Zhou, Lansuo; Luan, Jinfeng; Yin, Xiaojun; Na, Renmandula Inhomogeneous mKdV-Burgers equation under with complete Coriolis force and weak topography. (English) Zbl 07295476 J. Math., Wuhan Univ. 40, No. 4, 473-480 (2020). MSC: 35Q53 76B65 86A10 PDF BibTeX XML Cite \textit{L. Zhou} et al., J. Math., Wuhan Univ. 40, No. 4, 473--480 (2020; Zbl 07295476) Full Text: DOI
Zhang, Weiguo; Sun, Yujiao; Li, Zhengming; Pei, Shengbing; Li, Xiang Bounded traveling wave solutions for MKdV-Burgers equation with the negative dispersive coefficient. (English) Zbl 1351.35164 Discrete Contin. Dyn. Syst., Ser. B 21, No. 8, 2883-2903 (2016). MSC: 35Q51 37C29 37C20 35C07 35Q53 35C08 PDF BibTeX XML Cite \textit{W. Zhang} et al., Discrete Contin. Dyn. Syst., Ser. B 21, No. 8, 2883--2903 (2016; Zbl 1351.35164) Full Text: DOI
Yu, Jianping; Sun, Yongli A computational algebraic approach to new exact solutions of the nonlinear evolution equations. (English) Zbl 1260.35004 Int. J. Nonlinear Sci. 12, No. 3, 283-290 (2011). MSC: 35A25 35C05 35C07 13P10 35Q53 PDF BibTeX XML Cite \textit{J. Yu} and \textit{Y. Sun}, Int. J. Nonlinear Sci. 12, No. 3, 283--290 (2011; Zbl 1260.35004)
Zhang, Hua; Han, LiJia Global well-posedness and inviscid limit for the modified Korteweg-de Vries-Burgers equation. (English) Zbl 1238.35139 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 12, e-Suppl., e1708-e1715 (2009). MSC: 35Q53 35Q35 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{L. Han}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 12, e1708--e1715 (2009; Zbl 1238.35139) Full Text: DOI
Zhu, Yanjuan; Zhang, Chunhua Exact solitary wave solution of two nonlinear evolution equations. (English) Zbl 1068.35151 Ann. Differ. Equations 21, No. 1, 106-110 (2005). MSC: 35Q53 34A34 35Q51 PDF BibTeX XML Cite \textit{Y. Zhu} and \textit{C. Zhang}, Ann. Differ. Equations 21, No. 1, 106--110 (2005; Zbl 1068.35151)
Li, Xiangzheng; Wang, Yueming; Li, Xiaoyan; Li, Baoan; Wang, Mingliang A solving method for compound KdV-Burgers equation. (Chinese. English summary) Zbl 1051.35071 J. Henan Univ. Sci. Technol., Nat. Sci. 24, No. 4, 104-107 (2003). MSC: 35Q53 37K40 35C05 PDF BibTeX XML Cite \textit{X. Li} et al., J. Henan Univ. Sci. Technol., Nat. Sci. 24, No. 4, 104--107 (2003; Zbl 1051.35071)
Tian, Lixin; Deng, Xiaoyan Neumann boundary control of MKdV-Burgers equation. (Chinese. English summary) Zbl 1020.35098 J. Jiangsu Univ., Nat. Sci. 24, No. 1, 23-25, 29 (2003). MSC: 35Q53 35B37 35B35 PDF BibTeX XML Cite \textit{L. Tian} and \textit{X. Deng}, J. Jiangsu Univ., Nat. Sci. 24, No. 1, 23--25, 29 (2003; Zbl 1020.35098)
Feng, X. Exploratory approach to explicit solution of nonlinear evolution equations. (English) Zbl 0962.35033 Int. J. Theor. Phys. 39, No. 1, 207-222 (2000). MSC: 35C05 35G20 PDF BibTeX XML Cite \textit{X. Feng}, Int. J. Theor. Phys. 39, No. 1, 207--222 (2000; Zbl 0962.35033) Full Text: DOI
Liu, Qiming The Painlevé property of the time-dependent KdV-MKdV-Burgers equation. (Chinese. English summary) Zbl 0709.35092 Acta Math. Appl. Sin. 13, No. 3, 267-271 (1990). MSC: 35Q53 PDF BibTeX XML Cite \textit{Q. Liu}, Acta Math. Appl. Sin. 13, No. 3, 267--271 (1990; Zbl 0709.35092)