×

Very high order finite volume methods for cardiac electrophysiology. (English) Zbl 1382.92105

Summary: Numerical simulation of the propagation of electrical signals in the heart is a very demanding application. In fact, very fine meshes and small time steps are currently required to capture the phenomena. In this paper, we propose and explore a very high-order scheme specifically designed for this application. Its numerical properties are detailed and the different choices on both the scheme’s definition and implementation are discussed and justified. Numerical results show the importance of considering very high-order schemes, even for classical tests such as the propagation of planar or spiral waves.

MSC:

92C30 Physiology (general)
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs

Software:

Chaste
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Vigmond, E.; Vadakkumpadan, F.; Gurev, V.; Arevalo, H.; Deo, M.; Plank, G.; Trayanova, N., Towards predictive modelling of the electrophysiology of the heart, Exp. Physiol., 94, 5, 563-577 (2009)
[2] Niederer, S. A.; Kerfoot, E.; Benson, A. P.; Bernabeu, M. O.; Bernus, O.; Bradley, C.; Cherry, E. M.; Clayton, R.; Fenton, F. H.; Garny, A.; Heidenreich, E.; Land, S.; Maleckar, M.; Pathmanathan, P.; Plank, G.; Rodríguez, J. F.; Roy, I.; Sachse, F. B.; Seemann, G.; Skavhaug, O.; Smith, N. P., Verification of cardiac tissue electrophysiology simulators using an n-version benchmark, Philos. Trans. Math. Phys. Eng. Sci., 369, 1954, 4331-4351 (2011)
[3] Nichols, M.; Townsend, N.; Scarborough, P.; Rayner, M., Cardiovascular disease in europe: epidemiological update, Eur. Heart J., 34, 39, 3028-3034 (2013)
[4] Zoni-Berisso, M.; Lercari, F.; Carazza, T.; Domenicucci, S., Epidemiology of atrial fibrillation: European perspective, Clin. Epidemiol., 6, 213-220 (2014)
[5] Chugh, S. S.; Havmoeller, R.; Narayanan, K.; Singh, D.; Rienstra, M.; Benjamin, E. J.; Gillum, R. F.; Kim, Y.-H.; McAnulty, J. H.; Zheng, Z.-J.; Forouzanfar, M. H.; Naghavi, M.; Mensah, G. A.; Ezzati, M.; Murray, C. J., Worldwide epidemiology of atrial fibrillation, Circulation, 129, 8, 837-847 (2014)
[6] Arthurs, C. J.; Bishop, M. J.; Kay, D., Efficient simulation of cardiac electrical propagation using high order finite elements, J. Comput. Phys., 231, 10, 3946-3962 (2012) · Zbl 1237.92005
[7] Potse, M.; Dube, B.; Richer, J.; Vinet, A.; Gulrajani, R., A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart, IEEE Trans. Biomed. Eng., 53, 12, 2425-2435 (2006)
[8] Neu, J. C.; Krassowska, W., Homogenization of syncytial tissues, Crit. Rev. Biomed. Eng., 21, 137-199 (1993)
[9] Vigmond, E. J.; Hughes, M.; G. Plank, L. L., Computational tools for modeling electrical activity in cardiac tissue, J. Electrocardiol., 36, 69-74 (2003)
[10] Mirams, G. R.; Arthurs, C. J.; Bernabeu, M. O.; Bordas, R.; Cooper, J.; Corrias, A.; Davit, Y.; Dunn, S.-J.; Fletcher, A. G.; Harvey, D. G.; Marsh, M. E.; Osborne, J. M.; Pathmanathan, P.; Pitt-Francis, J.; Southern, J.; Zemzemi, N.; Gavaghan, D. J., Chaste: An open source c++ library for computational physiology and biology, PLoS Comput. Biol., 9, 3, 1-8 (2013)
[11] Rush, S.; Larsen, H., A practical algorithm for solving dynamic membrane equations, IEEE Trans. Biomed. Eng., 389-392 (1978)
[12] Saleheen, H.; Ng, K., New finite difference formulations for general inhomogeneous anisotropic bioelectric problems, IEEE Trans. Biomed. Eng., 44, 9, 800-809 (1997)
[13] Planck, G.; Zhou, L.; Greenstein, J.; Cortassa, S.; Winslow, R.; O’Rourke, B.; Trayanova, N., From mitochondrial ion channels to arrhythmias in the heart: computational techniques to bridge the spatio-temporal scales, Phil. Trans. R. Soc. A, 366, 3381-3409 (2008)
[14] Bayer, J. D.; Roney, C. H.; Pashaei, A.; Jaïs, P.; Vigmond, E. J., Novel radiofrequency ablation strategies for terminating atrial fibrillation in the left atrium: A simulation study, Front. Physiol., 7, 108 (2016)
[15] Labarthe, S.; Bayer, J.; Coudière, Y.; Henry, J.; Cochet, H.; Jaïs, P.; Vigmond, E., A bilayer model of human atria: mathematical background, construction, and assessment, Europace, 16, suppl 4, iv21-iv29 (2014)
[16] Lines, G.; Buist, M.; Grottum, P.; Pullan, A.; Sundnes, J.; Tveito, A., Mathematical models and numerical methods for the forward problem in cardiac electrophysiology, Comput. Vis. Sci., 5, 4, 215-239 (2003) · Zbl 1050.92017
[17] Cherry, E. M.; Greenside, H. S.; Henriquez, C. S., Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method, Chaos, 853 (2003) · Zbl 1080.92513
[18] Pennacchio, M., The mortar finite element method for the cardiac “bidomain” model of extracellular potential, J. Sci. Comput., 20, 2, 191-210 (2004) · Zbl 1045.92010
[19] Franzone, P. C.; Deuflhard, P.; Erdmann, B.; Lang, J.; Pavarino, L. F., Adaptivity in space and time for reaction-diffusion systems in electrocardiology, SIAM J. Sci. Comput., 28, 3, 942-962 (2006) · Zbl 1114.65110
[20] Belhamadia, Y.; Fortin, A.; Bourgault, Y., Towards accurate numerical method for monodomain models using a realistic heart geometry, Math. Biosci., 220, 2, 89-101 (2009) · Zbl 1168.92003
[21] Arthurs, C. J.; Bishop, M. J.; Kay, D., Efficient simulation of cardiac electrical propagation using high-order finite elements ii: Adaptive p-version, J. Comput. Phys., 253, 443-470 (2013) · Zbl 1349.76167
[22] Pezzuto, S.; Hake, J.; Sundnes, J., Space-discretization error analysis and stabilization schemes for conduction velocity in cardiac electrophysiology, Int. J. Numer. Methods Biomed. Eng., e02762 (2016)
[23] Ketcheson, D.; Robinson, A., On the practical importance of the ssp property for rung-kutta time integrators for some common godunov-type schemes, Int. J. Numer. Methods Fluids, 48, 3, 271-303 (2005) · Zbl 1071.65121
[24] Clain, S.; Machado, G.; Nóbrega, J.; Pereira, R., A sixth-order finite volume method for multidomain convection-diffusion problem with discontinuous coefficients, Comput. Methods Appl. Mech. Engrg., 267, 0, 43-64 (2013) · Zbl 1286.80003
[25] Clain, S.; Machado, G., A very high-order finite volume method for the time-dependent convection-diffusion problem with butcher tableau extension, Comput. Math. Appl., 68, 10, 1292-1311 (2014) · Zbl 1367.65123
[26] Beeler, G. W.; Reuter, H., Reconstruction of the action potential of ventricular myocardial fibers, J. Physiol. (Lond), 268, 177-210 (1977)
[27] Ten Tusscher, K. H.; Noble, D.; Noble, P. J.; Panfilov, A. V., A model for human ventricular tissue, Am. J. Physiol. Heart. Circ. Physiol., 286, 4 (2004)
[28] Dunavant, D. A., High degree efficient symmetrical gaussian quadrature rules for the triangle, Internat. J. Numer. Methods Engrg., 21, 6, 1129-1148 (1985) · Zbl 0589.65021
[29] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability preserving high-order time discretization methods, SIAM Rev., 43, 1, 89-112 (2001) · Zbl 0967.65098
[30] Spiteri, R.; Ruuth, S., A new class of optimal high-order strong stability preserving time discretization methods, SIAM J. Numer. Anal., 40, 2, 469-491 (2002) · Zbl 1020.65064
[31] Spiteri, R.; Ruuth, S., Non-linear evolution using optimal fourth-order strong stability preserving runge-kutta methods, Math. Comput. Simulation, 62, 1-2, 125-135 (2003) · Zbl 1015.65031
[32] Ruuth, S.; Spiteri, R., High-order strong stability preserving runge-kutta methods with downwind-biaised spatial discretizations, SIAM J. Numer. Anal., 42, 3, 974-996 (2004) · Zbl 1089.65069
[33] Gottlieb, S., On high order strong stability preserving runge-kutta and multistep time discretizations, J. Sci. Comput., 25, 1-2, 105-128 (2005) · Zbl 1203.65166
[34] Ruuth, S., Global optimization of explicit strong stability preserving runge-kutta methods, Math. Comp., 75, 253, 183-207 (2006) · Zbl 1080.65088
[35] Lenferink, H., Contractivity-preserving implicit linear multistep methods, Math. Comp., 56, 193, 177-199 (1991) · Zbl 0722.65035
[36] Coudière, Y.; Vila, Jean-Paul; Villedieu, P., Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem, ESAIM:M2AN, 33, 3, 493-516 (1999), http://dx.doi.org/10.1051/m2an:1999149 · Zbl 0937.65116
[37] Coudière, Yves; Villedieu, Philippe, Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes, ESAIM:M2AN, 34, 6, 1123-1149 (2000), http://dx.doi.org/10.1051/m2an:2000120 · Zbl 0972.65081
[38] Aliev, R.; Panfilov, A., A simple two-variable model of cardiac excitation, Chaos Solitons Fractals, 3, 7, 293-301 (1996)
[39] Keener, J., Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47, 556-572 (1987) · Zbl 0649.34019
[40] Spiteri, Raymond J.; Dean, Ryan C., Stiffness analysis of cardiac electrophysiological models, Ann. Bio. Eng., 38, 12, 3592-3604 (2010)
[41] Britton, N. F., Reaction-Diffusion Equations and their Applications to Biology (1986), Academic Press · Zbl 0602.92001
[42] Hodgkin, A.; Huxley, A., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 177, 500-544 (1952)
[43] Tusscher, T.; Panfilov, A. V., Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions, Phys. Med. Biol., 51, 6141-6156 (2006)
[44] Bourgault, Y.; Ethier, M.; LeBlanc, V. G., Simulation of electrophysiological waves with an unstructured finite element method, M2AN Math. Model. Numer. Anal., 37, 4, 649-661 (2003) · Zbl 1065.92004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.