×

Rotation of a rigid satellite with a fluid component: a new light onto Titan’s obliquity. (English) Zbl 1379.70042

Summary: We revisit the rotation dynamics of a rigid satellite with either a liquid core or a global subsurface ocean. In both problems, the flow of the fluid component is assumed inviscid. The study of a hollow satellite with a liquid core is based on the Poincaré-Hough model which provides exact equations of motion. We introduce an approximation when the ellipticity of the cavity is low. This simplification allows to model both types of satellite in the same manner. The analysis of their rotation is done in a non-canonical Hamiltonian formalism closely related to Poincaré’s “forme nouvelle des équations de la mécanique”. In the case of a satellite with a global ocean, we obtain a seven-degree-of-freedom system. Six of them account for the motion of the two rigid components, and the last one is associated with the fluid layer. We apply our model to Titan for which the origin of the obliquity is still a debated question. We show that the observed value is compatible with Titan slightly departing from the hydrostatic equilibrium and being in a Cassini equilibrium state.

MSC:

70F15 Celestial mechanics
70E15 Free motion of a rigid body
70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Anderson, J.D., Sjogren, W.L., Schubert, G.: Galileo gravity results and the internal structure of Io. Science 272, 709-712 (1996) · doi:10.1126/science.272.5262.709
[2] Baland, R.-M., van Hoolst, T., Yseboodt, M., Karatekin, Ö.: Titan’s obliquity as evidence of a subsurface ocean? Astron. Astrophys. 530, A141 (2011) · Zbl 1260.85002 · doi:10.1051/0004-6361/201116578
[3] Baland, R.-M., Tobie, G., Lefèvre, A., Van Hoolst, T.: Titan’s internal structure inferred from its gravity field, shape, and rotation state. Icarus 237, 29-41 (2014) · doi:10.1016/j.icarus.2014.04.007
[4] Beck, J.A., Hall, C.D.: Relative equilibria of a rigid satellite in a circular Keplerian orbit. J. Astronaut. Sci. 46(3), 215-247 (1998)
[5] Béghin, C., Randriamboarison, O., Hamelin, M., et al.: Analytic theory of Titan’s Schumann resonance: constraints on ionospheric conductivity and buried water ocean. Icarus 218, 1028-1042 (2012) · doi:10.1016/j.icarus.2012.02.005
[6] Bills, B.G., Nimmo, F.: Rotational dynamics and internal structure of Titan. Icarus 214, 351-355 (2011) · doi:10.1016/j.icarus.2011.04.028
[7] Campbell, J.K., Anderson, J.D.: Gravity field of the Saturnian system from Pioneer and Voyager tracking data. Astron. J. 97, 1485-1495 (1989) · doi:10.1086/115088
[8] Clairaut, A.: Théorie de la figure de la Terre. Davis fils, Paris (1743) · JFM 43.1090.11
[9] Colombo, G.: Cassini’s second and third laws. Astron. J. 71, 891 (1966) · doi:10.1086/109983
[10] Coyette, A., Van Hoolst, T., Baland, R.-M., Tokano, T.: Modeling the polar motion of Titan. Icarus 265, 1-28 (2016) · doi:10.1016/j.icarus.2015.10.015
[11] Dumberry, M., Wieczorek, M.A.: The forced precession of the Moon’s inner core. J. Geophys. Res. (Planets) 121, 1264-1292 (2016) · doi:10.1002/2015JE004986
[12] Fortes, A.D.: Titan’s internal structure and the evolutionary consequences. Planet. Space Sci. 60, 10-17 (2012) · doi:10.1016/j.pss.2011.04.010
[13] Grasset, O., Sotin, C.: The liquidus of H2O-NH3 up to 1.5 GPa: implications for the presence of a liquid shell in Titan’s interior. In: Lunar and Planetary Science Conference, Lunar and Planetary Inst. Technical Report, vol. 27 (1996)
[14] Hall, C.D., Beck, J.A.: Hamiltonian mechanics and relative equilibria of orbiting gyrostats. J. Astronaut. Sci. 55, 53-65 (2007) · doi:10.1007/BF03256514
[15] Hansen, P.A.: Entwickelung des Products einer Potenz des Radius Vectors mit dem Sinus oder Cosinus eines vielfachen der wahren Anomalie in Reihen (in German), Abhandlungen der Koniglich Sachsischen Gesellschaft der Wissenschaften, vol. IV, Leipzig Hirzel, pp. 182-281 (1855)
[16] Henrard, J.: The rotation of Io with a liquid core. Celest. Mech. Dyn. Astron. 101, 1-12 (2008) · Zbl 1308.76296 · doi:10.1007/s10569-008-9135-8
[17] Hough, S.S.: The oscillations of a rotating ellipsoidal shell containing fluid. Philos. Trans. R. Soc. Lond. 186, 469-506 (1895) · JFM 26.0889.01 · doi:10.1098/rsta.1895.0012
[18] Iess, L., Jacobson, R.A., Ducci, M., et al.: The tides of Titan. Science 337, 457 (2012) · doi:10.1126/science.1219631
[19] Laplace, P.-S.: Traité de mécanique céleste - Tome 2, Chapt 1. Crapelet, Paris (1798)
[20] Lewis, J.S.: Satellites of the outer planets: their physical and chemical nature. Icarus 15, 174-185 (1971) · doi:10.1016/0019-1035(71)90072-8
[21] Maciejewski, A.J.: Reduction, relative equilibria and potential in the two rigid bodies problem. Celest. Mech. Dyn. Astron. 63, 1-28 (1995) · Zbl 0883.70007 · doi:10.1007/BF00691912
[22] Maddocks, J.H.: On the stability of relative equilibria. IMA J. Appl. Math. 46(1-2), 71-99 (1991) · Zbl 0734.70006 · doi:10.1093/imamat/46.1-2.71
[23] Mathews, P.M., Buffett, B.A., Herring, T.A., Shapiro, I.I.: Forced nutations of the earth: influence of inner core dynamics. 1. J. Geophys. Res. 96, 8219-8257 (1991) · doi:10.1029/90JB01955
[24] Meriggiola, R., Iess, L.: A new rotational model of Titan from Cassini SAR data. In: European Planetary Science Congress 2012, pp. EPSC2012-593 (2012)
[25] Meriggiola, R., Iess, L., Stiles, B.W., et al.: The rotational dynamics of Titan from Cassini RADAR images. Icarus 275, 183-192 (2016) · doi:10.1016/j.icarus.2016.01.019
[26] Nimmo, F., Hamilton, D.P., McKinnon, W.B., et al.: Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature 540, 94-96 (2016) · doi:10.1038/nature20148
[27] Noyelles, B.: Behavior of nearby synchronous rotations of a Poincaré-Hough satellite at low eccentricity. Celest. Mech. Dyn. Astron. 112, 353-383 (2012) · doi:10.1007/s10569-012-9398-y
[28] Noyelles, B.: The rotation of Io predicted by the Poincaré-Hough model. Icarus 223, 621-624 (2013) · doi:10.1016/j.icarus.2012.12.008
[29] Noyelles, B.: Contribution à l’étude de la rotation résonnante dans le Système Solaire (in French). Habilitation Thesis, https://arxiv.org/abs/1502.01472 (2014) · Zbl 0734.70006
[30] Noyelles, B., Nimmo, F.: New clues on the interior of Titan from its rotation state. In: IAU Symposium, IAU Symposium vol. 310, pp. 17-20 (2014)
[31] Peale, S.J.: Generalized Cassini’s laws. Astron. J. 74, 483 (1969) · Zbl 0215.57003 · doi:10.1086/110825
[32] Peale, S.J., Margot, J.-L., Hauck, S.A., Solomon, S.C.: Consequences of a solid inner core on Mercury’s spin configuration. Icarus 264, 443-455 (2016) · doi:10.1016/j.icarus.2015.09.024
[33] Poincaré, H.: Sur une forme nouvelle des équations de la mécanique. Comptes Rendus de l’Acad. des Sci. 132, 369-371 (1901) · JFM 32.0715.01
[34] Poincaré, H.: Sur la précession des corps déformables. Bull. Astron. 27, 321-357 (1910) · Zbl 1308.74043
[35] Rambaux, N., Castillo-Rogez, J.: Tides on satellites of giant planets. In: Souchay, J., Mathis, S., Tokieda, T. (eds) Lecture Notes in Physics, vol. 861, Springer, Berlin, p. 167 (2013)
[36] Rambaux, N., Castillo-Rogez, J.C., Le Maistre, S., Rosenblatt, P.: Rotational motion of Phobos. Astron. Astrophys. 548, A14 (2012) · doi:10.1051/0004-6361/201219710
[37] Rappaport, N., Bertotti, B., Giampieri, G., Anderson, J.D.: Doppler measurements of the quadrupole moments of Titan. Icarus 126, 313-323 (1997) · doi:10.1006/icar.1996.5661
[38] Richard, A.: Modèle de satellite à trois couches élastiques : application à la libration en longitude de Titan et Mimas (in French). Ph.D. thesis, Observatoire de Paris (2014)
[39] Richard, A., Rambaux, N., Charnay, B.: Librational response of a deformed 3-layer Titan perturbed by non-Keplerian orbit and atmospheric couplings. Planet. Space Sci. 93, 22-34 (2014) · doi:10.1016/j.pss.2014.02.006
[40] Stiles, B.W., Kirk, R.L., Lorenz, R.D., et al.: Determining Titan’s spin state from Cassini RADAR images. Astron. J. 135, 1669-1680 (2008) · doi:10.1088/0004-6256/135/5/1669
[41] Stiles, B.W., Kirk, R.L., Lorenz, R.D., et al.: Erratum: Determining Titan’s spin state from Cassini RADAR images. Astron. J. 139, 311 (2010) · doi:10.1088/0004-6256/139/1/311
[42] Vienne, A., Duriez, L.: TASS1.6: ephemerides of the major Saturnian satellites. Astron. Astrophys. 297, 588 (1995)
[43] Wang, Y., Xu, S.: Hamiltonian structures of dynamics of a gyrostat in a gravitational field. Nonlinear Dyn. 70(1), 231-247 (2012) · Zbl 1267.37059 · doi:10.1007/s11071-012-0447-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.