×

Combined evolution of level sets and B-spline curves for imaging. (English) Zbl 1213.65034

Summary: We propose the evolution of curves in direction of their unit normal using a combined implicit and explicit spline representation according to a given velocity field. In the implicit case we evolve a level set function for segmentation and geometry reconstruction in 2D images. The level set approach allows for topological changes of the evolving curves. The evolution of the explicit B-spline curve is driven by the Mumford-Shah functional. We are mainly concerned with the segmentation of images using active contours. To get satisfactory results from the implicit evolution the optimal stopping time and the correct level of the evolving function has to be estimated. We overcome this problem by using the combined evolution.

MSC:

65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
68U10 Computing methodologies for image processing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Caselles, V., Catté, F., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66, 1–31 (1993) · Zbl 0804.68159 · doi:10.1007/BF01385685
[2] Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comp. Vis. 22(1), 61–79 (1997) · Zbl 0894.68131 · doi:10.1023/A:1007979827043
[3] Caselles, V., Kimmel, R., Sapiro, G., Sbert, C.: Minimal surfaces based object segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 19(4), 394–398 (1997) · Zbl 05111236 · doi:10.1109/34.588023
[4] Chan, T.F., Tai, X.-C.: Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comp. Phys. 193(1), 40–66 (2004) · Zbl 1036.65086 · doi:10.1016/j.jcp.2003.08.003
[5] Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001) · Zbl 1039.68779 · doi:10.1109/83.902291
[6] Corsaro, S., Mikula, K., Sarti, A., Sgallari, F.: Semi-implicit covolume method in 3D image segmentation. SIAM J. Sci. Comput. 28(6), 2248–2265 (2006) · Zbl 1126.65088 · doi:10.1137/060651203
[7] Kass, M., Witkin, A., Terzopoulos, D.: Snakes active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988) · Zbl 0646.68105 · doi:10.1007/BF00133570
[8] Kühne, G., Weickert, J., Beier, M., Effelsberg, W.: Fast implicit active contour models. In: Pattern Recognition : 24th DAGM Symposium, Zurich, Switzerland, 16–18 September 2002. Proceedings, vol. 2449 of Lecture Notes in Computer Science, pp. 133–140. Springer, Berlin (2002) · Zbl 1017.68766
[9] Mikula, K., Sarti, A., Sgallari, F.: Co-volume method for Riemannian mean curvature flow in subjective surfaces multiscale segmentation. Comput. Vis. Sci. 9, 23–31 (2006) · Zbl 1511.65104 · doi:10.1007/s00791-006-0014-0
[10] Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: Proceedings of IEEE Conference in Computer Vision Pattern Recognition, pp. 22–26 (1985)
[11] Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(4), 577–684 (1989) · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
[12] Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on hamilton–jacobi formulations. J. Comput. Phys. 79, 12–49 (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[13] Sarti, A., Malladi, R., Sethian, J.A.: Subjective surfaces: a geometric model for boundary completion. Int. J. Comput. Vis. 46(3), 201–221 (2002) · Zbl 1012.68727 · doi:10.1023/A:1014028906229
[14] Yang, H., Fuchs, M., Jüttler, B., Scherzer, O.: Evolution of t-spline level sets with distance field constraints for geometry reconstruction and image segmentation. In: IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06), pp. 247–252, Los Alamitos, CA, USA, 2006. IEEE Computer Society, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.