Liu, Xia; Zhao, Kun; Wang, Junli; Chen, Huatao Stability analysis of a SEIQRS epidemic model on the finite scale-free network. (English) Zbl 07507538 Fractals 30, No. 2, Article ID 2240054, 13 p. (2022). MSC: 92D30 34D23 PDF BibTeX XML Cite \textit{X. Liu} et al., Fractals 30, No. 2, Article ID 2240054, 13 p. (2022; Zbl 07507538) Full Text: DOI OpenURL
Makhlouf, Abdellatif Ben On the stability of Caputo fractional-order systems: a survey. (English) Zbl 07452116 Naifar, Omar (ed.) et al., Fractional order systems – control theory and applications. Fundamentals and applications. Cham: Springer. Stud. Syst. Decis. Control 364, 1-8 (2022). MSC: 34-02 34A08 34A34 34D20 PDF BibTeX XML Cite \textit{A. B. Makhlouf}, Stud. Syst. Decis. Control 364, 1--8 (2022; Zbl 07452116) Full Text: DOI OpenURL
Wang, Chen; Zhang, Hai; Zhang, Hongmei; Zhang, Weiwei Globally projective synchronization for Caputo fractional quaternion-valued neural networks with discrete and distributed delays. (English) Zbl 07533525 AIMS Math. 6, No. 12, 14000-14012 (2021). MSC: 26A33 92B20 94B50 PDF BibTeX XML Cite \textit{C. Wang} et al., AIMS Math. 6, No. 12, 14000--14012 (2021; Zbl 07533525) Full Text: DOI OpenURL
Zaghdani, Abdelhamid Mathematical study of a modifed SEIR model for the novel SARS-CoV-2 coronavirus. (English) Zbl 07488854 Nonlinear Dyn. Syst. Theory 21, No. 3, 326-336 (2021). MSC: 34D23 35N25 37B25 49K40 60H10 65C30 91B70 PDF BibTeX XML Cite \textit{A. Zaghdani}, Nonlinear Dyn. Syst. Theory 21, No. 3, 326--336 (2021; Zbl 07488854) Full Text: Link OpenURL
Wang, Jun-Wei A unified Lyapunov-based design for a dynamic compensator of linear parabolic MIMO PDEs. (English) Zbl 1480.93349 Int. J. Control 94, No. 7, 1804-1811 (2021). MSC: 93D23 93C20 93C35 93C05 93B52 PDF BibTeX XML Cite \textit{J.-W. Wang}, Int. J. Control 94, No. 7, 1804--1811 (2021; Zbl 1480.93349) Full Text: DOI OpenURL
Ogundare, Babatunde Sunday; Akingbade, James Boundedness and stability properties of solutions of mathematical model of measles. (English) Zbl 1482.92107 Tamkang J. Math. 52, No. 1, 91-112 (2021). Reviewer: Xinyu Song (Xinyang) MSC: 92D30 34D23 PDF BibTeX XML Cite \textit{B. S. Ogundare} and \textit{J. Akingbade}, Tamkang J. Math. 52, No. 1, 91--112 (2021; Zbl 1482.92107) Full Text: DOI OpenURL
Martínez-Fuentes, Oscar; Fernández-Anaya, Guillermo; Muñoz-Vázquez, Aldo Jonathan Lyapunov functions for fractional-order nonlinear systems with Atangana-Baleanu derivative of Riemann-Liouville type. (English) Zbl 07441952 Math. Methods Appl. Sci. 44, No. 18, 14206-14216 (2021). MSC: 34A08 26A33 34D20 PDF BibTeX XML Cite \textit{O. Martínez-Fuentes} et al., Math. Methods Appl. Sci. 44, No. 18, 14206--14216 (2021; Zbl 07441952) Full Text: DOI OpenURL
Slyn’ko, V. I.; Tunç, Cemil; Bivziuk, V. O. Robust stabilization of non-linear non-autonomous control systems with periodic linear approximation. (English) Zbl 1475.93091 IMA J. Math. Control Inf. 38, No. 1, 125-142 (2021). MSC: 93D21 93C85 93C10 PDF BibTeX XML Cite \textit{V. I. Slyn'ko} et al., IMA J. Math. Control Inf. 38, No. 1, 125--142 (2021; Zbl 1475.93091) Full Text: DOI OpenURL
Yegorov, Ivan; Dower, Peter M.; Grüne, Lars Synthesis of control Lyapunov functions and stabilizing feedback strategies using exit-time optimal control. II: Numerical approach. (English) Zbl 1472.93076 Optim. Control Appl. Methods 42, No. 5, 1410-1440 (2021). MSC: 93C15 49K15 49L12 93D15 93D30 PDF BibTeX XML Cite \textit{I. Yegorov} et al., Optim. Control Appl. Methods 42, No. 5, 1410--1440 (2021; Zbl 1472.93076) Full Text: DOI OpenURL
Sari, Murat; Tahir, Shko Ali Synchronization of the nonlinear advection-diffusion-reaction processes. (English) Zbl 1478.35127 Math. Methods Appl. Sci. 44, No. 15, 11970-11984 (2021). MSC: 35K51 35K57 35K58 35A35 65D07 PDF BibTeX XML Cite \textit{M. Sari} and \textit{S. A. Tahir}, Math. Methods Appl. Sci. 44, No. 15, 11970--11984 (2021; Zbl 1478.35127) Full Text: DOI OpenURL
Korobeinikov, Andrei; Shaikhet, Leonid Global asymptotic properties of a stochastic model of population growth. (English) Zbl 1472.92182 Appl. Math. Lett. 121, Article ID 107429, 6 p. (2021). Reviewer: Yong Ye (Shenzhen) MSC: 92D25 93E15 PDF BibTeX XML Cite \textit{A. Korobeinikov} and \textit{L. Shaikhet}, Appl. Math. Lett. 121, Article ID 107429, 6 p. (2021; Zbl 1472.92182) Full Text: DOI arXiv OpenURL
Glushchenko, A. I.; Petrov, V. A.; Lastochkin, K. A. Adaptive control system with a variable adjustment law gain based on the recursive least squares method. (English. Russian original) Zbl 1466.93087 Autom. Remote Control 82, No. 4, 619-633 (2021); translation from Avtom. Telemekh. 2021, No. 4, 77-95 (2021). MSC: 93C40 PDF BibTeX XML Cite \textit{A. I. Glushchenko} et al., Autom. Remote Control 82, No. 4, 619--633 (2021; Zbl 1466.93087); translation from Avtom. Telemekh. 2021, No. 4, 77--95 (2021) Full Text: DOI OpenURL
Schaum, Alexander Dissipativity in control engineering. Applications in finite- and infinite-dimensional systems. (English) Zbl 1471.93006 Berlin: De Gruyter (ISBN 978-3-11-067793-5/hbk; 978-3-11-067794-2/ebook). xiv, 227 p. (2021). Reviewer: Vyacheslav I. Maksimov (Yekaterinburg) MSC: 93-02 93C35 93C15 93C20 93D05 PDF BibTeX XML Cite \textit{A. Schaum}, Dissipativity in control engineering. Applications in finite- and infinite-dimensional systems. Berlin: De Gruyter (2021; Zbl 1471.93006) Full Text: DOI OpenURL
Ben Aissa, Akram; Abdelli, Mama; Duca, Alessandro Well-posedness and exponential decay for the Euler-Bernoulli beam conveying fluid equation with non-constant velocity and dynamical boundary conditions. (English) Zbl 1462.35188 Z. Angew. Math. Phys. 72, No. 2, Paper No. 49, 15 p. (2021). MSC: 35L35 35L15 35B40 35Q35 93D15 PDF BibTeX XML Cite \textit{A. Ben Aissa} et al., Z. Angew. Math. Phys. 72, No. 2, Paper No. 49, 15 p. (2021; Zbl 1462.35188) Full Text: DOI arXiv OpenURL
Khemmoudj, Ammar Stabilisation of a viscoelastic beam conveying fluid. (English) Zbl 1461.93435 Int. J. Control 94, No. 1, 235-247 (2021). MSC: 93D23 93C20 74H45 76A10 PDF BibTeX XML Cite \textit{A. Khemmoudj}, Int. J. Control 94, No. 1, 235--247 (2021; Zbl 1461.93435) Full Text: DOI OpenURL
Abbad, Abir; Abdelmalek, Salem; Bendoukha, Samir; Gambino, Gaetana A generalized Degn-Harrison reaction-diffusion system: asymptotic stability and non-existence results. (English) Zbl 1454.35213 Nonlinear Anal., Real World Appl. 57, Article ID 103191, 28 p. (2021). MSC: 35K57 35K51 35B40 92D25 PDF BibTeX XML Cite \textit{A. Abbad} et al., Nonlinear Anal., Real World Appl. 57, Article ID 103191, 28 p. (2021; Zbl 1454.35213) Full Text: DOI OpenURL
Ren, Jing; Zhai, Chengbo Stability analysis for generalized fractional differential systems and applications. (English) Zbl 07505036 Chaos Solitons Fractals 139, Article ID 110009, 13 p. (2020). MSC: 26A33 34A34 34B15 PDF BibTeX XML Cite \textit{J. Ren} and \textit{C. Zhai}, Chaos Solitons Fractals 139, Article ID 110009, 13 p. (2020; Zbl 07505036) Full Text: DOI OpenURL
Huong, Dinh Cong; Huynh, Van Thanh; Trinh, Hieu On static and dynamic triggered mechanisms for event-triggered control of uncertain systems. (English) Zbl 1485.93347 Circuits Syst. Signal Process. 39, No. 10, 5020-5038 (2020). MSC: 93C65 93D15 93D20 93C41 93C05 PDF BibTeX XML Cite \textit{D. C. Huong} et al., Circuits Syst. Signal Process. 39, No. 10, 5020--5038 (2020; Zbl 1485.93347) Full Text: DOI OpenURL
Farooq, Aamir; Samar, Mahvish; Li, Hanyu; Mu, Chunlai Sensitivity analysis for the block Cholesky downdating problem. (English) Zbl 1483.65063 Int. J. Comput. Math. 97, No. 6, 1234-1253 (2020). MSC: 65F35 65F05 15A23 15A12 PDF BibTeX XML Cite \textit{A. Farooq} et al., Int. J. Comput. Math. 97, No. 6, 1234--1253 (2020; Zbl 1483.65063) Full Text: DOI OpenURL
Hu, D. L.; Chen, W.; Sun, H. G. Power-law stability of Hausdorff derivative nonlinear dynamical systems. (English) Zbl 1483.93467 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 51, No. 4, 601-607 (2020). MSC: 93D05 93C15 26A33 93C10 PDF BibTeX XML Cite \textit{D. L. Hu} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 51, No. 4, 601--607 (2020; Zbl 1483.93467) Full Text: DOI OpenURL
Zhao, Zhijia; Ahn, Choon Ki Boundary antisaturation vibration control design for a flexible Timoshenko robotic manipulator. (English) Zbl 1447.93242 Int. J. Robust Nonlinear Control 30, No. 3, 1098-1114 (2020). MSC: 93C85 93D23 70J25 PDF BibTeX XML Cite \textit{Z. Zhao} and \textit{C. K. Ahn}, Int. J. Robust Nonlinear Control 30, No. 3, 1098--1114 (2020; Zbl 1447.93242) Full Text: DOI OpenURL
Platonov, A. V. Stability analysis for nonstationary switched systems. (English. Russian original) Zbl 1447.93288 Russ. Math. 64, No. 2, 56-65 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 2, 63-73 (2020). MSC: 93D20 93C30 PDF BibTeX XML Cite \textit{A. V. Platonov}, Russ. Math. 64, No. 2, 56--65 (2020; Zbl 1447.93288); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 2, 63--73 (2020) Full Text: DOI OpenURL
You, Xingxing; Song, Qiankun; Zhao, Zhenjiang Global Mittag-Leffler stability and synchronization of discrete-time fractional-order complex-valued neural networks with time delay. (English) Zbl 1444.93025 Neural Netw. 122, 382-394 (2020). MSC: 93D05 93C55 93C43 26A33 93B70 PDF BibTeX XML Cite \textit{X. You} et al., Neural Netw. 122, 382--394 (2020; Zbl 1444.93025) Full Text: DOI OpenURL
Taneco-Hernández, Marco Antonio; Vargas-De-León, Cruz Stability and Lyapunov functions for systems with Atangana-Baleanu Caputo derivative: an HIV/AIDS epidemic model. (English) Zbl 1434.92020 Chaos Solitons Fractals 132, Article ID 109586, 9 p. (2020). MSC: 92C60 92D30 34D05 34A08 26D10 PDF BibTeX XML Cite \textit{M. A. Taneco-Hernández} and \textit{C. Vargas-De-León}, Chaos Solitons Fractals 132, Article ID 109586, 9 p. (2020; Zbl 1434.92020) Full Text: DOI OpenURL
Bhaskar, T. Gnana; Slyn’ko, V. I. Stability of invariant manifolds of certain classes of set differential equations. (English) Zbl 1440.34004 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 1, 1-17 (2020). MSC: 34A06 34C45 34D20 PDF BibTeX XML Cite \textit{T. G. Bhaskar} and \textit{V. I. Slyn'ko}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 1, 1--17 (2020; Zbl 1440.34004) Full Text: Link Link OpenURL
Brogliato, Bernard; Lozano, Rogelio; Maschke, Bernhard; Egeland, Olav Dissipative systems analysis and control. Theory and applications. 3rd updated edition. (English) Zbl 1432.93001 Communications and Control Engineering. Cham: Springer (ISBN 978-3-030-19419-2/hbk; 978-3-030-19420-8/ebook). xviii, 711 p. (2020). Reviewer: Anatoly Martynyuk (Kyïv) MSC: 93-02 93D05 93D25 93D20 93C28 93C40 93B52 93C55 PDF BibTeX XML Cite \textit{B. Brogliato} et al., Dissipative systems analysis and control. Theory and applications. 3rd updated edition. Cham: Springer (2020; Zbl 1432.93001) Full Text: DOI Link OpenURL
Hu, D. L.; Chen, W.; Liang, Y. J. Inverse Mittag-Leffler stability of structural derivative nonlinear dynamical systems. (English) Zbl 1448.34113 Chaos Solitons Fractals 123, 304-308 (2019). MSC: 34D08 37C75 26A24 PDF BibTeX XML Cite \textit{D. L. Hu} et al., Chaos Solitons Fractals 123, 304--308 (2019; Zbl 1448.34113) Full Text: DOI OpenURL
Antonovskaya, O. G. Application of quadratic Lyapunov functions to investigation of stability of systems with delay. (English. Russian original) Zbl 1464.34093 Russ. Math. 63, No. 10, 13-17 (2019); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 10, 15-20 (2019). MSC: 34K20 PDF BibTeX XML Cite \textit{O. G. Antonovskaya}, Russ. Math. 63, No. 10, 13--17 (2019; Zbl 1464.34093); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 10, 15--20 (2019) Full Text: DOI OpenURL
Kravchuk, S. V.; Slyn’ko, V. I. Robust stability of linear periodic systems. (English. Russian original) Zbl 1447.93273 Autom. Remote Control 80, No. 12, 2108-2125 (2019); translation from Avtom. Telemekh. 2019, No. 12, 24-46 (2019). MSC: 93D09 93C05 PDF BibTeX XML Cite \textit{S. V. Kravchuk} and \textit{V. I. Slyn'ko}, Autom. Remote Control 80, No. 12, 2108--2125 (2019; Zbl 1447.93273); translation from Avtom. Telemekh. 2019, No. 12, 24--46 (2019) Full Text: DOI OpenURL
Mahrouf, Marouane; Hattaf, Khalid; Yousfi, Noura Stability analysis of a stochastic viral infection model with general infection rate and general perturbation terms. (English) Zbl 1443.92180 Discontin. Nonlinearity Complex. 8, No. 3, 313-323 (2019). MSC: 92D30 60H10 93E15 34D20 PDF BibTeX XML Cite \textit{M. Mahrouf} et al., Discontin. Nonlinearity Complex. 8, No. 3, 313--323 (2019; Zbl 1443.92180) Full Text: DOI OpenURL
Zhang, Yuanyuan; Liu, Jinkun; He, Wei Adaptive fault-tolerant control for a nonlinear flexible aircraft wing system. (English) Zbl 1432.93184 Asian J. Control 21, No. 5, 2340-2351 (2019). MSC: 93C40 93B35 93C10 93C15 93C20 93C95 70L05 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Asian J. Control 21, No. 5, 2340--2351 (2019; Zbl 1432.93184) Full Text: DOI OpenURL
Andreev, A. S.; Sedova, N. O. The method of Lyapunov-Razumikhin functions in stability analysis of systems with delay. (English. Russian original) Zbl 1425.93214 Autom. Remote Control 80, No. 7, 1185-1229 (2019); translation from Avtom. Telemekh. 2019, No. 7, 3-60 (2019). MSC: 93D05 93C23 PDF BibTeX XML Cite \textit{A. S. Andreev} and \textit{N. O. Sedova}, Autom. Remote Control 80, No. 7, 1185--1229 (2019; Zbl 1425.93214); translation from Avtom. Telemekh. 2019, No. 7, 3--60 (2019) Full Text: DOI OpenURL
Dang, Quang A.; Hoang, Manh Tuan Complete global stability of a metapopulation model and its dynamically consistent discrete models. (English) Zbl 1419.37077 Qual. Theory Dyn. Syst. 18, No. 2, 461-475 (2019). MSC: 37N25 37C75 37M05 65L12 39A30 PDF BibTeX XML Cite \textit{Q. A. Dang} and \textit{M. T. Hoang}, Qual. Theory Dyn. Syst. 18, No. 2, 461--475 (2019; Zbl 1419.37077) Full Text: DOI OpenURL
Pavlović, Ivan R.; Pavlović, Ratko; Janevski, Goran Dynamic stability and instability of nanobeams based on the higher-order nonlocal strain gradient theory. (English) Zbl 1458.74065 Q. J. Mech. Appl. Math. 72, No. 2, 157-178 (2019). MSC: 74H55 74H50 74K10 74M25 74S60 PDF BibTeX XML Cite \textit{I. R. Pavlović} et al., Q. J. Mech. Appl. Math. 72, No. 2, 157--178 (2019; Zbl 1458.74065) Full Text: DOI OpenURL
Xing, Xueyan; Liu, Jinkun LMI-based boundary and distributed control design for a flexible string subject to disturbance. (English) Zbl 1421.93121 Int. J. Control 92, No. 8, 1959-1969 (2019). MSC: 93D20 93C20 93B51 PDF BibTeX XML Cite \textit{X. Xing} and \textit{J. Liu}, Int. J. Control 92, No. 8, 1959--1969 (2019; Zbl 1421.93121) Full Text: DOI OpenURL
Shaikhet, Leonid; Elena, Santiago F.; Korobeinikov, Andrei Stability of a stochastically perturbed model of intracellular single-stranded RNA virus replication. (English) Zbl 1418.92081 J. Biol. Syst. 27, No. 1, 69-82 (2019). MSC: 92D10 92D15 93E15 60H10 PDF BibTeX XML Cite \textit{L. Shaikhet} et al., J. Biol. Syst. 27, No. 1, 69--82 (2019; Zbl 1418.92081) Full Text: DOI arXiv OpenURL
Slyn’ko, V. I. Conditions of stability for periodic linear systems of ordinary differential equations. (English. Russian original) Zbl 1422.34087 St. Petersbg. Math. J. 30, No. 5, 885-900 (2019); translation from Algebra Anal. 30, No. 5, 169-191 (2018). MSC: 34A30 34D20 37C60 34A37 PDF BibTeX XML Cite \textit{V. I. Slyn'ko}, St. Petersbg. Math. J. 30, No. 5, 885--900 (2019; Zbl 1422.34087); translation from Algebra Anal. 30, No. 5, 169--191 (2018) Full Text: DOI OpenURL
Liu, Xiang; Jia, Baoguo; Erbe, Lynn; Peterson, Allan Stability analysis for a class of nabla \((q,h)\)-fractional difference equations. (English) Zbl 1410.39030 Turk. J. Math. 43, No. 2, 664-687 (2019). MSC: 39A30 39A12 39A70 26A33 PDF BibTeX XML Cite \textit{X. Liu} et al., Turk. J. Math. 43, No. 2, 664--687 (2019; Zbl 1410.39030) Full Text: DOI OpenURL
Slyn’ko, V. I.; Tunç, Osman; Bivziuk, V. O. Application of commutator calculus to the study of linear impulsive systems. (English) Zbl 1408.93114 Syst. Control Lett. 123, 160-165 (2019). MSC: 93D20 93C15 93C25 34A37 PDF BibTeX XML Cite \textit{V. I. Slyn'ko} et al., Syst. Control Lett. 123, 160--165 (2019; Zbl 1408.93114) Full Text: DOI OpenURL
Slyn’ko, V. I.; Tunç, Cemil Global asymptotic stability of nonlinear periodic impulsive equations. (English) Zbl 1463.34250 Miskolc Math. Notes 19, No. 1, 595-610 (2018). MSC: 34G10 34D23 34A37 34C05 PDF BibTeX XML Cite \textit{V. I. Slyn'ko} and \textit{C. Tunç}, Miskolc Math. Notes 19, No. 1, 595--610 (2018; Zbl 1463.34250) Full Text: DOI OpenURL
Parsamanesh, Mahmood; Erfanian, Majid Global dynamics of an epidemic model with standard incidence rate and vaccination strategy. (English) Zbl 1442.92178 Chaos Solitons Fractals 117, 192-199 (2018). MSC: 92D30 34D05 34D23 34C60 PDF BibTeX XML Cite \textit{M. Parsamanesh} and \textit{M. Erfanian}, Chaos Solitons Fractals 117, 192--199 (2018; Zbl 1442.92178) Full Text: DOI OpenURL
Leonov, G. A. Lyapunov functions in the global analysis of chaotic systems. (English. Russian original) Zbl 1420.37022 Ukr. Math. J. 70, No. 1, 42-66 (2018); translation from Ukr. Mat. Zh. 70, No. 1, (2018). MSC: 37D45 34D08 93D30 37C75 37C29 PDF BibTeX XML Cite \textit{G. A. Leonov}, Ukr. Math. J. 70, No. 1, 42--66 (2018; Zbl 1420.37022); translation from Ukr. Mat. Zh. 70, No. 1, (2018) Full Text: DOI OpenURL
Martynyuk, A. A. On the stability of solutions of fractional-like equations of perturbed motion. (Russian. English summary) Zbl 1413.70015 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2018, No. 6, 9-16 (2018). MSC: 70K20 34D08 93D30 PDF BibTeX XML Cite \textit{A. A. Martynyuk}, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2018, No. 6, 9--16 (2018; Zbl 1413.70015) Full Text: DOI OpenURL
Mohamed, Mokhtar; Yan, Xing-Gang; Spurgeon, Sarah K.; Mao, Zehui Robust variable structure observer design for nonlinear large-scale systems with nonlinear interconnections. (English) Zbl 1402.93082 IMA J. Math. Control Inf. 35, No. 2, 535-553 (2018). MSC: 93B12 93B35 93A15 93B27 93C10 93B07 93B17 93C41 PDF BibTeX XML Cite \textit{M. Mohamed} et al., IMA J. Math. Control Inf. 35, No. 2, 535--553 (2018; Zbl 1402.93082) Full Text: DOI OpenURL
Rionero, Salvatore; Vitiello, Maria On the dynamics of the Lengyel-Epstein model with forcing intensity. (English) Zbl 1446.92240 Ric. Mat. 67, No. 2, 739-754 (2018). MSC: 92E20 35K57 35B35 PDF BibTeX XML Cite \textit{S. Rionero} and \textit{M. Vitiello}, Ric. Mat. 67, No. 2, 739--754 (2018; Zbl 1446.92240) Full Text: DOI OpenURL
Li, Shengquan; Li, Juan; Shi, Yanqiu An RBFNN-based direct inverse controller for PMSM with disturbances. (English) Zbl 1398.93180 Complexity 2018, Article ID 4034320, 13 p. (2018). MSC: 93C41 92B20 93D05 PDF BibTeX XML Cite \textit{S. Li} et al., Complexity 2018, Article ID 4034320, 13 p. (2018; Zbl 1398.93180) Full Text: DOI OpenURL
Thuan, Mai Viet; Huong, Dinh Cong New results on stabilization of fractional-order nonlinear systems via an LMI approach. (English) Zbl 1397.93187 Asian J. Control 20, No. 4, 1541-1550 (2018). MSC: 93D21 93D05 93C10 93B51 93B52 PDF BibTeX XML Cite \textit{M. V. Thuan} and \textit{D. C. Huong}, Asian J. Control 20, No. 4, 1541--1550 (2018; Zbl 1397.93187) Full Text: DOI OpenURL
Muñoz-Vázquez, Aldo-Jonathan; Parra-Vega, Vicente; Sánchez-Orta, Anand; Romero-Galván, Gerardo Quadratic Lyapunov functions for stability analysis in fractional-order systems with not necessarily differentiable solutions. (English) Zbl 1417.93282 Syst. Control Lett. 116, 15-19 (2018). MSC: 93D30 93C15 26A33 93B12 93C10 PDF BibTeX XML Cite \textit{A.-J. Muñoz-Vázquez} et al., Syst. Control Lett. 116, 15--19 (2018; Zbl 1417.93282) Full Text: DOI OpenURL
Taghavian, Hamed; Tavazoei, Mohammad Saleh Stability analysis of distributed-order nonlinear dynamic systems. (English) Zbl 1385.93066 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 49, No. 3, 523-536 (2018). MSC: 93D20 93D05 93C10 93C15 34A08 PDF BibTeX XML Cite \textit{H. Taghavian} and \textit{M. S. Tavazoei}, Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 49, No. 3, 523--536 (2018; Zbl 1385.93066) Full Text: DOI OpenURL
Fernández-Anaya, Guillermo; Nava-Antonio, G.; Jamous-Galante, J.; Muñoz-Vega, Rodrigo; Hernández-Martínez, Eduardo G. Asymptotic stability of distributed order nonlinear dynamical systems. (English) Zbl 07257666 Commun. Nonlinear Sci. Numer. Simul. 48, 541-549 (2017). MSC: 26-XX 34-XX PDF BibTeX XML Cite \textit{G. Fernández-Anaya} et al., Commun. Nonlinear Sci. Numer. Simul. 48, 541--549 (2017; Zbl 07257666) Full Text: DOI OpenURL
Fernandez-Anaya, Guillermo; Nava-Antonio, G.; Jamous-Galante, Jack; Muñoz-Vega, Rodrigo; Hernández-Martínez, Eduardo Gamaliel Lyapunov functions for a class of nonlinear systems using Caputo derivative. (English) Zbl 1468.34008 Commun. Nonlinear Sci. Numer. Simul. 43, 91-99 (2017); corrigendum ibid. 56, 596-597 (2018). MSC: 34A08 34D20 PDF BibTeX XML Cite \textit{G. Fernandez-Anaya} et al., Commun. Nonlinear Sci. Numer. Simul. 43, 91--99 (2017; Zbl 1468.34008) Full Text: DOI OpenURL
Wu, Guo-Cheng; Baleanu, Dumitru; Luo, Wei-Hua Lyapunov functions for Riemann-Liouville-like fractional difference equations. (English) Zbl 1426.39010 Appl. Math. Comput. 314, 228-236 (2017). MSC: 39A13 34A08 PDF BibTeX XML Cite \textit{G.-C. Wu} et al., Appl. Math. Comput. 314, 228--236 (2017; Zbl 1426.39010) Full Text: DOI OpenURL
Liu, Yu; Zhao, Zhijia; Wu, Yilin Adaptive backstepping boundary control of axially moving system with high ac-/deceleration. (Chinese. English summary) Zbl 1399.93128 Control Decis. 32, No. 7, 1173-1180 (2017). MSC: 93C40 PDF BibTeX XML Cite \textit{Y. Liu} et al., Control Decis. 32, No. 7, 1173--1180 (2017; Zbl 1399.93128) Full Text: DOI OpenURL
Dai, Hao; Chen, Weisheng New power law inequalities for fractional derivative and stability analysis of fractional order systems. (English) Zbl 1384.34011 Nonlinear Dyn. 87, No. 3, 1531-1542 (2017). MSC: 34A08 34D20 34D05 PDF BibTeX XML Cite \textit{H. Dai} and \textit{W. Chen}, Nonlinear Dyn. 87, No. 3, 1531--1542 (2017; Zbl 1384.34011) Full Text: DOI OpenURL
Xu, Lanxi; Lan, Wanli On the nonlinear stability of plane parallel shear flow in a coplanar magnetic field. (English) Zbl 1386.76084 J. Math. Fluid Mech. 19, No. 4, 613-622 (2017). MSC: 76E25 76E05 35B35 PDF BibTeX XML Cite \textit{L. Xu} and \textit{W. Lan}, J. Math. Fluid Mech. 19, No. 4, 613--622 (2017; Zbl 1386.76084) Full Text: DOI OpenURL
Baleanu, Dumitru; Wu, Guo-Cheng; Zeng, Sheng-Da Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations. (English) Zbl 1374.34306 Chaos Solitons Fractals 102, 99-105 (2017). MSC: 34K37 34K23 34D05 34K60 37M05 PDF BibTeX XML Cite \textit{D. Baleanu} et al., Chaos Solitons Fractals 102, 99--105 (2017; Zbl 1374.34306) Full Text: DOI OpenURL
Liu, Song; Wu, Xiang; Zhang, Yan-Jie; Yang, Ran Asymptotical stability of Riemann-Liouville fractional neutral systems. (English) Zbl 1375.34116 Appl. Math. Lett. 69, 168-173 (2017). MSC: 34K37 34K40 34K20 PDF BibTeX XML Cite \textit{S. Liu} et al., Appl. Math. Lett. 69, 168--173 (2017; Zbl 1375.34116) Full Text: DOI OpenURL
Aleksandrov, A. Yu.; Aleksandrova, E. B.; Platonov, A. V.; Chen, Y. Estimate of the attraction domain for a class of nonlinear switched systems. (English. Russian original) Zbl 1373.34029 Russ. Math. 61, No. 8, 1-12 (2017); translation from Izv. Vyssh. Uchebn. Zaved., Mat. No. 8, 3-16 (2017). MSC: 34A36 34A38 34A40 34D20 34D05 PDF BibTeX XML Cite \textit{A. Yu. Aleksandrov} et al., Russ. Math. 61, No. 8, 1--12 (2017; Zbl 1373.34029); translation from Izv. Vyssh. Uchebn. Zaved., Mat. No. 8, 3--16 (2017) Full Text: DOI OpenURL
Xu, Lanxi; Lan, Wanli A new approach to the nonlinear stability of viscous flow in a coplanar magnetic field. (English) Zbl 1368.76024 Math. Methods Appl. Sci. 40, No. 10, 3415-3423 (2017). MSC: 76E25 76E05 76W05 35Q35 35B35 PDF BibTeX XML Cite \textit{L. Xu} and \textit{W. Lan}, Math. Methods Appl. Sci. 40, No. 10, 3415--3423 (2017; Zbl 1368.76024) Full Text: DOI OpenURL
Zhao, Zhi-Jia; Liu, Yu; Guo, Fang; Fu, Yun Modelling and control for a class of axially moving nonuniform system. (English) Zbl 1358.93096 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 48, No. 4, 849-861 (2017). MSC: 93C20 74H45 93B52 35Q93 93D05 PDF BibTeX XML Cite \textit{Z.-J. Zhao} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 48, No. 4, 849--861 (2017; Zbl 1358.93096) Full Text: DOI OpenURL
Pogromsky, A. Yu.; Matveev, A. S. Stability analysis of PE systems via Steklov’s averaging technique. (English) Zbl 1358.93143 Int. J. Adapt. Control Signal Process. 31, No. 1, 138-144 (2017). MSC: 93D20 93D05 93C15 PDF BibTeX XML Cite \textit{A. Yu. Pogromsky} and \textit{A. S. Matveev}, Int. J. Adapt. Control Signal Process. 31, No. 1, 138--144 (2017; Zbl 1358.93143) Full Text: DOI OpenURL
Li, Yan; Chen, YangQuan; Podlubny, Igor Reply to “Comments on ‘Mittag-Leffler stability of fractional order nonlinear dynamic systems’ [Automatica 45(8) (2009) 1965-1969]”. (English) Zbl 1351.93074 Automatica 75, 330 (2017). MSC: 93C30 34A08 93C10 93D05 PDF BibTeX XML Cite \textit{Y. Li} et al., Automatica 75, 330 (2017; Zbl 1351.93074) Full Text: DOI OpenURL
Naifar, Omar; Makhlouf, Abdellatif Ben; Hammami, Mohamed Ali Comments on “Mittag-Leffler stability of fractional order nonlinear dynamic systems [automatica 45(8) (2009) 1965-1969]”. (English) Zbl 1351.93076 Automatica 75, 329 (2017). MSC: 93C30 34A08 93C10 93D05 PDF BibTeX XML Cite \textit{O. Naifar} et al., Automatica 75, 329 (2017; Zbl 1351.93076) Full Text: DOI OpenURL
Wang, Qin; Hua, Qingguang; Chen, Zuwen Globally exponentially stable triangle formation control of multi-robot systems. (English) Zbl 1414.93021 Jia, Yingmin (ed.) et al., Proceedings of 2016 Chinese intelligent systems conference, Xiamen, China. Volume II. Singapore: Springer. Lect. Notes Electr. Eng. 405, 361-370 (2016). MSC: 93A14 93C85 93D20 93C15 PDF BibTeX XML Cite \textit{Q. Wang} et al., Lect. Notes Electr. Eng. 405, 361--370 (2016; Zbl 1414.93021) Full Text: DOI OpenURL
Slyn’ko, V. I.; Kravchuk, S. V. On the stability of linear impulsive systems with switching. (Ukrainian. English summary) Zbl 1389.34178 Zb. Pr. Inst. Mat. NAN Ukr. 13, No. 3, 205-217 (2016). MSC: 34D20 34A30 34A37 34A36 PDF BibTeX XML Cite \textit{V. I. Slyn'ko} and \textit{S. V. Kravchuk}, Zb. Pr. Inst. Mat. NAN Ukr. 13, No. 3, 205--217 (2016; Zbl 1389.34178) OpenURL
Pan, Chuan; Hou, Chang; Wu, Yilin Output feedback control for two-dimensional vibration of a flexible marine riser. (Chinese. English summary) Zbl 1374.93156 Acta Sci. Nat. Univ. Sunyatseni 55, No. 4, 18-25 (2016). MSC: 93B52 74H45 93C20 93C15 93C95 93D05 PDF BibTeX XML Cite \textit{C. Pan} et al., Acta Sci. Nat. Univ. Sunyatseni 55, No. 4, 18--25 (2016; Zbl 1374.93156) Full Text: DOI OpenURL
Liu, Song; Wu, Xiang; Zhou, Xian-Feng; Jiang, Wei Asymptotical stability of Riemann-Liouville fractional nonlinear systems. (English) Zbl 1349.34013 Nonlinear Dyn. 86, No. 1, 65-71 (2016). MSC: 34A08 34D05 34D08 PDF BibTeX XML Cite \textit{S. Liu} et al., Nonlinear Dyn. 86, No. 1, 65--71 (2016; Zbl 1349.34013) Full Text: DOI OpenURL
Liu, Song; Zhou, Xian-Feng; Li, Xiaoyan; Jiang, Wei Stability of fractional nonlinear singular systems and its applications in synchronization of complex dynamical networks. (English) Zbl 1355.34083 Nonlinear Dyn. 84, No. 4, 2377-2385 (2016). MSC: 34D06 93C10 93D05 34B45 PDF BibTeX XML Cite \textit{S. Liu} et al., Nonlinear Dyn. 84, No. 4, 2377--2385 (2016; Zbl 1355.34083) Full Text: DOI OpenURL
Shen, Shiyun; Zhou, Ping Synchronization of the fractional-order brushless DC motors chaotic system. (English) Zbl 1346.93197 J. Control Sci. Eng. 2016, Article ID 1236210, 5 p. (2016). MSC: 93C15 93C10 34H10 34A08 93D30 93C95 93A14 PDF BibTeX XML Cite \textit{S. Shen} and \textit{P. Zhou}, J. Control Sci. Eng. 2016, Article ID 1236210, 5 p. (2016; Zbl 1346.93197) Full Text: DOI OpenURL
Ayhan, Timur; Tunç, Cemil On the global existence and boundedness of solutions of nonlinear vector differential equations of third order. (English) Zbl 1343.34081 Appl. Appl. Math. 11, No. 1, 152-161 (2016). MSC: 34C11 34D20 PDF BibTeX XML Cite \textit{T. Ayhan} and \textit{C. Tunç}, Appl. Appl. Math. 11, No. 1, 152--161 (2016; Zbl 1343.34081) Full Text: Link OpenURL
Shaikhet, Leonid; Korobeinikov, Andrei Stability of a stochastic model for HIV-1 dynamics within a host. (English) Zbl 1351.92050 Appl. Anal. 95, No. 6, 1228-1238 (2016). MSC: 92D30 34D20 60H10 PDF BibTeX XML Cite \textit{L. Shaikhet} and \textit{A. Korobeinikov}, Appl. Anal. 95, No. 6, 1228--1238 (2016; Zbl 1351.92050) Full Text: DOI Link OpenURL
Elloumi, S.; Belhouane, M. M.; Braiek, N. Benhadj Observer-based controller for nonlinear analytical systems. (English) Zbl 1333.93055 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 47, No. 8, 1783-1790 (2016). MSC: 93B07 93C10 93D05 PDF BibTeX XML Cite \textit{S. Elloumi} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 47, No. 8, 1783--1790 (2016; Zbl 1333.93055) Full Text: DOI OpenURL
Liu, Song; Jiang, Wei; Li, Xiaoyan; Zhou, Xian-Feng Lyapunov stability analysis of fractional nonlinear systems. (English) Zbl 1356.34061 Appl. Math. Lett. 51, 13-19 (2016). MSC: 34D20 34A08 PDF BibTeX XML Cite \textit{S. Liu} et al., Appl. Math. Lett. 51, 13--19 (2016; Zbl 1356.34061) Full Text: DOI OpenURL
Aguila-Camacho, Norelys; Duarte-Mermoud, Manuel A. Comments on “Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks”. (English) Zbl 1440.34057 Commun. Nonlinear Sci. Numer. Simul. 25, No. 1-3, 145-148 (2015). MSC: 34D20 34A08 34D06 93C42 PDF BibTeX XML Cite \textit{N. Aguila-Camacho} and \textit{M. A. Duarte-Mermoud}, Commun. Nonlinear Sci. Numer. Simul. 25, No. 1--3, 145--148 (2015; Zbl 1440.34057) Full Text: DOI Link OpenURL
Vargas-De-León, Cruz Volterra-type Lyapunov functions for fractional-order epidemic systems. (English) Zbl 1440.92067 Commun. Nonlinear Sci. Numer. Simul. 24, No. 1-3, 75-85 (2015). MSC: 92D30 34A08 PDF BibTeX XML Cite \textit{C. Vargas-De-León}, Commun. Nonlinear Sci. Numer. Simul. 24, No. 1--3, 75--85 (2015; Zbl 1440.92067) Full Text: DOI OpenURL
Li, Fengying; Wu, Ranchao; Liang, Song Observer-based state estimation for non-linear fractional systems. (English) Zbl 1442.34123 Int. J. Dyn. Syst. Differ. Equ. 5, No. 4, 322-335 (2015). MSC: 34K35 34A08 26A33 PDF BibTeX XML Cite \textit{F. Li} et al., Int. J. Dyn. Syst. Differ. Equ. 5, No. 4, 322--335 (2015; Zbl 1442.34123) Full Text: DOI OpenURL
Pogromsky, A. Yu.; Matveev, A. S. Communication constraints in control and observation of distributed systems. (English) Zbl 1403.93031 van Schuppen, Jan H. (ed.) et al., Coordination control of distributed systems. Cham: Springer (ISBN 978-3-319-10406-5/pbk; 978-3-319-10407-2/ebook). Lecture Notes in Control and Information Sciences 456, 191-196 (2015). MSC: 93A15 93E03 90B18 93A14 93C15 93D05 PDF BibTeX XML Cite \textit{A. Yu. Pogromsky} and \textit{A. S. Matveev}, Lect. Notes Control Inf. Sci. 456, 191--196 (2015; Zbl 1403.93031) Full Text: DOI OpenURL
Ruíz-Hernández, Sergio; Ortega-Torres, Eduardo; Sánchez-López, Carlos; Carrasco-Aguilar, Miguel Angel; Ochoa-Montiel, Rocio; Ilhuicatzi-Roldán, Rocio; Taneco-Hernández, Marco Antonio Adaptive synchronization of chaotic systems considering performance parameters of operational amplifiers. (English) Zbl 1336.93090 Adv. Math. Phys. 2015, Article ID 919654, 8 p. (2015). MSC: 93C40 93A14 34C15 93C10 93D20 93D05 PDF BibTeX XML Cite \textit{S. Ruíz-Hernández} et al., Adv. Math. Phys. 2015, Article ID 919654, 8 p. (2015; Zbl 1336.93090) Full Text: DOI OpenURL
Yang, Xiong; Liu, Derong; Wei, Qinglai; Wang, Ding Reinforcement-learning-based online learning control for discrete-time unknown nonaffine nonlinear systems. (English) Zbl 1329.93094 Liu, Derong (ed.) et al., Frontiers of intelligent control and information processing. Hackensack, NJ: World Scientific (ISBN 978-981-4616-87-4/hbk; 978-981-4616-89-8/ebook). 49-81 (2015). MSC: 93C55 93C10 68T05 93C35 92B20 90C39 93D05 PDF BibTeX XML Cite \textit{X. Yang} et al., in: Frontiers of intelligent control and information processing. Hackensack, NJ: World Scientific. 49--81 (2015; Zbl 1329.93094) Full Text: DOI OpenURL
Duarte-Mermoud, Manuel A.; Aguila-Camacho, Norelys; Gallegos, Javier A.; Castro-Linares, Rafael Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. (English) Zbl 1333.34007 Commun. Nonlinear Sci. Numer. Simul. 22, No. 1-3, 650-659 (2015). MSC: 34A08 34D20 26A33 PDF BibTeX XML Cite \textit{M. A. Duarte-Mermoud} et al., Commun. Nonlinear Sci. Numer. Simul. 22, No. 1--3, 650--659 (2015; Zbl 1333.34007) Full Text: DOI OpenURL
Du, Mingyin; He, Dianpeng Anti-synchronization of two time-delay bidirectional coupling hyperchaotic systems via nonlinear control. (English) Zbl 1340.37044 Ann. Appl. Math. 31, No. 2, 140-147 (2015). MSC: 37D45 93C10 34C15 34D06 PDF BibTeX XML Cite \textit{M. Du} and \textit{D. He}, Ann. Appl. Math. 31, No. 2, 140--147 (2015; Zbl 1340.37044) OpenURL
Capone, Florinda; De Cataldis, Valentina; De Luca, Roberta Erratum to: “Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic”. (English) Zbl 1355.92108 J. Math. Biol. 71, No. 5, 1267-1268 (2015). MSC: 92D30 34D23 35K57 PDF BibTeX XML Cite \textit{F. Capone} et al., J. Math. Biol. 71, No. 5, 1267--1268 (2015; Zbl 1355.92108) Full Text: DOI OpenURL
Capone, Florinda; De Cataldis, Valentina; De Luca, Roberta Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic. (English) Zbl 1355.92107 J. Math. Biol. 71, No. 5, 1107-1131 (2015); erratum ibid. 71, No. 5, 1267-1268 (2015). MSC: 92D30 34D23 35K57 PDF BibTeX XML Cite \textit{F. Capone} et al., J. Math. Biol. 71, No. 5, 1107--1131 (2015; Zbl 1355.92107) Full Text: DOI OpenURL
Romanovskii, R. K.; Nazaruk, E. M. Dichotomy of solutions of functional-differential equations in the Sobolev space. (English. Russian original) Zbl 1323.34086 Differ. Equ. 51, No. 4, 464-476 (2015); translation from Differ. Uravn. 51, No. 4, 459-471 (2015). MSC: 34K25 34K06 34K30 PDF BibTeX XML Cite \textit{R. K. Romanovskii} and \textit{E. M. Nazaruk}, Differ. Equ. 51, No. 4, 464--476 (2015; Zbl 1323.34086); translation from Differ. Uravn. 51, No. 4, 459--471 (2015) Full Text: DOI OpenURL
Pitchaimani, M.; Monica, C. Global stability analysis of HIV-1 infection model with three time delays. (English) Zbl 1362.93134 J. Appl. Math. Comput. 48, No. 1-2, 293-319 (2015). MSC: 93D30 92C60 34C23 34D23 PDF BibTeX XML Cite \textit{M. Pitchaimani} and \textit{C. Monica}, J. Appl. Math. Comput. 48, No. 1--2, 293--319 (2015; Zbl 1362.93134) Full Text: DOI OpenURL
Wyrwas, Małgorzata; Pawluszewicz, Ewa; Girejko, Ewa Stability of nonlinear \(h\)-difference systems with \(n\) fractional orders. (English) Zbl 1340.39029 Kybernetika 51, No. 1, 112-136 (2015). MSC: 39A30 39A10 39A22 PDF BibTeX XML Cite \textit{M. Wyrwas} et al., Kybernetika 51, No. 1, 112--136 (2015; Zbl 1340.39029) Full Text: DOI OpenURL
Aguila-Camacho, Norelys; Duarte-Mermoud, Manuel A.; Gallegos, Javier A. Lyapunov functions for fractional order systems. (English) Zbl 07175104 Commun. Nonlinear Sci. Numer. Simul. 19, No. 9, 2951-2957 (2014). MSC: 26-XX 94-XX PDF BibTeX XML Cite \textit{N. Aguila-Camacho} et al., Commun. Nonlinear Sci. Numer. Simul. 19, No. 9, 2951--2957 (2014; Zbl 07175104) Full Text: DOI Link OpenURL
Vargas-De-León, Cruz; Esteva, Lourdes; Korobeinikov, Andrei Age-dependency in host-vector models: the global analysis. (English) Zbl 1335.92104 Appl. Math. Comput. 243, 969-981 (2014). MSC: 92D30 PDF BibTeX XML Cite \textit{C. Vargas-De-León} et al., Appl. Math. Comput. 243, 969--981 (2014; Zbl 1335.92104) Full Text: DOI Link OpenURL
Jasour, Ashkan M.; Farrokhi, Mohammad Adaptive neuro-predictive control for redundant robot manipulators in presence of static and dynamic obstacles: a Lyapunov-based approach. (English) Zbl 1331.93153 Int. J. Adapt. Control Signal Process. 28, No. 3-5, 386-411 (2014). MSC: 93C85 93C40 93D05 93C15 93B40 PDF BibTeX XML Cite \textit{A. M. Jasour} and \textit{M. Farrokhi}, Int. J. Adapt. Control Signal Process. 28, No. 3--5, 386--411 (2014; Zbl 1331.93153) Full Text: DOI OpenURL
Anashkin, O. V.; Mit’ko, O. V. A study of the critical case of stability for a family of impulsive systems. II. (Russian. English summary) Zbl 1342.34072 Din. Sist., Simferopol’ 4(32), No. 3-4, 267-278 (2014). MSC: 34D20 34A37 PDF BibTeX XML Cite \textit{O. V. Anashkin} and \textit{O. V. Mit'ko}, Din. Sist., Simferopol' 4(32), No. 3--4, 267--278 (2014; Zbl 1342.34072) OpenURL
Gao, Yan; Wu, Huaining; Wang, Junwei; Guo, Lei Feedback control design with vibration suppression for flexible air-breathing hypersonic vehicles. (English) Zbl 1336.93069 Sci. China, Inf. Sci. 57, No. 3, Article ID 032204, 14 p. (2014). MSC: 93B52 93B51 76K05 74K10 93C20 93D20 PDF BibTeX XML Cite \textit{Y. Gao} et al., Sci. China, Inf. Sci. 57, No. 3, Article ID 032204, 14 p. (2014; Zbl 1336.93069) Full Text: DOI Link OpenURL
Kudashova, E. A. Synthesis of stabilizing control in discrete systems without outputs. (Russian. English summary) Zbl 1363.93202 Zh. Sredn. Mat. Obshch. 16, No. 3, 72-76 (2014). Reviewer: Artyom Andronov (Saransk) MSC: 93D15 93D30 93C55 93D20 PDF BibTeX XML Cite \textit{E. A. Kudashova}, Zh. Sredn. Mat. Obshch. 16, No. 3, 72--76 (2014; Zbl 1363.93202) OpenURL
Wang, Jun-Wei; Wu, Huai-Ning; Li, Han-Xiong Static output feedback control design for linear MIMO systems with actuator dynamics governed by diffusion PDEs. (English) Zbl 1317.93122 Int. J. Control 87, No. 1, 90-100 (2014). MSC: 93B52 93D20 93B51 93C05 93C15 93C20 PDF BibTeX XML Cite \textit{J.-W. Wang} et al., Int. J. Control 87, No. 1, 90--100 (2014; Zbl 1317.93122) Full Text: DOI OpenURL
Wu, Ranchao; Hei, Xindong Algebraic stability of impulsive fractional-order systems. (Mittag-Leffler stability of impulsive fractional-order systems.) (English) Zbl 1324.34015 Electron. J. Qual. Theory Differ. Equ. 2014, Paper No. 32, 13 p. (2014). MSC: 34A08 34D20 34A37 34C10 PDF BibTeX XML Cite \textit{R. Wu} and \textit{X. Hei}, Electron. J. Qual. Theory Differ. Equ. 2014, Paper No. 32, 13 p. (2014; Zbl 1324.34015) Full Text: DOI Link OpenURL
Lapin, K. S. Uniform boundedness in part of the variables of solutions to systems of differential equations with partially controllable initial conditions. (English. Russian original) Zbl 1320.34056 Math. Notes 96, No. 3, 369-378 (2014); translation from Mat. Zametki 96, No. 3, 393-405 (2014). MSC: 34C11 34D20 PDF BibTeX XML Cite \textit{K. S. Lapin}, Math. Notes 96, No. 3, 369--378 (2014; Zbl 1320.34056); translation from Mat. Zametki 96, No. 3, 393--405 (2014) Full Text: DOI OpenURL
Dvirnyi, A. I.; Slyn’ko, V. I. Application of Lyapunov’s direct method to the study of the stability of solutions to systems of impulsive differential equations. (English. Russian original) Zbl 1320.34084 Math. Notes 96, No. 1, 26-37 (2014); translation from Mat. Zametki 96, No. 1, 22-35 (2014). MSC: 34D20 34A37 PDF BibTeX XML Cite \textit{A. I. Dvirnyi} and \textit{V. I. Slyn'ko}, Math. Notes 96, No. 1, 26--37 (2014; Zbl 1320.34084); translation from Mat. Zametki 96, No. 1, 22--35 (2014) Full Text: DOI OpenURL
Anashkin, O. V.; Mit’ko, O. V. A study of the critical case of stability for a family of impulsive systems. I. (Russian. English summary) Zbl 1318.34073 Din. Sist., Simferopol’ 4(32), No. 1-2, 153-162 (2014). MSC: 34D20 34A37 PDF BibTeX XML Cite \textit{O. V. Anashkin} and \textit{O. V. Mit'ko}, Din. Sist., Simferopol' 4(32), No. 1--2, 153--162 (2014; Zbl 1318.34073) OpenURL
Dvirny, A. I.; Slyn’ko, V. I. Investigating stability using nonlinear quasihomogeneous approximation to differential equations with impulsive action. (English. Russian original) Zbl 1305.34085 Sb. Math. 205, No. 6, 862-891 (2014); translation from Math. Sb. 205, No. 6, 109-138 (2014). Reviewer: Snezhana Hristova (Plovdiv) MSC: 34D20 34A37 PDF BibTeX XML Cite \textit{A. I. Dvirny} and \textit{V. I. Slyn'ko}, Sb. Math. 205, No. 6, 862--891 (2014; Zbl 1305.34085); translation from Math. Sb. 205, No. 6, 109--138 (2014) Full Text: DOI OpenURL
Capone, F.; De Cataldis, V.; De Luca, R. On the stability of a SEIR reaction diffusion model for infections under Neumann boundary conditions. (English) Zbl 1305.35090 Acta Appl. Math. 132, No. 1, 165-176 (2014). MSC: 35K51 35Q92 35B35 92D30 PDF BibTeX XML Cite \textit{F. Capone} et al., Acta Appl. Math. 132, No. 1, 165--176 (2014; Zbl 1305.35090) Full Text: DOI OpenURL
Sun, Haibin; Guo, Lei Composite adaptive disturbance observer based control and back-stepping method for nonlinear system with multiple mismatched disturbances. (English) Zbl 1293.93120 J. Franklin Inst. 351, No. 2, 1027-1041 (2014). MSC: 93B07 93C40 93C10 93D15 93D30 PDF BibTeX XML Cite \textit{H. Sun} and \textit{L. Guo}, J. Franklin Inst. 351, No. 2, 1027--1041 (2014; Zbl 1293.93120) Full Text: DOI OpenURL