textit{D. Qin} and \textit{X. Tang}, J. Differ. Equations 285, 40--98 (2021; Zbl 07332786) Full Text: DOI
Guo, Qing; Wang, Hua; Wang, Xuewen Minimal blow-up initial data for potential blow-up solutions to inter-critical Schrödinger equations. (English) Zbl 07332649 Appl. Anal. 100, No. 6, 1213-1228 (2021). MSC: 35Q55 PDF BibTeX XML Cite \textit{Q. Guo} et al., Appl. Anal. 100, No. 6, 1213--1228 (2021; Zbl 07332649) Full Text: DOI
Noguera, Norman; Pastor, Ademir A system of Schrödinger equations with general quadratic-type nonlinearities. (English) Zbl 07331735 Commun. Contemp. Math. 23, No. 4, Article ID 2050023, 66 p. (2021). MSC: 35A01 35B44 35J50 35Q55 PDF BibTeX XML Cite \textit{N. Noguera} and \textit{A. Pastor}, Commun. Contemp. Math. 23, No. 4, Article ID 2050023, 66 p. (2021; Zbl 07331735) Full Text: DOI
Natali, Fábio; Cardoso, Eleomar Existence and orbital stability of standing waves for the 1D Schrödinger-Kirchhoff equation. (English) Zbl 07330917 J. Math. Anal. Appl. 500, No. 1, Article ID 125098, 20 p. (2021). MSC: 35B35 35C08 35Q55 35R09 PDF BibTeX XML Cite \textit{F. Natali} and \textit{E. Cardoso}, J. Math. Anal. Appl. 500, No. 1, Article ID 125098, 20 p. (2021; Zbl 07330917) Full Text: DOI
Liu, Wei; Cai, Yongyong Normalized gradient flow with Lagrange multiplier for computing ground states of Bose-Einstein condensates. (English) Zbl 07330820 SIAM J. Sci. Comput. 43, No. 1, B219-B242 (2021). Reviewer: Mohamed Majdoub (Dammam) MSC: 35Q55 65M06 65Z05 82C10 PDF BibTeX XML Cite \textit{W. Liu} and \textit{Y. Cai}, SIAM J. Sci. Comput. 43, No. 1, B219--B242 (2021; Zbl 07330820) Full Text: DOI
Hirayama, Hiroyuki; Kinoshita, Shinya; Okamoto, Mamoru Well-posedness for a system of quadratic derivative nonlinear Schrödinger equations in almost critical spaces. (English) Zbl 07330751 J. Math. Anal. Appl. 499, No. 2, Article ID 125028, 29 p. (2021). MSC: 35Q55 42B37 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{H. Hirayama} et al., J. Math. Anal. Appl. 499, No. 2, Article ID 125028, 29 p. (2021; Zbl 07330751) Full Text: DOI
Bégout, Pascal; Schindler, Ian On a stationary Schrödinger equation with periodic magnetic potential. (English) Zbl 07330392 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 72, 32 p. (2021). MSC: 35Q55 35A01 35D30 PDF BibTeX XML Cite \textit{P. Bégout} and \textit{I. Schindler}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 72, 32 p. (2021; Zbl 07330392) Full Text: DOI
Henning, Patrick; Wärnegård, Johan A note on optimal \(H^1\)-error estimates for Crank-Nicolson approximations to the nonlinear Schrödinger equation. (English) Zbl 07329843 BIT 61, No. 1, 37-59 (2021). MSC: 35Q55 65M60 65M06 65M15 65M12 65N30 65H10 35B45 81Q05 PDF BibTeX XML Cite \textit{P. Henning} and \textit{J. Wärnegård}, BIT 61, No. 1, 37--59 (2021; Zbl 07329843) Full Text: DOI
Chen, Zhen; Zou, Wenming Normalized solutions for nonlinear Schrödinger systems with linear couples. (English) Zbl 07329651 J. Math. Anal. Appl. 499, No. 1, Article ID 125013, 22 p. (2021). MSC: 35Q55 35A01 35B50 78A60 49J20 PDF BibTeX XML Cite \textit{Z. Chen} and \textit{W. Zou}, J. Math. Anal. Appl. 499, No. 1, Article ID 125013, 22 p. (2021; Zbl 07329651) Full Text: DOI
Alouini, Brahim Asymptotic behavior of solutions for a class of two-coupled nonlinear fractional Schrödinger equations. (English) Zbl 07327893 Dyn. Partial Differ. Equ. 18, No. 1, 11-32 (2021). MSC: 35Q55 PDF BibTeX XML Cite \textit{B. Alouini}, Dyn. Partial Differ. Equ. 18, No. 1, 11--32 (2021; Zbl 07327893) Full Text: DOI
Huang, Chen; Jia, Gao Multiple solutions for a class of quasilinear Schrödinger equations. (English) Zbl 07327557 Complex Var. Elliptic Equ. 66, No. 2, 347-359 (2021). MSC: 35J20 35J62 35Q55 35J20 PDF BibTeX XML Cite \textit{C. Huang} and \textit{G. Jia}, Complex Var. Elliptic Equ. 66, No. 2, 347--359 (2021; Zbl 07327557) Full Text: DOI
Jin, Kexin; Ma, Xiao Cancellations of resonances and long time dynamics of cubic Schrödinger equation on \(\mathbb{T}\). (English) Zbl 07327495 Commun. Math. Phys. 381, No. 3, 1309-1368 (2021). MSC: 35Q55 35A 35B 35Q 35Q53 35A35 35B30 PDF BibTeX XML Cite \textit{K. Jin} and \textit{X. Ma}, Commun. Math. Phys. 381, No. 3, 1309--1368 (2021; Zbl 07327495) Full Text: DOI
Dinh, Van Duong Random data theory for the cubic fourth-order nonlinear Schrödinger equation. (English) Zbl 07327298 Commun. Pure Appl. Anal. 20, No. 2, 651-680 (2021). MSC: 35Q55 35Q41 35A01 35A02 35R60 PDF BibTeX XML Cite \textit{V. D. Dinh}, Commun. Pure Appl. Anal. 20, No. 2, 651--680 (2021; Zbl 07327298) Full Text: DOI
Alves, Claudianor O.; Nemer, Rodrigo C. M.; Soares, Sergio H. Monari The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. (English) Zbl 07327289 Commun. Pure Appl. Anal. 20, No. 1, 449-465 (2021). MSC: 58E05 35A15 35Q55 35J15 PDF BibTeX XML Cite \textit{C. O. Alves} et al., Commun. Pure Appl. Anal. 20, No. 1, 449--465 (2021; Zbl 07327289) Full Text: DOI
Holmer, Justin; Liu, Chang Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: supercritical blow-up profiles. (English) Zbl 07327278 Commun. Pure Appl. Anal. 20, No. 1, 215-242 (2021). MSC: 35Q55 35Q41 35B44 35C15 35C20 33C05 33C10 35A01 35A02 PDF BibTeX XML Cite \textit{J. Holmer} and \textit{C. Liu}, Commun. Pure Appl. Anal. 20, No. 1, 215--242 (2021; Zbl 07327278) Full Text: DOI
Fukaya, Noriyoshi Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. (English) Zbl 07327274 Commun. Pure Appl. Anal. 20, No. 1, 121-143 (2021). MSC: 35J 35A02 35Q55 35J61 PDF BibTeX XML Cite \textit{N. Fukaya}, Commun. Pure Appl. Anal. 20, No. 1, 121--143 (2021; Zbl 07327274) Full Text: DOI
Ardila, Alex H.; Cardoso, Mykael Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. (English) Zbl 07327273 Commun. Pure Appl. Anal. 20, No. 1, 101-119 (2021). MSC: 35Q55 35Q41 35B44 35B35 35A15 35A01 PDF BibTeX XML Cite \textit{A. H. Ardila} and \textit{M. Cardoso}, Commun. Pure Appl. Anal. 20, No. 1, 101--119 (2021; Zbl 07327273) Full Text: DOI
Yang, Kai Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. (English) Zbl 07327272 Commun. Pure Appl. Anal. 20, No. 1, 77-99 (2021). MSC: 35Q55 35Q41 35A01 PDF BibTeX XML Cite \textit{K. Yang}, Commun. Pure Appl. Anal. 20, No. 1, 77--99 (2021; Zbl 07327272) Full Text: DOI
Wang, W.-M. Semi-algebraic sets method in PDE and mathematical physics. (English) Zbl 07326346 J. Math. Phys. 62, No. 2, 021506, 12 p. (2021). MSC: 35B15 35G20 35L71 35Q55 37K55 PDF BibTeX XML Cite \textit{W. M. Wang}, J. Math. Phys. 62, No. 2, 021506, 12 p. (2021; Zbl 07326346) Full Text: DOI
Li, Yongsheng; Yao, Fangyan Derivation of the nonlinear Schrödinger equation with a general nonlinearity and Gross-Pitaevskii hierarchy in one and two dimensions. (English) Zbl 07326345 J. Math. Phys. 62, No. 2, 021505, 22 p. (2021). MSC: 35Q55 37K10 PDF BibTeX XML Cite \textit{Y. Li} and \textit{F. Yao}, J. Math. Phys. 62, No. 2, 021505, 22 p. (2021; Zbl 07326345) Full Text: DOI
Cong, Hongzi; Shi, Yunfeng; Zhang, Zhifei Long-time Anderson localization for the nonlinear Schrödinger equation revisited. (English) Zbl 07325974 J. Stat. Phys. 182, No. 1, Paper No. 10, 22 p. (2021). MSC: 82B44 81Q10 35J10 35Q55 35R60 PDF BibTeX XML Cite \textit{H. Cong} et al., J. Stat. Phys. 182, No. 1, Paper No. 10, 22 p. (2021; Zbl 07325974) Full Text: DOI
Gialelis, Nikolaos; Karachalios, Nikos I.; Stratis, Ioannis G. Regularity of nonvanishing – at infinity or at the boundary – solutions of the defocusing nonlinear Shrödinger equation. (English) Zbl 07324459 Commun. Partial Differ. Equations 46, No. 2, 233-281 (2021). Reviewer: Mohamed Majdoub (Dammam) MSC: 35Q55 35C08 35D30 35B65 35B45 PDF BibTeX XML Cite \textit{N. Gialelis} et al., Commun. Partial Differ. Equations 46, No. 2, 233--281 (2021; Zbl 07324459) Full Text: DOI
Denisov, Sergey; Mohamed, Liban Generalizations of Menchov-Rademacher theorem and existence of wave operators in Schrödinger evolution. (English) Zbl 07324286 Can. J. Math. 73, No. 2, 360-382 (2021). MSC: 35Q55 34L25 35P25 42C05 PDF BibTeX XML Cite \textit{S. Denisov} and \textit{L. Mohamed}, Can. J. Math. 73, No. 2, 360--382 (2021; Zbl 07324286) Full Text: DOI
Kenig, Carlos E. On the work of Jean Bourgain in nonlinear dispersive equations. (English) Zbl 07324013 Bull. Am. Math. Soc., New Ser. 58, No. 2, 173-189 (2021). MSC: 35Q53 35Q55 PDF BibTeX XML Cite \textit{C. E. Kenig}, Bull. Am. Math. Soc., New Ser. 58, No. 2, 173--189 (2021; Zbl 07324013) Full Text: DOI
Gürses, Metin; Pekcan, Aslı \((2+1)\)-dimensional AKNS \((-N)\) systems. II. (English) Zbl 07323679 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105736, 17 p. (2021). MSC: 35C08 35Q53 35Q55 PDF BibTeX XML Cite \textit{M. Gürses} and \textit{A. Pekcan}, Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105736, 17 p. (2021; Zbl 07323679) Full Text: DOI
Solaimani, Mehdi; Aleomraninejad, S. M. A. A hyper-block self-consistent approach to nonlinear Schrödinger equations: breeding, metamorphosis, and killing of Hofstadter butterflies. (English) Zbl 07323667 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105724, 9 p. (2021). MSC: 35J10 35Q55 35A01 PDF BibTeX XML Cite \textit{M. Solaimani} and \textit{S. M. A. Aleomraninejad}, Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105724, 9 p. (2021; Zbl 07323667) Full Text: DOI
Chaichenets, L.; Hundertmark, D.; Kunstmann, P.; Pattakos, N. On the global well-posedness of the quadratic NLS on \(H^1(\mathbb{T}) + L^2(\mathbb{R})\). (English) Zbl 07321626 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 2, Paper No. 11, 29 p. (2021). MSC: 35Q55 35A01 35A02 PDF BibTeX XML Cite \textit{L. Chaichenets} et al., NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 2, Paper No. 11, 29 p. (2021; Zbl 07321626) Full Text: DOI
Yue, Haitian Global well-posedness for the energy-critical focusing nonlinear Schrödinger equation on \(\mathbb{T}^4\). (English) Zbl 07319449 J. Differ. Equations 280, 754-804 (2021). MSC: 35Q55 49K40 35B30 35B40 35B44 35R01 PDF BibTeX XML Cite \textit{H. Yue}, J. Differ. Equations 280, 754--804 (2021; Zbl 07319449) Full Text: DOI
Haragus, Mariana; Johnson, Mathew A.; Perkins, Wesley R. Linear modulational and subharmonic dynamics of spectrally stable Lugiato-Lefever periodic waves. (English) Zbl 07319434 J. Differ. Equations 280, 315-354 (2021). MSC: 35Q55 35B 35K 35C 35C07 35B35 35K57 PDF BibTeX XML Cite \textit{M. Haragus} et al., J. Differ. Equations 280, 315--354 (2021; Zbl 07319434) Full Text: DOI
Liu, Nan; Guo, Boling Painlevé-type asymptotics of an extended modified KdV equation in transition regions. (English) Zbl 07319431 J. Differ. Equations 280, 203-235 (2021). MSC: 37K 35Q 35Q55 35Q51 37K10 37K15 35Q15 PDF BibTeX XML Cite \textit{N. Liu} and \textit{B. Guo}, J. Differ. Equations 280, 203--235 (2021; Zbl 07319431) Full Text: DOI
Kim, Jungkwon; Lee, Yoonjung; Seo, Ihyeok On well-posedness for the inhomogeneous nonlinear Schrödinger equation in the critical case. (English) Zbl 07319430 J. Differ. Equations 280, 179-202 (2021). MSC: 35Q55 35A01 35B45 35K15 35B45 35J10 PDF BibTeX XML Cite \textit{J. Kim} et al., J. Differ. Equations 280, 179--202 (2021; Zbl 07319430) Full Text: DOI
Zhao, Caidi; Caraballo, Tomás; Łukaszewicz, Grzegorz Statistical solution and Liouville type theorem for the Klein-Gordon-Schrödinger equations. (English) Zbl 07319408 J. Differ. Equations 281, 1-32 (2021). MSC: 35B53 35B41 34D35 35G61 76F20 37L30 35Q55 PDF BibTeX XML Cite \textit{C. Zhao} et al., J. Differ. Equations 281, 1--32 (2021; Zbl 07319408) Full Text: DOI
Chekhovskoy, Igor; Medvedev, S. B.; Vaseva, I. A.; Sedov, E. V.; Fedoruk, M. P. Introducing phase jump tracking – a fast method for eigenvalue evaluation of the direct Zakharov-Shabat problem. (English) Zbl 07319196 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105718, 16 p. (2021). MSC: 35Q55 35A 35K 35P 35Q 35G PDF BibTeX XML Cite \textit{I. Chekhovskoy} et al., Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105718, 16 p. (2021; Zbl 07319196) Full Text: DOI
Ma, Wen-Xiu; Huang, Yehui; Wang, Fudong Inverse scattering for nonlocal reverse-space multicomponent nonlinear Schrödinger equations. (English) Zbl 1455.35239 Int. J. Mod. Phys. B 35, No. 4, Article ID 2150051, 20 p. (2021). MSC: 35Q55 37K15 35Q15 35P25 PDF BibTeX XML Cite \textit{W.-X. Ma} et al., Int. J. Mod. Phys. B 35, No. 4, Article ID 2150051, 20 p. (2021; Zbl 1455.35239) Full Text: DOI
Seadawy, Aly R.; Bilal, M.; Younis, M.; Rizvi, S. T. R. Resonant optical solitons with conformable time-fractional nonlinear Schrödinger equation. (English) Zbl 1455.35243 Int. J. Mod. Phys. B 35, No. 3, Article ID 2150044, 18 p. (2021). MSC: 35Q55 35R11 35C08 35A25 PDF BibTeX XML Cite \textit{A. R. Seadawy} et al., Int. J. Mod. Phys. B 35, No. 3, Article ID 2150044, 18 p. (2021; Zbl 1455.35243) Full Text: DOI
Ali, Ijaz; Seadawy, Aly R.; Rizvi, Syed Tahir Raza; Younis, Muhammad Painlevé analysis for various nonlinear Schrödinger dynamical equations. (English) Zbl 1455.35231 Int. J. Mod. Phys. B 35, No. 3, Article ID 2150038, 10 p. (2021). MSC: 35Q55 37K10 PDF BibTeX XML Cite \textit{I. Ali} et al., Int. J. Mod. Phys. B 35, No. 3, Article ID 2150038, 10 p. (2021; Zbl 1455.35231) Full Text: DOI
Adjiri, Alle; Ahmed, Ahmed M. G.; Ma, Wen-Xiu Riemann-Hilbert problems of a nonlocal reverse-time six-component AKNS system of fourth order and its exact soliton solutions. (English) Zbl 1455.35165 Int. J. Mod. Phys. B 35, No. 3, Article ID 2150035, 29 p. (2021). MSC: 35Q15 35P25 35R30 35C08 35Q55 PDF BibTeX XML Cite \textit{A. Adjiri} et al., Int. J. Mod. Phys. B 35, No. 3, Article ID 2150035, 29 p. (2021; Zbl 1455.35165) Full Text: DOI
Rizvi, Syed T. R.; Seadawy, Aly R.; Ali, Ijaz; Younis, Muhammad Painlevé analysis of a nonlinear Schrödinger equation discussing dynamics of solitons in optical fiber. (English) Zbl 1455.35241 Int. J. Mod. Phys. B 35, No. 1, Article ID 2150005, 11 p. (2021). MSC: 35Q55 37K10 PDF BibTeX XML Cite \textit{S. T. R. Rizvi} et al., Int. J. Mod. Phys. B 35, No. 1, Article ID 2150005, 11 p. (2021; Zbl 1455.35241) Full Text: DOI
Khan, Yasir Novel soliton solutions of the fractal Biswas-Milovic model arising in Photonics. (English) Zbl 1455.35235 Int. J. Mod. Phys. B 35, No. 1, Article ID 2150001, 15 p. (2021). MSC: 35Q55 35R11 35C08 PDF BibTeX XML Cite \textit{Y. Khan}, Int. J. Mod. Phys. B 35, No. 1, Article ID 2150001, 15 p. (2021; Zbl 1455.35235) Full Text: DOI
de Laire, André; Gravejat, Philippe The cubic Schrödinger regime of the Landau-Lifshitz equation with a strong easy-axis anisotropy. (English) Zbl 07318520 Rev. Mat. Iberoam. 37, No. 1, 95-128 (2021). MSC: 35Q60 35Q55 37K40 35C07 82D40 PDF BibTeX XML Cite \textit{A. de Laire} and \textit{P. Gravejat}, Rev. Mat. Iberoam. 37, No. 1, 95--128 (2021; Zbl 07318520) Full Text: DOI
Triki, Houria; Taha, Thiab R. Reply to comment on: “Exact analytic solitary wave solutions for the RKL model”. (English) Zbl 07318253 Math. Comput. Simul. 182, 234 (2021). MSC: 35Q55 35Q51 35C08 35C05 78A10 PDF BibTeX XML Cite \textit{H. Triki} and \textit{T. R. Taha}, Math. Comput. Simul. 182, 234 (2021; Zbl 07318253) Full Text: DOI
Feng, Binhua; Cao, Leijin; Liu, Jiayin Existence of stable standing waves for the Lee-Huang-Yang corrected dipolar Gross-Pitaevskii equation. (English) Zbl 07317518 Appl. Math. Lett. 115, Article ID 106952, 8 p. (2021). MSC: 35J61 35Q55 35A01 PDF BibTeX XML Cite \textit{B. Feng} et al., Appl. Math. Lett. 115, Article ID 106952, 8 p. (2021; Zbl 07317518) Full Text: DOI
Luo, Yongming; Stylianou, Athanasios Ground states for a nonlocal mixed order cubic-quartic Gross-Pitaevskii equation. (English) Zbl 07316113 J. Math. Anal. Appl. 496, No. 1, Article ID 124802, 21 p. (2021). MSC: 35Q55 81 PDF BibTeX XML Cite \textit{Y. Luo} and \textit{A. Stylianou}, J. Math. Anal. Appl. 496, No. 1, Article ID 124802, 21 p. (2021; Zbl 07316113) Full Text: DOI
Boni, Filippo; Dovetta, Simone Prescribed mass ground states for a doubly nonlinear Schrödinger equation in dimension one. (English) Zbl 07316108 J. Math. Anal. Appl. 496, No. 1, Article ID 124797, 17 p. (2021). MSC: 81Q05 35Q55 34L40 35G55 35P30 35A01 35A02 35B38 PDF BibTeX XML Cite \textit{F. Boni} and \textit{S. Dovetta}, J. Math. Anal. Appl. 496, No. 1, Article ID 124797, 17 p. (2021; Zbl 07316108) Full Text: DOI
Pan, Hui-Lan; Li, Gui-Dong; Tang, Chun-Lei A positive ground state solution of asymptotically periodic Chern-Simons-Schrödinger systems with critical growth. (English) Zbl 07315375 J. Math. Anal. Appl. 495, No. 1, Article ID 124708, 19 p. (2021). MSC: 35Q55 34 PDF BibTeX XML Cite \textit{H.-L. Pan} et al., J. Math. Anal. Appl. 495, No. 1, Article ID 124708, 19 p. (2021; Zbl 07315375) Full Text: DOI
Pecher, Hartmut Local well-posedness for the Klein-Gordon-Zakharov system in 3D. (English) Zbl 07314929 Discrete Contin. Dyn. Syst. 41, No. 4, 1707-1736 (2021). MSC: 35Q55 35Q41 35A01 35A02 35B65 PDF BibTeX XML Cite \textit{H. Pecher}, Discrete Contin. Dyn. Syst. 41, No. 4, 1707--1736 (2021; Zbl 07314929) Full Text: DOI
Murphy, Jason; Nakanishi, Kenji Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. (English) Zbl 07314919 Discrete Contin. Dyn. Syst. 41, No. 3, 1507-1517 (2021). MSC: 35Q55 35Q41 35P25 35C08 PDF BibTeX XML Cite \textit{J. Murphy} and \textit{K. Nakanishi}, Discrete Contin. Dyn. Syst. 41, No. 3, 1507--1517 (2021; Zbl 07314919) Full Text: DOI
Hamano, Masaru; Masaki, Satoshi A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. (English) Zbl 07314915 Discrete Contin. Dyn. Syst. 41, No. 3, 1415-1447 (2021). MSC: 35Q55 35P25 78A60 PDF BibTeX XML Cite \textit{M. Hamano} and \textit{S. Masaki}, Discrete Contin. Dyn. Syst. 41, No. 3, 1415--1447 (2021; Zbl 07314915) Full Text: DOI
Comech, Andrew; Cuccagna, Scipio On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. (English) Zbl 07314908 Discrete Contin. Dyn. Syst. 41, No. 3, 1225-1270 (2021). MSC: 35Q55 35B35 35B40 35C08 35Q41 37K40 PDF BibTeX XML Cite \textit{A. Comech} and \textit{S. Cuccagna}, Discrete Contin. Dyn. Syst. 41, No. 3, 1225--1270 (2021; Zbl 07314908) Full Text: DOI
Landoulsi, Oussama Construction of a solitary wave solution of the nonlinear focusing Schrödinger equation outside a strictly convex obstacle in the \(L^2\)-supercritical case. (English) Zbl 07314362 Discrete Contin. Dyn. Syst. 41, No. 2, 701-746 (2021). MSC: 35Q55 35C08 35B40 35A01 PDF BibTeX XML Cite \textit{O. Landoulsi}, Discrete Contin. Dyn. Syst. 41, No. 2, 701--746 (2021; Zbl 07314362) Full Text: DOI
Dinh, Van Duong Dynamics of radial solutions for the focusing fourth-order nonlinear Schrödinger equations. (English) Zbl 07312085 Nonlinearity 34, No. 2, 776-821 (2021). MSC: 35Q55 35Q41 35B44 35P25 PDF BibTeX XML Cite \textit{V. D. Dinh}, Nonlinearity 34, No. 2, 776--821 (2021; Zbl 07312085) Full Text: DOI
Luo, Peng; Tian, Shuying; Zhou, Xiaodong Local uniqueness and the number of concentrated solutions for nonlinear Schrödinger equations with non-admissible potential. (English) Zbl 07312082 Nonlinearity 34, No. 2, 705-724 (2021). MSC: 35J10 35Q55 35A02 PDF BibTeX XML Cite \textit{P. Luo} et al., Nonlinearity 34, No. 2, 705--724 (2021; Zbl 07312082) Full Text: DOI
Li, Jiyong; Wang, Tingchun Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation. (English) Zbl 07311184 Appl. Numer. Math. 162, 150-170 (2021). MSC: 81Q05 81R20 35Q55 65L12 35R20 81R05 35G30 81-10 PDF BibTeX XML Cite \textit{J. Li} and \textit{T. Wang}, Appl. Numer. Math. 162, 150--170 (2021; Zbl 07311184) Full Text: DOI
Ma, Wen-Xiu; Batwa, Sumayah A binary Darboux transformation for multicomponent NLS equations and their reductions. (English) Zbl 07311012 Anal. Math. Phys. 11, No. 2, Paper No. 44, 13 p. (2021). Reviewer: Ivan C. Sterling (St. Mary’s City) MSC: 37K35 37K15 35Q55 37K40 PDF BibTeX XML Cite \textit{W.-X. Ma} and \textit{S. Batwa}, Anal. Math. Phys. 11, No. 2, Paper No. 44, 13 p. (2021; Zbl 07311012) Full Text: DOI
Cho, Yonggeun; Lee, Kiyeon On the focusing energy-critical inhomogeneous NLS: weighted space approach. (English) Zbl 07310980 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112261, 22 p. (2021). MSC: 35Q55 35Q40 35B44 35P25 35A01 35A02 PDF BibTeX XML Cite \textit{Y. Cho} and \textit{K. Lee}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112261, 22 p. (2021; Zbl 07310980) Full Text: DOI
Cazenave, Thierry; Han, Zheng; Naumkin, Ivan Asymptotic behavior for a dissipative nonlinear Schrödinger equation. (English) Zbl 07310979 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112243, 38 p. (2021). MSC: 35Q55 35B40 PDF BibTeX XML Cite \textit{T. Cazenave} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112243, 38 p. (2021; Zbl 07310979) Full Text: DOI
Juarez-Campos, Beatriz; Naumkin, Pavel I. Large time asymptotics for the higher-order nonlinear nonlocal Schrödinger equation. (English) Zbl 07310978 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112238, 27 p. (2021). MSC: 35B40 35Q55 PDF BibTeX XML Cite \textit{B. Juarez-Campos} and \textit{P. I. Naumkin}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112238, 27 p. (2021; Zbl 07310978) Full Text: DOI
Cheng, Xing; Zhao, Zehua; Zheng, Jiqiang Well-posedness for energy-critical nonlinear Schrödinger equation on waveguide manifold. (English) Zbl 07310674 J. Math. Anal. Appl. 494, No. 2, Article ID 124654, 14 p. (2021). MSC: 35Q55 78A50 35A01 35A02 PDF BibTeX XML Cite \textit{X. Cheng} et al., J. Math. Anal. Appl. 494, No. 2, Article ID 124654, 14 p. (2021; Zbl 07310674) Full Text: DOI
Shao, Jie; Guo, Boling The Cauchy problem for Schrödinger-damped Boussinesq system. (English) Zbl 07310660 J. Math. Anal. Appl. 494, No. 2, Article ID 124639, 21 p. (2021). MSC: 35Q35 35Q55 35B44 35A01 35A02 35R11 PDF BibTeX XML Cite \textit{J. Shao} and \textit{B. Guo}, J. Math. Anal. Appl. 494, No. 2, Article ID 124639, 21 p. (2021; Zbl 07310660) Full Text: DOI
Shen, Shunlin The rigorous derivation of the \(\mathbb{T}^2\) focusing cubic NLS from 3D. (English) Zbl 07310593 J. Funct. Anal. 280, No. 8, Article ID 108934, 73 p. (2021). MSC: 82C10 81V73 81V70 35Q55 PDF BibTeX XML Cite \textit{S. Shen}, J. Funct. Anal. 280, No. 8, Article ID 108934, 73 p. (2021; Zbl 07310593) Full Text: DOI
Chenn, Ilias; Sigal, Israel Michael Vortex lattices and the Bogoliubov-de Gennes equations. (English) Zbl 07309929 Adv. Math. 380, Article ID 107546, 54 p. (2021). MSC: 82D55 35Q82 35Q55 PDF BibTeX XML Cite \textit{I. Chenn} and \textit{I. M. Sigal}, Adv. Math. 380, Article ID 107546, 54 p. (2021; Zbl 07309929) Full Text: DOI
Nogueira, Marcelo; Panthee, Mahendra Local and global well-posedness for a quadratic Schrödinger system on Zoll manifolds. (English) Zbl 07309684 J. Math. Anal. Appl. 494, No. 1, Article ID 124574, 36 p. (2021). MSC: 35Q55 35A01 35A02 PDF BibTeX XML Cite \textit{M. Nogueira} and \textit{M. Panthee}, J. Math. Anal. Appl. 494, No. 1, Article ID 124574, 36 p. (2021; Zbl 07309684) Full Text: DOI
Hu, Beibei; Zhang, Ling; Zhang, Ning On the Riemann-Hilbert problem for the mixed Chen-Lee-Liu derivative nonlinear Schrödinger equation. (English) Zbl 07309653 J. Comput. Appl. Math. 390, Article ID 113393, 15 p. (2021). MSC: 35Q15 35G31 35Q55 37K15 PDF BibTeX XML Cite \textit{B. Hu} et al., J. Comput. Appl. Math. 390, Article ID 113393, 15 p. (2021; Zbl 07309653) Full Text: DOI
Fang, Xiang-Dong Multiple solutions of higher topological type for semiclassical nonlinear Schrödinger equations. (English) Zbl 07309485 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 10, 27 p. (2021). MSC: 35J10 35Q55 35A01 35A15 PDF BibTeX XML Cite \textit{X.-D. Fang}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 10, 27 p. (2021; Zbl 07309485) Full Text: DOI
Dohnal, Tomáš; Romani, Giulio Eigenvalue bifurcation in doubly nonlinear problems with an application to surface plasmon polaritons. (English) Zbl 07309484 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 9, 30 p. (2021). MSC: 35P30 35B32 35Q61 78A48 35Q55 PDF BibTeX XML Cite \textit{T. Dohnal} and \textit{G. Romani}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 9, 30 p. (2021; Zbl 07309484) Full Text: DOI
Alves, Claudianor O.; Ji, Chao Existence of a positive solution for a logarithmic Schrödinger equation with saddle-like potential. (English) Zbl 07307697 Manuscr. Math. 164, No. 3-4, 555-575 (2021). MSC: 35B25 35J20 35J61 35B09 35Q55 PDF BibTeX XML Cite \textit{C. O. Alves} and \textit{C. Ji}, Manuscr. Math. 164, No. 3--4, 555--575 (2021; Zbl 07307697) Full Text: DOI
Ji, Chao; Rădulescu, Vicenţiu D. Multi-bump solutions for the nonlinear magnetic Schrödinger equation with exponential critical growth in \(\mathbb{R}^2 \). (English) Zbl 07307695 Manuscr. Math. 164, No. 3-4, 509-542 (2021). Reviewer: Patrick Winkert (Berlin) MSC: 35J60 35Q55 35B33 PDF BibTeX XML Cite \textit{C. Ji} and \textit{V. D. Rădulescu}, Manuscr. Math. 164, No. 3--4, 509--542 (2021; Zbl 07307695) Full Text: DOI
Brandes, J.; Parsell, S. T.; Poulias, C.; Shakan, G.; Vaughan, R. C. On generating functions in additive number theory. II: Lower-order terms and applications to PDEs. (English) Zbl 07307512 Math. Ann. 379, No. 1-2, 347-376 (2021). MSC: 11L15 11P55 35Q53 35Q55 PDF BibTeX XML Cite \textit{J. Brandes} et al., Math. Ann. 379, No. 1--2, 347--376 (2021; Zbl 07307512) Full Text: DOI
Yamano, Takuya; Ourabah, Kamel Gaussian traveling wave solutions for two argument-Schrödinger equations under potentials. (English) Zbl 07307165 Appl. Math. Lett. 113, Article ID 106889, 8 p. (2021). MSC: 35C07 35Q55 PDF BibTeX XML Cite \textit{T. Yamano} and \textit{K. Ourabah}, Appl. Math. Lett. 113, Article ID 106889, 8 p. (2021; Zbl 07307165) Full Text: DOI
Li, Jian; Xia, Tiecheng \(N\)-soliton solutions for the nonlocal Fokas-Lenells equation via RHP. (English) Zbl 07307151 Appl. Math. Lett. 113, Article ID 106850, 7 p. (2021). MSC: 35C08 35Q55 35Q15 PDF BibTeX XML Cite \textit{J. Li} and \textit{T. Xia}, Appl. Math. Lett. 113, Article ID 106850, 7 p. (2021; Zbl 07307151) Full Text: DOI
Li, Haoyu; Wang, Zhi-Qiang Multiple nodal solutions having shared componentwise nodal numbers for coupled Schrödinger equations. (English) Zbl 07306999 J. Funct. Anal. 280, No. 7, Article ID 108872, 45 p. (2021). MSC: 35J47 35Q55 35J50 PDF BibTeX XML Cite \textit{H. Li} and \textit{Z.-Q. Wang}, J. Funct. Anal. 280, No. 7, Article ID 108872, 45 p. (2021; Zbl 07306999) Full Text: DOI
Fujiié, Setsuro; Kamvissis, Spyridon Publisher’s note: “Semiclassical WKB problem for the non-self-adjoint Dirac operator with analytic potential” [J. Math. Phys. 61, 011510 (2020)]. (English) Zbl 07306548 J. Math. Phys. 62, No. 1, 019901, 1 p. (2021). MSC: 81Q12 81Q20 81R25 35P30 35Q55 81U40 PDF BibTeX XML Cite \textit{S. Fujiié} and \textit{S. Kamvissis}, J. Math. Phys. 62, No. 1, 019901, 1 p. (2021; Zbl 07306548) Full Text: DOI
Zhang, Jian; Lou, Zhenluo Existence and concentration behavior of solutions to Kirchhoff type equation with steep potential well and critical growth. (English) Zbl 07306518 J. Math. Phys. 62, No. 1, 011506, 14 p. (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q55 35J60 35A15 35A01 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{Z. Lou}, J. Math. Phys. 62, No. 1, 011506, 14 p. (2021; Zbl 07306518) Full Text: DOI
Ao, Yong Existence of solutions for a class of nonlinear Choquard equations with critical growth. (English) Zbl 07305504 Appl. Anal. 100, No. 3, 465-481 (2021). MSC: 35Q55 35R09 35J91 35A01 49J20 PDF BibTeX XML Cite \textit{Y. Ao}, Appl. Anal. 100, No. 3, 465--481 (2021; Zbl 07305504) Full Text: DOI
Jiang, Chaolong; Wang, Yushun; Gong, Yuezheng Explicit high-order energy-preserving methods for general Hamiltonian partial differential equations. (English) Zbl 07305223 J. Comput. Appl. Math. 388, Article ID 113298, 17 p. (2021). MSC: 65M22 65L06 65M70 65N35 35Q55 35Q41 PDF BibTeX XML Cite \textit{C. Jiang} et al., J. Comput. Appl. Math. 388, Article ID 113298, 17 p. (2021; Zbl 07305223) Full Text: DOI
Borrelli, William; Carlone, Raffaele; Tentarelli, Lorenzo On the nonlinear Dirac equation on noncompact metric graphs. (English) Zbl 07303711 J. Differ. Equations 278, 326-357 (2021). MSC: 35Q41 35Q55 35B25 35R02 81Q35 47J07 58E07 47A10 PDF BibTeX XML Cite \textit{W. Borrelli} et al., J. Differ. Equations 278, 326--357 (2021; Zbl 07303711) Full Text: DOI
Benoist, T.; Fraas, M.; Pautrat, Y.; Pellegrini, C. Invariant measure for stochastic Schrödinger equations. (English) Zbl 07303658 Ann. Henri Poincaré 22, No. 2, 347-374 (2021). MSC: 81S25 81Q05 35R60 35Q55 37C40 37A05 81P20 PDF BibTeX XML Cite \textit{T. Benoist} et al., Ann. Henri Poincaré 22, No. 2, 347--374 (2021; Zbl 07303658) Full Text: DOI
Saanouni, T. Global and non-global solutions for a class of damped fourth-order Schrödinger equations. (English) Zbl 07302084 Mediterr. J. Math. 18, No. 1, Paper No. 21, 23 p. (2021). MSC: 35Q55 35Q41 35B44 35A01 PDF BibTeX XML Cite \textit{T. Saanouni}, Mediterr. J. Math. 18, No. 1, Paper No. 21, 23 p. (2021; Zbl 07302084) Full Text: DOI
Ma, Wen-Xiu Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations. (English) Zbl 07301333 Proc. Am. Math. Soc. 149, No. 1, 251-263 (2021). MSC: 37K15 37K40 35Q55 35C08 PDF BibTeX XML Cite \textit{W.-X. Ma}, Proc. Am. Math. Soc. 149, No. 1, 251--263 (2021; Zbl 07301333) Full Text: DOI
Bernier, Joackim; Crouseilles, Nicolas; Li, Yingzhe Exact splitting methods for kinetic and Schrödinger equations. (English) Zbl 07301288 J. Sci. Comput. 86, No. 1, Paper No. 10, 35 p. (2021). Reviewer: Ayman Kachmar (Nabaṭiyya) MSC: 35Q55 35Q49 35Q84 82C40 65M70 65M22 PDF BibTeX XML Cite \textit{J. Bernier} et al., J. Sci. Comput. 86, No. 1, Paper No. 10, 35 p. (2021; Zbl 07301288) Full Text: DOI
Kang, Zhou-Zheng; Xia, Tie-Cheng; Ma, Wen-Xiu Riemann-Hilbert method for multi-soliton solutions of a fifth-order nonlinear Schrödinger equation. (English) Zbl 07301278 Anal. Math. Phys. 11, No. 1, Paper No. 14, 13 p. (2021). MSC: 35Q55 35Q15 37K10 35C08 82D40 PDF BibTeX XML Cite \textit{Z.-Z. Kang} et al., Anal. Math. Phys. 11, No. 1, Paper No. 14, 13 p. (2021; Zbl 07301278) Full Text: DOI
Düll, Wolf-Patrick Validity of the nonlinear Schrödinger approximation for the two-dimensional water wave problem with and without surface tension in the arc length formulation. (English) Zbl 07300725 Arch. Ration. Mech. Anal. 239, No. 2, 831-914 (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q31 35Q55 76B15 76B45 PDF BibTeX XML Cite \textit{W.-P. Düll}, Arch. Ration. Mech. Anal. 239, No. 2, 831--914 (2021; Zbl 07300725) Full Text: DOI
Lorin, Emmanuel Numerical analysis of the exact factorization of molecular time-dependent Schrödinger wavefunctions. (English) Zbl 07299031 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105627, 22 p. (2021). MSC: 65M06 65M12 35Q55 PDF BibTeX XML Cite \textit{E. Lorin}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105627, 22 p. (2021; Zbl 07299031) Full Text: DOI
Yang, Yunqing; Suzuki, Takashi; Wang, Jianyong Bäcklund transformation and localized nonlinear wave solutions of the nonlocal defocusing coupled nonlinear Schrödinger equation. (English) Zbl 07299030 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105626, 12 p. (2021). MSC: 35Q55 35Q41 37K35 37K10 35C08 PDF BibTeX XML Cite \textit{Y. Yang} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105626, 12 p. (2021; Zbl 07299030) Full Text: DOI
Schmelcher, Peter Superexponential interactions and the dynamical unfolding of confined degrees of freedom. (English) Zbl 1455.81049 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105599, 15 p. (2021). MSC: 81V45 81V55 35Q55 70F05 81U05 PDF BibTeX XML Cite \textit{P. Schmelcher}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105599, 15 p. (2021; Zbl 1455.81049) Full Text: DOI
Zhai, Jian; Zheng, Bo-Wen Global existence and blow-up solutions of the radial Schrödinger maps. (English) Zbl 07298840 Commun. Contemp. Math. 23, No. 2, Article ID 2050009, 22 p. (2021). MSC: 35Q40 35Q55 81Q05 35R09 35B44 35A01 35A02 PDF BibTeX XML Cite \textit{J. Zhai} and \textit{B.-W. Zheng}, Commun. Contemp. Math. 23, No. 2, Article ID 2050009, 22 p. (2021; Zbl 07298840) Full Text: DOI
Cao, Daomin; Jia, Huifang; Luo, Xiao Standing waves with prescribed mass for the Schrödinger equations with van der Waals type potentials. (English) Zbl 07297749 J. Differ. Equations 276, 228-263 (2021). MSC: 35J60 35R11 35Q55 35A01 35B40 35B35 PDF BibTeX XML Cite \textit{D. Cao} et al., J. Differ. Equations 276, 228--263 (2021; Zbl 07297749) Full Text: DOI
Granero-Belinchón, Rafael; Scrobogna, Stefano Well-posedness of the water-wave with viscosity problem. (English) Zbl 07297746 J. Differ. Equations 276, 96-148 (2021). MSC: 35Q35 76D05 35R35 35Q55 35A01 35A02 35L25 PDF BibTeX XML Cite \textit{R. Granero-Belinchón} and \textit{S. Scrobogna}, J. Differ. Equations 276, 96--148 (2021; Zbl 07297746) Full Text: DOI
Fukaya, Noriyoshi; Hayashi, Masayuki Instability of algebraic standing waves for nonlinear Schrödinger equations with double power nonlinearities. (English) Zbl 07291903 Trans. Am. Math. Soc. 374, No. 2, 1421-1447 (2021). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q41 35A15 35B35 PDF BibTeX XML Cite \textit{N. Fukaya} and \textit{M. Hayashi}, Trans. Am. Math. Soc. 374, No. 2, 1421--1447 (2021; Zbl 07291903) Full Text: DOI
Meng, Fanfei; Xu, Chengbin Scattering for mass-resonance nonlinear Schrödinger system in 5D. (English) Zbl 07291359 J. Differ. Equations 275, 837-857 (2021). MSC: 35Q55 35P25 PDF BibTeX XML Cite \textit{F. Meng} and \textit{C. Xu}, J. Differ. Equations 275, 837--857 (2021; Zbl 07291359) Full Text: DOI
Anco, Stephen; He, Huijun; Qiao, Zhijun Local well-posedness and blow-up for a family of \(U(1)\)-invariant peakon equations. (English) Zbl 1455.35056 J. Differ. Equations 275, 757-789 (2021). MSC: 35G25 35B44 35Q55 PDF BibTeX XML Cite \textit{S. Anco} et al., J. Differ. Equations 275, 757--789 (2021; Zbl 1455.35056) Full Text: DOI
D. D. Qin, Dongdong; Rădulescu, Vicenţiu D.; X. H. Tang, Xianhua Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations. (English) Zbl 07291353 J. Differ. Equations 275, 652-683 (2021). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q40 35J20 35J60 46N50 PDF BibTeX XML Cite \textit{D. D. D. Qin} et al., J. Differ. Equations 275, 652--683 (2021; Zbl 07291353) Full Text: DOI
Zhao, Zehua On scattering for the defocusing nonlinear Schrödinger equation on waveguide \(\mathbb{R}^m \times \mathbb{T}\) (when \(m = 2, 3)\). (English) Zbl 1455.35244 J. Differ. Equations 275, 598-637 (2021). Reviewer: Mohammed Kaabar (Gelugor) MSC: 35Q55 35R01 58J50 47A40 78A50 78A45 78A60 PDF BibTeX XML Cite \textit{Z. Zhao}, J. Differ. Equations 275, 598--637 (2021; Zbl 1455.35244) Full Text: DOI
Koch, Herbert; Liao, Xian Conserved energies for the one dimensional Gross-Pitaevskii equation. (English) Zbl 1455.35236 Adv. Math. 377, Article ID 107467, 84 p. (2021). MSC: 35Q55 35Q53 35A01 35A02 35B65 PDF BibTeX XML Cite \textit{H. Koch} and \textit{X. Liao}, Adv. Math. 377, Article ID 107467, 84 p. (2021; Zbl 1455.35236) Full Text: DOI
Bridges, Thomas J.; Kostianko, Anna; Zelik, Sergey Validity of the hyperbolic Whitham modulation equations in Sobolev spaces. (English) Zbl 1455.35233 J. Differ. Equations 274, 971-995 (2021). MSC: 35Q55 35Q53 35A01 35A02 PDF BibTeX XML Cite \textit{T. J. Bridges} et al., J. Differ. Equations 274, 971--995 (2021; Zbl 1455.35233) Full Text: DOI
Kishimoto, Nobu Unconditional local well-posedness for periodic NLS. (English) Zbl 1454.35344 J. Differ. Equations 274, 766-787 (2021). MSC: 35Q55 35A02 PDF BibTeX XML Cite \textit{N. Kishimoto}, J. Differ. Equations 274, 766--787 (2021; Zbl 1454.35344) Full Text: DOI
Adami, Riccardo; Fukuizumi, Reika; Holmer, Justin Scattering for the \(L^2\) supercritical point NLS. (English) Zbl 07288849 Trans. Am. Math. Soc. 374, No. 1, 35-60 (2021). Reviewer: Ayman Kachmar (Nabaṭiyya) MSC: 35Q55 35B40 35P25 78A60 PDF BibTeX XML Cite \textit{R. Adami} et al., Trans. Am. Math. Soc. 374, No. 1, 35--60 (2021; Zbl 07288849) Full Text: DOI
Chaichenets, Leonid; Pattakos, Nikolaos The global Cauchy problem for the NLS with higher order anisotropic dispersion. (English) Zbl 1455.35234 Glasg. Math. J. 63, No. 1, 45-53 (2021). MSC: 35Q55 35A01 35A02 35B40 PDF BibTeX XML Cite \textit{L. Chaichenets} and \textit{N. Pattakos}, Glasg. Math. J. 63, No. 1, 45--53 (2021; Zbl 1455.35234) Full Text: DOI
Deng, Yinbin; Guo, Yujin; Xu, Liangshun Limit behavior of attractive Bose-Einstein condensates passing an obstacle. (English) Zbl 1455.35065 J. Differ. Equations 272, 370-398 (2021). MSC: 35J10 35Q55 35J91 35J20 PDF BibTeX XML Cite \textit{Y. Deng} et al., J. Differ. Equations 272, 370--398 (2021; Zbl 1455.35065) Full Text: DOI
Kairzhan, Adilbek; Marangell, Robert; Pelinovsky, Dmitry E.; Xiao, Ke Liang Standing waves on a flower graph. (English) Zbl 1454.35406 J. Differ. Equations 271, 719-763 (2021). MSC: 35R02 35Q55 35B32 PDF BibTeX XML Cite \textit{A. Kairzhan} et al., J. Differ. Equations 271, 719--763 (2021; Zbl 1454.35406) Full Text: DOI