×

Generalized homogeneous, prelattice and MV-effect algebras. (English) Zbl 1249.03122

Summary: We study unbounded versions of effect algebras. We show a necessary and sufficient condition for lattice operations of such a generalized effect algebra \(P\) to be inherited under its embeding as a proper ideal with a special property and closed under the effect sum into an effect algebra. Further, we introduce conditions for generalized homogeneous, prelattice and MV-effect algebras. We prove that every generalized prelattice effect algebra \(P\) is a union of generalized MV-effect algebras and every generalized homogeneous effect algebra is a union of its maximal sub-generalized effect algebras with hereditary Riesz decomposition property (blocks). Properties of sharp elements, the center and center of compatibility of \(P\) are shown. We prove that on every generalized MV-effect algebra there is a bounded orthogonally additive measure.

MSC:

03G12 Quantum logic
06D35 MV-algebras
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
PDFBibTeX XMLCite
Full Text: Link

References:

[1] Chang C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490 · Zbl 0084.00704 · doi:10.2307/1993227
[2] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht - Boston - London and Ister Science, Bratislava 2000 · Zbl 0987.81005
[3] Foulis D., Bennett M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325-1346 · Zbl 1213.06004 · doi:10.1007/BF02283036
[4] Gudder S. P.: D-algebras. Found. Phys. 26 (1996), 813-822
[5] Hájek P.: Mathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht 1998
[6] Hedlíková J., Pulmannová S.: Generalized difference posets and orthoalgebras. Acta Math. Univ. Comenianae 45 (1996), 247-279 · Zbl 0922.06002
[7] Janowitz M. F.: A note on generalized orthomodular lattices. J. Natur. Sci. Math. 8 (1968), 89-94 · Zbl 0169.02104
[8] Jenča G.: Blocks of homogeneous effect algebras. Bull. Austral. Math. Soc. 64 (2001), 81-98 · Zbl 0985.03063 · doi:10.1017/S0004972700019705
[9] Jenča G., Riečanová Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24-29
[10] Kalmbach G.: Orthomodular Lattices. Academic Press, London - New York 1983 · Zbl 0554.06009 · doi:10.1016/0012-365X(85)90135-9
[11] Kôpka F.: Compatibility in D-posets. Internat. J. Theor. Phys. 34 (1995), 1525-1531 · Zbl 0851.03020 · doi:10.1007/BF00676263
[12] Kôpka F., Chovanec F.: Boolean D-posets. Tatra Mt. Math. Publ. 10 (1997), 183-197 · Zbl 0915.03052
[13] Riečanová Z.: Subalgebras, intervals and central elements of generalized effect algebras. Internat. J. Theor. Phys. 38 (1999), 3209-3220 · Zbl 0963.03087 · doi:10.1023/A:1026682215765
[14] Riečanová Z.: Compatibilty and central elements in effect algebras. Tatra Mt. Math. Publ. 16 (1999), 151-158 · Zbl 0949.03063
[15] Riečanová Z.: Generalization of blocks for \(D\)-lattices and lattice ordered effect algebras. Internat. J. Theor. Phys. 39 (2000), 231-237 · Zbl 0968.81003 · doi:10.1023/A:1003619806024
[16] Riečanová Z.: Orthogonal sets in effect algebras. Demonstratio Mathematica 34 (2001), 525-532 · Zbl 0989.03071
[17] Wilce A.: Perspectivity and congruence in partial Abelian semigroups. Math. Slovaca 48 (1998), 117-135 · Zbl 0938.03094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.