Bas, Erdal; Metin Turk, Funda; Ozarslan, Ramazan; Ercan, Ahu Spectral data of conformable Sturm-Liouville direct problems. (English) Zbl 07299670 Anal. Math. Phys. 11, No. 1, Paper No. 8, 18 p. (2021). Reviewer: Erdogan Sen (Tekirdağ) MSC: 34B09 34A08 34E15 34E10 34B24 PDF BibTeX XML Cite \textit{E. Bas} et al., Anal. Math. Phys. 11, No. 1, Paper No. 8, 18 p. (2021; Zbl 07299670) Full Text: DOI
Kassymov, Aidyn; Torebek, Berikbol T. Lyapunov-type inequalities for a nonlinear fractional boundary value problem. (English) Zbl 07299285 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 15, 9 p. (2021). MSC: 35R11 35A23 26D10 PDF BibTeX XML Cite \textit{A. Kassymov} and \textit{B. T. Torebek}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 15, 9 p. (2021; Zbl 07299285) Full Text: DOI
Kassymov, Aidyn; Ruzhansky, Michael; Tokmagambetov, Niyaz; Torebek, Berikbol T. Sobolev, Hardy, Gagliardo-Nirenberg, and Caffarelli-Kohn-Nirenberg-type inequalities for some fractional derivatives. (English) Zbl 07296625 Banach J. Math. Anal. 15, No. 1, Paper No. 6, 23 p. (2021). Reviewer: George Stoica (Saint John) MSC: 26D10 45J05 PDF BibTeX XML Cite \textit{A. Kassymov} et al., Banach J. Math. Anal. 15, No. 1, Paper No. 6, 23 p. (2021; Zbl 07296625) Full Text: DOI
Namba, T.; Rybka, P.; Voller, V. R. Some comments on using fractional derivative operators in modeling non-local diffusion processes. (English) Zbl 1446.35252 J. Comput. Appl. Math. 381, Article ID 113040, 16 p. (2021). MSC: 35R11 35K20 70H33 PDF BibTeX XML Cite \textit{T. Namba} et al., J. Comput. Appl. Math. 381, Article ID 113040, 16 p. (2021; Zbl 1446.35252) Full Text: DOI
Gracia, José Luis; Stynes, Martin A finite difference method for an initial-boundary value problem with a Riemann-Liouville-Caputo spatial fractional derivative. (English) Zbl 1448.65101 J. Comput. Appl. Math. 381, Article ID 113020, 13 p. (2021). MSC: 65M06 35R11 26A33 PDF BibTeX XML Cite \textit{J. L. Gracia} and \textit{M. Stynes}, J. Comput. Appl. Math. 381, Article ID 113020, 13 p. (2021; Zbl 1448.65101) Full Text: DOI
Ahmad, Bashir; Alsaedi, Ahmed; Ntouyas, Sotiris K.; Alruwaily, Ymnah On a fractional integro-differential system involving Riemann-Liouville and Caputo derivatives with coupled multi-point boundary conditions. (English) Zbl 07312911 Int. J. Difference Equ. 15, No. 2, 209-241 (2020). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Int. J. Difference Equ. 15, No. 2, 209--241 (2020; Zbl 07312911) Full Text: Link
Mophou, Gisèle; N’Guérékata, Gaston M. An existence result of \((\omega,c)\)-periodic mild solutions to some fractional differential equation. (English) Zbl 07303744 Nonlinear Stud. 27, No. 1, 167-175 (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34G20 34A08 34C25 PDF BibTeX XML Cite \textit{G. Mophou} and \textit{G. M. N'Guérékata}, Nonlinear Stud. 27, No. 1, 167--175 (2020; Zbl 07303744) Full Text: Link
Sadabad, Mahnaz Kashfi; Akbarfam, Aliasghar Jodayree; Shiri, Babak A numerical study of eigenvalues and eigenfunctions of fractional Sturm-Liouville problems via Laplace transform. (English) Zbl 07301233 Indian J. Pure Appl. Math. 51, No. 3, 857-868 (2020). MSC: 34L16 34A08 34B24 44A10 PDF BibTeX XML Cite \textit{M. K. Sadabad} et al., Indian J. Pure Appl. Math. 51, No. 3, 857--868 (2020; Zbl 07301233) Full Text: DOI
Liu, Yuji Solvability of BVPs for impulsive fractional Langevin type equations involving three Riemann-Liouville fractional derivatives. (Chinese. English summary) Zbl 07294841 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 1, 103-131 (2020). MSC: 34B37 26A33 PDF BibTeX XML Cite \textit{Y. Liu}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 1, 103--131 (2020; Zbl 07294841)
Terchi, Messaouda.; Hassouna, Houda The blow-up solutions to nonlinear fractional differential Caputo-system. (English) Zbl 07293375 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 13, No. 1, 52-63 (2020). MSC: 34A08 34A34 34C11 PDF BibTeX XML Cite \textit{Messaouda. Terchi} and \textit{H. Hassouna}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 13, No. 1, 52--63 (2020; Zbl 07293375) Full Text: DOI MNR
Liu, Cheng-Shi Exactly solving some typical Riemann-Liouville fractional models by a general method of separation of variables. (English) Zbl 1451.26010 Commun. Theor. Phys. 72, No. 5, Article ID 055006, 6 p. (2020). MSC: 26A33 34A08 PDF BibTeX XML Cite \textit{C.-S. Liu}, Commun. Theor. Phys. 72, No. 5, Article ID 055006, 6 p. (2020; Zbl 1451.26010) Full Text: DOI
Dehestani, Haniye; Ordokhani, Yadollah; Razzaghi, Mohsen The novel operational matrices based on 2D-Genocchi polynomials: solving a general class of variable-order fractional partial integro-differential equations. (English) Zbl 07291004 Comput. Appl. Math. 39, No. 4, Paper No. 259, 32 p. (2020). MSC: 26A33 33F05 35R09 PDF BibTeX XML Cite \textit{H. Dehestani} et al., Comput. Appl. Math. 39, No. 4, Paper No. 259, 32 p. (2020; Zbl 07291004) Full Text: DOI
Khan, Nabiullah; Usman, Talha; Aman, Mohd Generalized Wright function and its properties using extended beta function. (English) Zbl 07290772 Tamkang J. Math. 51, No. 4, 349-363 (2020). MSC: 33B15 33C10 33C15 33E12 33E50 44A15 PDF BibTeX XML Cite \textit{N. Khan} et al., Tamkang J. Math. 51, No. 4, 349--363 (2020; Zbl 07290772) Full Text: DOI
Kassim, Mohammed Dahan; Tatar, Nasser Eddine Convergence of solutions of fractional differential equations to power-type functions. (English) Zbl 07288628 Electron. J. Differ. Equ. 2020, Paper No. 111, 14 p. (2020). MSC: 34A08 34D05 34C11 PDF BibTeX XML Cite \textit{M. D. Kassim} and \textit{N. E. Tatar}, Electron. J. Differ. Equ. 2020, Paper No. 111, 14 p. (2020; Zbl 07288628) Full Text: Link
Borisut, Piyachat; Kumam, Poom; Ahmed, Idris; Sitthithakerngkiet, Kanokwan Positive solution for nonlinear fractional differential equation with nonlocal multi-point condition. (English) Zbl 07285135 Fixed Point Theory 21, No. 2, 427-440 (2020). MSC: 34A08 34B15 47H10 PDF BibTeX XML Cite \textit{P. Borisut} et al., Fixed Point Theory 21, No. 2, 427--440 (2020; Zbl 07285135) Full Text: Link
Ezz-Eldien, S. S.; Doha, E. H.; Wang, Y.; Cai, W. A numerical treatment of the two-dimensional multi-term time-fractional mixed sub-diffusion and diffusion-wave equation. (English) Zbl 07281819 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105445, 15 p. (2020). Reviewer: Hendrik Ranocha (Münster) MSC: 65M70 65M12 35R11 33C45 PDF BibTeX XML Cite \textit{S. S. Ezz-Eldien} et al., Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105445, 15 p. (2020; Zbl 07281819) Full Text: DOI
Singla, Komal; Rana, M. Symmetries, explicit solutions and conservation laws for some time space fractional nonlinear systems. (English) Zbl 07271107 Rep. Math. Phys. 86, No. 2, 139-156 (2020). MSC: 35 81 PDF BibTeX XML Cite \textit{K. Singla} and \textit{M. Rana}, Rep. Math. Phys. 86, No. 2, 139--156 (2020; Zbl 07271107) Full Text: DOI
Ben Makhlouf, Sonia; Chaieb, Majda; Zine El Abidine, Zagharide Existence and asymptotic behavior of positive solutions for a coupled fractional differential system. (English) Zbl 07270823 Differ. Equ. Dyn. Syst. 28, No. 4, 953-998 (2020). MSC: 34A08 34B18 34B27 47N20 34B16 PDF BibTeX XML Cite \textit{S. Ben Makhlouf} et al., Differ. Equ. Dyn. Syst. 28, No. 4, 953--998 (2020; Zbl 07270823) Full Text: DOI
Nori, Ali Ashraf; Nyamoradi, Nemat; Eghbali, Nasrin Multiplicity of solutions for Kirchhoff fractional differential equations involving the Liouville-Weyl fractional derivatives. (English) Zbl 07269801 J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 1, 13-31 (2020) and Izv. Nats. Akad. Nauk Armen., Mat. 55, No. 1, 19-42 (2020). MSC: 34A08 58E05 58E30 34B40 PDF BibTeX XML Cite \textit{A. A. Nori} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 1, 13--31 (2020; Zbl 07269801) Full Text: DOI
Spigler, Renato On a quantitative theory of limits: estimating the speed of convergence. (English) Zbl 07268217 Fract. Calc. Appl. Anal. 23, No. 4, 1013-1024 (2020). MSC: 00A05 00A69 PDF BibTeX XML Cite \textit{R. Spigler}, Fract. Calc. Appl. Anal. 23, No. 4, 1013--1024 (2020; Zbl 07268217) Full Text: DOI
Luchko, Yuri Fractional derivatives and the fundamental theorem of fractional calculus. (English) Zbl 07268213 Fract. Calc. Appl. Anal. 23, No. 4, 939-966 (2020). MSC: 26A33 26B30 44A10 45E10 PDF BibTeX XML Cite \textit{Y. Luchko}, Fract. Calc. Appl. Anal. 23, No. 4, 939--966 (2020; Zbl 07268213) Full Text: DOI
Hulianytskyi, Andrii Weak solvability of the variable-order subdiffusion equation. (English) Zbl 07268210 Fract. Calc. Appl. Anal. 23, No. 3, 920-934 (2020). MSC: 35R11 35D30 PDF BibTeX XML Cite \textit{A. Hulianytskyi}, Fract. Calc. Appl. Anal. 23, No. 3, 920--934 (2020; Zbl 07268210) Full Text: DOI
Matychyn, Ivan; Onyshchenko, Viktoriia Solution of linear fractional order systems with variable coefficients. (English) Zbl 07268200 Fract. Calc. Appl. Anal. 23, No. 3, 753-763 (2020). MSC: 34A08 49N05 33E12 PDF BibTeX XML Cite \textit{I. Matychyn} and \textit{V. Onyshchenko}, Fract. Calc. Appl. Anal. 23, No. 3, 753--763 (2020; Zbl 07268200) Full Text: DOI
Sun, Yuanyuan; Zhou, Zongfu The existence of positive solutions for integral boundary value problem of two-term fractional differential equations. (Chinese. English summary) Zbl 07267259 Math. Appl. 33, No. 2, 318-326 (2020). MSC: 34B18 34A08 PDF BibTeX XML Cite \textit{Y. Sun} and \textit{Z. Zhou}, Math. Appl. 33, No. 2, 318--326 (2020; Zbl 07267259)
Feng, Qian; Ma, Qingxia; Liu, Anping Oscillation for a class of impulsive fractional partial differential equations. (Chinese. English summary) Zbl 07266910 J. Math., Wuhan Univ. 40, No. 2, 228-236 (2020). MSC: 35B05 35R11 35R12 PDF BibTeX XML Cite \textit{Q. Feng} et al., J. Math., Wuhan Univ. 40, No. 2, 228--236 (2020; Zbl 07266910) Full Text: DOI
Fedorov, Vladimir E.; Abdrakhmanova, Aliya A. A class of initial value problems for distributed order equations with a bounded operator. (English) Zbl 07265564 Tarasyev, Alexander (ed.) et al., Stability, control and differential games. Proceedings of the international conference on stability, control and differential games (SCDG2019), Yekaterinburg, Russia, September 16–20, 2019. Cham: Springer (ISBN 978-3-030-42830-3/hbk; 978-3-030-42831-0/ebook). Lecture Notes in Control and Information Sciences – Proceedings, 251-261 (2020). MSC: 34G10 34A08 34A12 PDF BibTeX XML Cite \textit{V. E. Fedorov} and \textit{A. A. Abdrakhmanova}, in: Stability, control and differential games. Proceedings of the international conference on stability, control and differential games (SCDG2019), Yekaterinburg, Russia, September 16--20, 2019. Cham: Springer. 251--261 (2020; Zbl 07265564) Full Text: DOI
Kaur, Jaskiran; Gupta, Rajesh Kumar; Kumar, Sachin On explicit exact solutions and conservation laws for time fractional variable – coefficient coupled Burger’s equations. (English) Zbl 1451.35253 Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105108, 16 p. (2020). MSC: 35R11 35B06 70S10 76M60 PDF BibTeX XML Cite \textit{J. Kaur} et al., Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105108, 16 p. (2020; Zbl 1451.35253) Full Text: DOI
Stefański, Tomasz P.; Gulgowski, Jacek Signal propagation in electromagnetic media described by fractional-order models. (English) Zbl 1451.78013 Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 105029, 16 p. (2020). MSC: 78A25 78A40 35R11 26A33 78M99 65T50 PDF BibTeX XML Cite \textit{T. P. Stefański} and \textit{J. Gulgowski}, Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 105029, 16 p. (2020; Zbl 1451.78013) Full Text: DOI
Khan, N. U.; Khan, S. W. A new extension of the Mittag-Leffler function. (English) Zbl 1450.33016 Palest. J. Math. 9, No. 2, 977-983 (2020). MSC: 33E12 26A33 PDF BibTeX XML Cite \textit{N. U. Khan} and \textit{S. W. Khan}, Palest. J. Math. 9, No. 2, 977--983 (2020; Zbl 1450.33016) Full Text: Link
Toprakseven, Şuayip On Lyapunov-type inequalities for boundary value problems of fractional Caputo-Fabrizio derivative. (English) Zbl 1450.35280 Turk. J. Math. 44, No. 4, 1362-1375 (2020). MSC: 35R11 35A09 34A40 26D10 34C10 PDF BibTeX XML Cite \textit{Ş. Toprakseven}, Turk. J. Math. 44, No. 4, 1362--1375 (2020; Zbl 1450.35280) Full Text: DOI
Gu, Yajuan; Wang, Hu; Yu, Yongguang Synchronization for commensurate Riemann-Liouville fractional-order memristor-based neural networks with unknown parameters. (English) Zbl 1448.93119 J. Franklin Inst. 357, No. 13, 8870-8898 (2020). MSC: 93B70 93C15 26A33 93C40 34D45 PDF BibTeX XML Cite \textit{Y. Gu} et al., J. Franklin Inst. 357, No. 13, 8870--8898 (2020; Zbl 1448.93119) Full Text: DOI
Kaur, Bikramjeet; Gupta, R. K. Time fractional (2+1)-dimensional Wu-Zhang system: dispersion analysis, similarity reductions, conservation laws, and exact solutions. (English) Zbl 1450.35272 Comput. Math. Appl. 79, No. 4, 1031-1048 (2020). MSC: 35R11 35A30 35B06 PDF BibTeX XML Cite \textit{B. Kaur} and \textit{R. K. Gupta}, Comput. Math. Appl. 79, No. 4, 1031--1048 (2020; Zbl 1450.35272) Full Text: DOI
Shi, Dandan; Zhang, Yufeng; Liu, Wenhao Multiple exact solutions of the generalized time fractional foam drainage equation. (English) Zbl 1441.34015 Fractals 28, No. 4, Article ID 2050062, 8 p. (2020). MSC: 34A08 PDF BibTeX XML Cite \textit{D. Shi} et al., Fractals 28, No. 4, Article ID 2050062, 8 p. (2020; Zbl 1441.34015) Full Text: DOI
Muthulakshmi, Velu; Pavithra, Subramani Existence of nonoscillatory solutions for mixed neutral fractional differential equation. (English) Zbl 1441.34083 Discontin. Nonlinearity Complex. 9, No. 1, 47-61 (2020). MSC: 34K37 34C15 34K40 34K11 PDF BibTeX XML Cite \textit{V. Muthulakshmi} and \textit{S. Pavithra}, Discontin. Nonlinearity Complex. 9, No. 1, 47--61 (2020; Zbl 1441.34083) Full Text: DOI
Abbaszadeh, Mostafa; Dehghan, Mehdi A POD-based reduced-order Crank-Nicolson/fourth-order alternating direction implicit (ADI) finite difference scheme for solving the two-dimensional distributed-order Riesz space-fractional diffusion equation. (English) Zbl 1452.65145 Appl. Numer. Math. 158, 271-291 (2020). MSC: 65M06 65N06 65M99 65M15 65M12 65D30 35R11 26A33 35K57 PDF BibTeX XML Cite \textit{M. Abbaszadeh} and \textit{M. Dehghan}, Appl. Numer. Math. 158, 271--291 (2020; Zbl 1452.65145) Full Text: DOI
Kisela, Tomás On stability of delayed differential systems of arbitrary non-integer order. (English) Zbl 1452.34081 Math. Appl., Brno 9, No. 1, 31-42 (2020). MSC: 34K37 34K20 34K25 PDF BibTeX XML Cite \textit{T. Kisela}, Math. Appl., Brno 9, No. 1, 31--42 (2020; Zbl 1452.34081) Full Text: DOI
Zheng, Zhaowen; Liu, Huixin; Cai, Jinming; Zhang, Yanwei Criteria of limit-point case for conformable fractional Sturm-Liouville operators. (English) Zbl 07248032 Math. Methods Appl. Sci. 43, No. 5, 2548-2557 (2020). MSC: 47E05 34L05 PDF BibTeX XML Cite \textit{Z. Zheng} et al., Math. Methods Appl. Sci. 43, No. 5, 2548--2557 (2020; Zbl 07248032) Full Text: DOI
Xie, Changping; Fang, Shaomei Finite difference scheme for time-space fractional diffusion equation with fractional boundary conditions. (English) Zbl 1447.65034 Math. Methods Appl. Sci. 43, No. 6, 3473-3487 (2020). MSC: 65M06 65M12 35R11 26A33 PDF BibTeX XML Cite \textit{C. Xie} and \textit{S. Fang}, Math. Methods Appl. Sci. 43, No. 6, 3473--3487 (2020; Zbl 1447.65034) Full Text: DOI
Moghadam, Abolfazl Soltanpour; Arabameri, Maryam; Baleanu, Dumitru; Barfeie, Mahdiar Numerical solution of variable fractional order advection-dispersion equation using Bernoulli wavelet method and new operational matrix of fractional order derivative. (English) Zbl 07242859 Math. Methods Appl. Sci. 43, No. 7, 3936-3953 (2020). MSC: 65T60 35R11 26A33 11B68 PDF BibTeX XML Cite \textit{A. S. Moghadam} et al., Math. Methods Appl. Sci. 43, No. 7, 3936--3953 (2020; Zbl 07242859) Full Text: DOI
Hristova, Snezhana G.; Tersian, Stepan A. Scalar linear impulsive Riemann-Liouville fractional differential equations with constant delay-explicit solutions and finite time stability. (English) Zbl 1450.34056 Demonstr. Math. 53, 121-130 (2020). MSC: 34K37 34K45 34K20 93D40 34K06 PDF BibTeX XML Cite \textit{S. G. Hristova} and \textit{S. A. Tersian}, Demonstr. Math. 53, 121--130 (2020; Zbl 1450.34056) Full Text: DOI
Dier, Dominik; Kemppainen, Jukka; Siljander, Juhana; Zacher, Rico On the parabolic Harnack inequality for non-local diffusion equations. (English) Zbl 1446.35246 Math. Z. 295, No. 3-4, 1751-1769 (2020). Reviewer: Vincenzo Vespri (Firenze) MSC: 35R11 45K05 45M05 35C15 26A33 35B40 33C60 PDF BibTeX XML Cite \textit{D. Dier} et al., Math. Z. 295, No. 3--4, 1751--1769 (2020; Zbl 1446.35246) Full Text: DOI
Luo, Zhendong; Ren, Hulin A reduced-order extrapolated finite difference iterative method for the Riemann-Liouville tempered fractional derivative equation. (English) Zbl 1446.65073 Appl. Numer. Math. 157, 307-314 (2020). MSC: 65M06 65M99 35R11 26A33 65M12 65M15 PDF BibTeX XML Cite \textit{Z. Luo} and \textit{H. Ren}, Appl. Numer. Math. 157, 307--314 (2020; Zbl 1446.65073) Full Text: DOI
Agarwal, Ravi P.; Hristova, Snezhana; O’Regan, Donal Exact solutions of linear Riemann-Liouville fractional differential equations with impulses. (English) Zbl 1448.34008 Rocky Mt. J. Math. 50, No. 3, 779-791 (2020). MSC: 34A08 34A05 34A37 34A30 34A12 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., Rocky Mt. J. Math. 50, No. 3, 779--791 (2020; Zbl 1448.34008) Full Text: DOI Euclid
Li, Mengting; Zhang, Kemei Existence of positive solutions for a kind of nonlinear fractional differential equation with nonlinear boundary value conditions. (English) Zbl 1449.34078 Math. Appl. 33, No. 1, 126-137 (2020). MSC: 34B18 34A08 34B45 PDF BibTeX XML Cite \textit{M. Li} and \textit{K. Zhang}, Math. Appl. 33, No. 1, 126--137 (2020; Zbl 1449.34078)
Liu, Yuji General solutions of a higher order impulsive fractional differential equation involving the Riemann-Liouville fractional derivatives. (English) Zbl 1449.34025 J. Math. Res. Appl. 40, No. 2, 140-164 (2020). MSC: 34A08 34A05 34A37 PDF BibTeX XML Cite \textit{Y. Liu}, J. Math. Res. Appl. 40, No. 2, 140--164 (2020; Zbl 1449.34025) Full Text: DOI
Gracia, José Luis; O’Riordan, Eugene; Stynes, Martin Convergence analysis of a finite difference scheme for a two-point boundary value problem with a Riemann-Liouville-Caputo fractional derivative. (English) Zbl 1442.65130 BIT 60, No. 2, 411-439 (2020). MSC: 65L10 34A08 26A33 PDF BibTeX XML Cite \textit{J. L. Gracia} et al., BIT 60, No. 2, 411--439 (2020; Zbl 1442.65130) Full Text: DOI
Huang, Jian; Cen, Zhongdi; Liu, Li-Bin; Zhao, Jialiang An efficient numerical method for a Riemann-Liouville two-point boundary value problem. (English) Zbl 1441.65065 Appl. Math. Lett. 103, Article ID 106201, 8 p. (2020). MSC: 65L10 65L50 26A33 65R20 PDF BibTeX XML Cite \textit{J. Huang} et al., Appl. Math. Lett. 103, Article ID 106201, 8 p. (2020; Zbl 1441.65065) Full Text: DOI
Cen, Zhongdi; Liu, Li-Bin; Huang, Jian A posteriori error estimation in maximum norm for a two-point boundary value problem with a Riemann-Liouville fractional derivative. (English) Zbl 07206915 Appl. Math. Lett. 102, Article ID 106086, 8 p. (2020). MSC: 65 26 PDF BibTeX XML Cite \textit{Z. Cen} et al., Appl. Math. Lett. 102, Article ID 106086, 8 p. (2020; Zbl 07206915) Full Text: DOI
de Carvalho-Neto, Paulo M.; Fehlberg, Renato jun. On the fractional version of Leibniz rule. (English) Zbl 07205982 Math. Nachr. 293, No. 4, 670-700 (2020). MSC: 26A33 33B15 35R11 76D05 PDF BibTeX XML Cite \textit{P. M. de Carvalho-Neto} and \textit{Renato~jun. Fehlberg}, Math. Nachr. 293, No. 4, 670--700 (2020; Zbl 07205982) Full Text: DOI
Mittal, Ekta; Joshi, Sunil Note on a \(k\)-generalised fractional derivative. (English) Zbl 1437.26011 Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 797-804 (2020). MSC: 26A33 33B15 33C05 PDF BibTeX XML Cite \textit{E. Mittal} and \textit{S. Joshi}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 797--804 (2020; Zbl 1437.26011) Full Text: DOI
Goufo, Emile Franc Doungmo; Atangana, Abdon Dynamics of traveling waves of variable order hyperbolic Liouville equation: regulation and control. (English) Zbl 1439.35118 Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 645-662 (2020). MSC: 35C07 35L71 35L15 26A33 65L20 82C70 33F05 PDF BibTeX XML Cite \textit{E. F. D. Goufo} and \textit{A. Atangana}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 645--662 (2020; Zbl 1439.35118) Full Text: DOI
Ngoc, Tran Bao; Zhou, Yong; O’Regan, Donal; Tuan, Nguyen Huy On a terminal value problem for pseudoparabolic equations involving Riemann-Liouville fractional derivatives. (English) Zbl 1442.35235 Appl. Math. Lett. 106, Article ID 106373, 8 p. (2020). MSC: 35K70 35B30 35R11 PDF BibTeX XML Cite \textit{T. B. Ngoc} et al., Appl. Math. Lett. 106, Article ID 106373, 8 p. (2020; Zbl 1442.35235) Full Text: DOI
Guo, Baoyong; Dong, Huanhe; Fang, Yong Symmetry groups, similarity reductions, and conservation laws of the time-fractional Fujimoto-Watanabe equation using Lie symmetry analysis method. (English) Zbl 1441.35015 Complexity 2020, Article ID 4830684, 9 p. (2020). MSC: 35B06 35R11 PDF BibTeX XML Cite \textit{B. Guo} et al., Complexity 2020, Article ID 4830684, 9 p. (2020; Zbl 1441.35015) Full Text: DOI
Duan, Hui; Chen, Xinjuan; Jung, Jae-Hun On the consistency of the finite difference approximation with the Riemann-Liouville fractional derivative for \(0 < \alpha < 1\). (English) Zbl 1439.65086 Appl. Numer. Math. 153, 35-51 (2020). MSC: 65L12 34A08 PDF BibTeX XML Cite \textit{H. Duan} et al., Appl. Numer. Math. 153, 35--51 (2020; Zbl 1439.65086) Full Text: DOI
Li, Yunhong; Jiang, Weihua Existence of multiple positive solutions for nonlinear three-point problem for Riemann-Liouville fractional differential equation. (English) Zbl 1441.35257 Int. J. Dyn. Syst. Differ. Equ. 10, No. 2, 167-182 (2020). MSC: 35R11 35B09 35A01 26A33 PDF BibTeX XML Cite \textit{Y. Li} and \textit{W. Jiang}, Int. J. Dyn. Syst. Differ. Equ. 10, No. 2, 167--182 (2020; Zbl 1441.35257) Full Text: DOI
Liu, Li-Bin; Liang, Zhifang; Long, Guangqing; Liang, Ying Convergence analysis of a finite difference scheme for a Riemann-Liouville fractional derivative two-point boundary value problem on an adaptive grid. (English) Zbl 1434.65096 J. Comput. Appl. Math. 375, Article ID 112809, 8 p. (2020). MSC: 65L10 65L12 65L20 26A33 PDF BibTeX XML Cite \textit{L.-B. Liu} et al., J. Comput. Appl. Math. 375, Article ID 112809, 8 p. (2020; Zbl 1434.65096) Full Text: DOI
Aghili, A. Analytic solutions of fractional ODEs and PDEs. (English) Zbl 1439.35513 Asian-Eur. J. Math. 13, No. 2, Article ID 2050032, 14 p. (2020). MSC: 35R11 34A08 44A10 35Q53 PDF BibTeX XML Cite \textit{A. Aghili}, Asian-Eur. J. Math. 13, No. 2, Article ID 2050032, 14 p. (2020; Zbl 1439.35513) Full Text: DOI
Saemi, Fereshteh; Ebrahimi, Hamideh; Shafiee, Mahmoud An effective scheme for solving system of fractional Volterra-Fredholm integro-differential equations based on the Müntz-Legendre wavelets. (English) Zbl 1445.65051 J. Comput. Appl. Math. 374, Article ID 112773, 22 p. (2020). Reviewer: S. F. Lukomskii (Saratov) MSC: 65R20 65T60 45D05 26A33 PDF BibTeX XML Cite \textit{F. Saemi} et al., J. Comput. Appl. Math. 374, Article ID 112773, 22 p. (2020; Zbl 1445.65051) Full Text: DOI
Roul, Pradip A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European options. (English) Zbl 1437.91455 Appl. Numer. Math. 151, 472-493 (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 91G60 65N35 65M12 65D07 65M06 35R11 35C08 35Q91 91G20 PDF BibTeX XML Cite \textit{P. Roul}, Appl. Numer. Math. 151, 472--493 (2020; Zbl 1437.91455) Full Text: DOI
Zheng, Yunying; Zhao, Zhengang The time discontinuous space-time finite element method for fractional diffusion-wave equation. (English) Zbl 1434.65198 Appl. Numer. Math. 150, 105-116 (2020). MSC: 65M60 35Q99 35R11 26A33 65M12 35Q53 65J10 PDF BibTeX XML Cite \textit{Y. Zheng} and \textit{Z. Zhao}, Appl. Numer. Math. 150, 105--116 (2020; Zbl 1434.65198) Full Text: DOI
Cao Labora, Daniel; Rodríguez-López, Rosana; Belmekki, Mohammed Existence of solutions to nonlocal boundary value problems for fractional differential equations with impulses. (English) Zbl 1442.34010 Electron. J. Differ. Equ. 2020, Paper No. 15, 16 p. (2020). Reviewer: Jan Tomeček (Olomouc) MSC: 34A08 34B37 34B10 34B27 PDF BibTeX XML Cite \textit{D. Cao Labora} et al., Electron. J. Differ. Equ. 2020, Paper No. 15, 16 p. (2020; Zbl 1442.34010) Full Text: Link
Bas, Erdal; Acay, Bahar The direct spectral problem via local derivative including truncated Mittag-Leffler function. (English) Zbl 1433.34008 Appl. Math. Comput. 367, Article ID 124787, 20 p. (2020). MSC: 34A08 34B24 34L20 65L60 65L15 PDF BibTeX XML Cite \textit{E. Bas} and \textit{B. Acay}, Appl. Math. Comput. 367, Article ID 124787, 20 p. (2020; Zbl 1433.34008) Full Text: DOI
Ruzhansky, M.; Tokmagambetov, N.; Torebek, B. T. Bitsadze-Samarskii type problem for the integro-differential diffusion-wave equation on the Heisenberg group. (English) Zbl 1442.45010 Integral Transforms Spec. Funct. 31, No. 1, 1-9 (2020). MSC: 45K05 35R11 34B10 35R03 PDF BibTeX XML Cite \textit{M. Ruzhansky} et al., Integral Transforms Spec. Funct. 31, No. 1, 1--9 (2020; Zbl 1442.45010) Full Text: DOI
Acay, Bahar; Bas, Erdal; Abdeljawad, Thabet Non-local fractional calculus from different viewpoint generated by truncated \(M\)-derivative. (English) Zbl 1428.26009 J. Comput. Appl. Math. 366, Article ID 112410, 18 p. (2020). MSC: 26A33 PDF BibTeX XML Cite \textit{B. Acay} et al., J. Comput. Appl. Math. 366, Article ID 112410, 18 p. (2020; Zbl 1428.26009) Full Text: DOI
Lin, Fu-Rong; Liu, Wei-Dong The accuracy and stability of CN-WSGD schemes for space fractional diffusion equation. (English) Zbl 07085959 J. Comput. Appl. Math. 363, 77-91 (2020). MSC: 26A33 65L12 65L20 PDF BibTeX XML Cite \textit{F.-R. Lin} and \textit{W.-D. Liu}, J. Comput. Appl. Math. 363, 77--91 (2020; Zbl 07085959) Full Text: DOI
Èneeva, Liana M. A priori estimate for an equation with fractional derivatives with different origins. (Russian. English summary) Zbl 07314690 Vestn. KRAUNTS, Fiz.-Mat. Nauki 2019, No. 4(29), 41-47 (2019). MSC: 26A33 PDF BibTeX XML Cite \textit{L. M. Èneeva}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 2019, No. 4(29), 41--47 (2019; Zbl 07314690) Full Text: DOI MNR
Losanova, F. M. Local displacement problem for equation of fractional diffusion. (Russian. English summary) Zbl 07314688 Vestn. KRAUNTS, Fiz.-Mat. Nauki 2019, No. 4(29), 28-34 (2019). MSC: 34L99 PDF BibTeX XML Cite \textit{F. M. Losanova}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 2019, No. 4(29), 28--34 (2019; Zbl 07314688) Full Text: DOI MNR
Èneeva, L. M. Lyapunov inequality for an equation with fractional derivatives with different origins. (Russian. English summary) Zbl 07314681 Vestn. KRAUNTS, Fiz.-Mat. Nauki 2019, No. 3(28), 32-39 (2019). MSC: 26A33 PDF BibTeX XML Cite \textit{L. M. Èneeva}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 2019, No. 3(28), 32--39 (2019; Zbl 07314681) Full Text: DOI MNR
Masaeva, O. Kh. Dirchlet problem for a nonlocal wave equation with Riemann-Liouville derivative. (Russian. English summary) Zbl 07314670 Vestn. KRAUNTS, Fiz.-Mat. Nauki 2019, No. 2(27), 6-11 (2019). MSC: 35L05 PDF BibTeX XML Cite \textit{O. Kh. Masaeva}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 2019, No. 2(27), 6--11 (2019; Zbl 07314670) Full Text: DOI MNR
Duo, Siwei; Wang, Hong A fractional phase-field model using an infinitesimal generator of \(\alpha\) stable Lévy process. (English) Zbl 1451.76127 J. Comput. Phys. 384, 253-269 (2019). MSC: 76T06 65M06 65M12 35R11 35Q35 76M20 PDF BibTeX XML Cite \textit{S. Duo} and \textit{H. Wang}, J. Comput. Phys. 384, 253--269 (2019; Zbl 1451.76127) Full Text: DOI
Gekkieva, Sakinat Khasanovna; Kerefov, Marat Aslanbievich Dirichlet boundary value problem for Aller-Lykov moisture transfer equation with fractional derivative in time. (Russian. English summary) Zbl 07281241 Ufim. Mat. Zh. 11, No. 2, 72-82 (2019); translation in Ufa Math. J. 11, No. 2, 71-81 (2019). MSC: 35E99 PDF BibTeX XML Cite \textit{S. K. Gekkieva} and \textit{M. A. Kerefov}, Ufim. Mat. Zh. 11, No. 2, 72--82 (2019; Zbl 07281241); translation in Ufa Math. J. 11, No. 2, 71--81 (2019) Full Text: DOI MNR
Bahaa, G. M. Optimal control problem for variable-order fractional differential systems with time delay involving Atangana-Baleanu derivatives. (English) Zbl 1448.49005 Chaos Solitons Fractals 122, 129-142 (2019). MSC: 49J20 93C20 93C23 35R11 93B05 35R10 47L07 PDF BibTeX XML Cite \textit{G. M. Bahaa}, Chaos Solitons Fractals 122, 129--142 (2019; Zbl 1448.49005) Full Text: DOI
Khan, Aziz; Gómez-Aguilar, J. F.; Saeed Khan, Tahir; Khan, Hasib Stability analysis and numerical solutions of fractional order HIV/AIDS model. (English) Zbl 1448.92307 Chaos Solitons Fractals 122, 119-128 (2019). MSC: 92D30 65L20 65L05 34A08 34C60 PDF BibTeX XML Cite \textit{A. Khan} et al., Chaos Solitons Fractals 122, 119--128 (2019; Zbl 1448.92307) Full Text: DOI
Kavitha, J.; Sadhasivam, V. Existence of solutions for boundary value problem of nonlinear integro-differential equations of fractional order. (English) Zbl 07274006 Discontin. Nonlinearity Complex. 8, No. 1, 57-70 (2019). MSC: 45 PDF BibTeX XML Cite \textit{J. Kavitha} and \textit{V. Sadhasivam}, Discontin. Nonlinearity Complex. 8, No. 1, 57--70 (2019; Zbl 07274006) Full Text: DOI
Liu, Youjun; Zhao, Huanhuan; Kang, Shugui Existence for nonoscillatory solutions of system of fractional differential equations. (Chinese. English summary) Zbl 07266322 Acta Math. Appl. Sin. 42, No. 5, 606-613 (2019). MSC: 34K11 34K37 PDF BibTeX XML Cite \textit{Y. Liu} et al., Acta Math. Appl. Sin. 42, No. 5, 606--613 (2019; Zbl 07266322)
Doha, E. H.; Abdelkawy, M. A.; Amin, A. Z. M.; Lopes, António M. Shifted Jacobi-Gauss-collocation with convergence analysis for fractional integro-differential equations. (English) Zbl 07264748 Commun. Nonlinear Sci. Numer. Simul. 72, 342-359 (2019). MSC: 65R PDF BibTeX XML Cite \textit{E. H. Doha} et al., Commun. Nonlinear Sci. Numer. Simul. 72, 342--359 (2019; Zbl 07264748) Full Text: DOI
Stefański, Tomasz P.; Gulgowski, Jacek Electromagnetic-based derivation of fractional-order circuit theory. (English) Zbl 07264525 Commun. Nonlinear Sci. Numer. Simul. 79, Article ID 104897, 13 p. (2019). MSC: 26A 26 65D 65 PDF BibTeX XML Cite \textit{T. P. Stefański} and \textit{J. Gulgowski}, Commun. Nonlinear Sci. Numer. Simul. 79, Article ID 104897, 13 p. (2019; Zbl 07264525) Full Text: DOI
Syed Ali, M.; Hymavathi, M.; Senan, Sibel; Shekher, Vineet; Arik, Sabri Global asymptotic synchronization of impulsive fractional-order complex-valued memristor-based neural networks with time varying delays. (English) Zbl 07264496 Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104869, 21 p. (2019). MSC: 34A 26A 33E 44A PDF BibTeX XML Cite \textit{M. Syed Ali} et al., Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104869, 21 p. (2019; Zbl 07264496) Full Text: DOI
Capelas de Oliveira, E.; Jarosz, S.; Vaz, J. jun. Fractional calculus via Laplace transform and its application in relaxation processes. (English) Zbl 07263942 Commun. Nonlinear Sci. Numer. Simul. 69, 58-72 (2019). MSC: 76R50 26A33 PDF BibTeX XML Cite \textit{E. Capelas de Oliveira} et al., Commun. Nonlinear Sci. Numer. Simul. 69, 58--72 (2019; Zbl 07263942) Full Text: DOI
Abbas, Said; Benchohra, Mouffak; Zhou, Yong; Alsaedi, Ahmed Hilfer and Hadamard random fractional differential equations in Fréchet spaces. (English) Zbl 07262276 Fixed Point Theory 20, No. 2, 391-406 (2019). MSC: 34A08 34F05 34G20 47H10 34D10 PDF BibTeX XML Cite \textit{S. Abbas} et al., Fixed Point Theory 20, No. 2, 391--406 (2019; Zbl 07262276) Full Text: Link
Akman Yıldız, Tuğba Optimal control problem of the two-dimensional modified anomalous subdiffusion equation with discontinuous Galerkin approximation. (English) Zbl 1442.65108 Comput. Math. Appl. 78, No. 6, 2127-2146 (2019). MSC: 65K10 65M60 PDF BibTeX XML Cite \textit{T. Akman Yıldız}, Comput. Math. Appl. 78, No. 6, 2127--2146 (2019; Zbl 1442.65108) Full Text: DOI
Li, Chao; Guo, Qilong; Zhao, Meimei New solitary wave solutions of \((2+1)\)-dimensional space-time fractional Burgers equation and Korteweg-de Vries equation. (English) Zbl 1442.35384 Comput. Math. Appl. 77, No. 8, 2255-2262 (2019). MSC: 35Q53 35R11 PDF BibTeX XML Cite \textit{C. Li} et al., Comput. Math. Appl. 77, No. 8, 2255--2262 (2019; Zbl 1442.35384) Full Text: DOI
Herzallah, Mohamed A. E. Comments on “Different methods for \((3+1)\)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation”. (English) Zbl 1443.35126 Comput. Math. Appl. 77, No. 1, 66-68 (2019). MSC: 35Q53 35C05 35R11 PDF BibTeX XML Cite \textit{M. A. E. Herzallah}, Comput. Math. Appl. 77, No. 1, 66--68 (2019; Zbl 1443.35126) Full Text: DOI
Zhao, Huanhuan; Liu, Youjun; Yan, Jurang Existence for nonoscillatory solutions of fractional differential equations. (Chinese. English summary) Zbl 1449.34232 Math. Pract. Theory 49, No. 20, 315-319 (2019). MSC: 34K11 34K37 34K40 PDF BibTeX XML Cite \textit{H. Zhao} et al., Math. Pract. Theory 49, No. 20, 315--319 (2019; Zbl 1449.34232)
Solís-Pérez, J. E.; Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Torres, L.; Olivares-Peregrino, V. H. Parameter estimation of fractional Gompertz model using cuckoo search algorithm. (English) Zbl 1444.92123 Gómez, José Francisco (ed.) et al., Fractional derivatives with Mittag-Leffler kernel. Trends and applications in science and engineering. Cham: Springer. Stud. Syst. Decis. Control 194, 81-95 (2019). MSC: 92D30 26A33 90C59 PDF BibTeX XML Cite \textit{J. E. Solís-Pérez} et al., Stud. Syst. Decis. Control 194, 81--95 (2019; Zbl 1444.92123) Full Text: DOI
Ginting, Victor; Li, Yulong On the fractional diffusion-advection-reaction equation in \(\mathbb{R}\). (English) Zbl 1442.34012 Fract. Calc. Appl. Anal. 22, No. 4, 1039-1062 (2019). MSC: 34A08 46N20 PDF BibTeX XML Cite \textit{V. Ginting} and \textit{Y. Li}, Fract. Calc. Appl. Anal. 22, No. 4, 1039--1062 (2019; Zbl 1442.34012) Full Text: DOI
Wang, Zhenli; Zhang, Lihua; Li, Chuanzhong Lie symmetry analysis to the weakly coupled Kaup-Kupershmidt equation with time fractional order. (English) Zbl 1433.35456 Fractals 27, No. 4, Article ID 1950052, 10 p. (2019). MSC: 35R11 35B06 PDF BibTeX XML Cite \textit{Z. Wang} et al., Fractals 27, No. 4, Article ID 1950052, 10 p. (2019; Zbl 1433.35456) Full Text: DOI
Kukushkin, Maksim V. Riemann-Liouville operator in weighted \(L_p\) spaces via the Jacobi series expansion. (English) Zbl 1437.47022 Axioms 8, No. 2, Paper No. 75, 22 p. (2019). MSC: 47G10 26A33 47A46 33C45 PDF BibTeX XML Cite \textit{M. V. Kukushkin}, Axioms 8, No. 2, Paper No. 75, 22 p. (2019; Zbl 1437.47022) Full Text: DOI
Khalouta, Ali; Kadem, Abdelouahab A new technique for finding exact solutions of nonlinear time-fractional wave-like equations with variable coefficients. (English) Zbl 1439.35535 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 45, No. 2, 167-180 (2019). MSC: 35R11 33E12 35C05 PDF BibTeX XML Cite \textit{A. Khalouta} and \textit{A. Kadem}, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 45, No. 2, 167--180 (2019; Zbl 1439.35535) Full Text: Link
Aghili, Arman Special functions, integral transforms with applications. (English) Zbl 1443.44002 Tbil. Math. J. 12, No. 1, 33-44 (2019). MSC: 44A10 44A20 26A33 44A15 44A35 34A08 PDF BibTeX XML Cite \textit{A. Aghili}, Tbil. Math. J. 12, No. 1, 33--44 (2019; Zbl 1443.44002) Full Text: DOI Euclid
Nikan, O.; Tenreiro Machado, J. A.; Golbabai, A.; Nikazad, T. Numerical investigation of the nonlinear modified anomalous diffusion process. (English) Zbl 1430.60091 Nonlinear Dyn. 97, No. 4, 2757-2775 (2019). MSC: 60K50 35R11 65M70 26A33 PDF BibTeX XML Cite \textit{O. Nikan} et al., Nonlinear Dyn. 97, No. 4, 2757--2775 (2019; Zbl 1430.60091) Full Text: DOI
Aksoy, Esin; Bekir, Ahmet; Çevikel, Adem C. Study on fractional differential equations with modified Riemann-Liouville derivative via Kudryashov method. (English) Zbl 07168299 Int. J. Nonlinear Sci. Numer. Simul. 20, No. 5, 511-516 (2019). MSC: 35 65 PDF BibTeX XML Cite \textit{E. Aksoy} et al., Int. J. Nonlinear Sci. Numer. Simul. 20, No. 5, 511--516 (2019; Zbl 07168299) Full Text: DOI
Padhi, Seshadev; Prasad, B. S. R. V.; Srivastava, Satyam Narayan; Bhuyan, Shasanka Dev Monotone iterative method for solutions of fractional differential equations. (English) Zbl 1440.34010 Mem. Differ. Equ. Math. Phys. 77, 59-69 (2019). MSC: 34A08 34A45 34B08 34B10 34B15 34B18 PDF BibTeX XML Cite \textit{S. Padhi} et al., Mem. Differ. Equ. Math. Phys. 77, 59--69 (2019; Zbl 1440.34010) Full Text: Link
Owolabi, Kolade M.; Dutta, Hemen Numerical solution of space-time-fractional reaction-diffusion equations via the Caputo and Riesz derivatives. (English) Zbl 1431.65100 Smith, Frank T. (ed.) et al., Mathematics applied to engineering, modelling, and social issues. Cham: Springer. Stud. Syst. Decis. Control 200, 161-188 (2019). MSC: 65L05 26A33 65M06 93C10 34A08 35R11 PDF BibTeX XML Cite \textit{K. M. Owolabi} and \textit{H. Dutta}, Stud. Syst. Decis. Control 200, 161--188 (2019; Zbl 1431.65100) Full Text: DOI
Ahmad, Bashir; Ntouyas, Sotiris K.; Alsaedi, Ahmed On nonlinear neutral Liouville-Caputo-type fractional differential equations with Riemann-Liouville integral boundary conditions. (English) Zbl 1435.34010 J. Appl. Anal. 25, No. 2, 119-130 (2019). Reviewer: Syed Abbas (Mandi) MSC: 34A08 34B10 34B15 47N20 PDF BibTeX XML Cite \textit{B. Ahmad} et al., J. Appl. Anal. 25, No. 2, 119--130 (2019; Zbl 1435.34010) Full Text: DOI
Anastassiou, George A. Riemann-Liouville fractional fundamental theorem of calculus and Riemann-Liouville fractional Pólya type integral inequality and its extension to Choquet integral setting. (English) Zbl 1434.26007 Bull. Korean Math. Soc. 56, No. 6, 1423-1433 (2019). MSC: 26A33 26D10 26D15 PDF BibTeX XML Cite \textit{G. A. Anastassiou}, Bull. Korean Math. Soc. 56, No. 6, 1423--1433 (2019; Zbl 1434.26007) Full Text: DOI
Gupta, Vidushi; Dabas, Jaydev Positive solutions for fractional integro-boundary value problem of order \((1,2)\) on an unbounded domain. (English) Zbl 1434.34011 Differ. Equ. Appl. 11, No. 3, 319-333 (2019). MSC: 34A08 34B18 34B40 34B27 47N20 PDF BibTeX XML Cite \textit{V. Gupta} and \textit{J. Dabas}, Differ. Equ. Appl. 11, No. 3, 319--333 (2019; Zbl 1434.34011) Full Text: DOI
El-Owaidy, H.; El-Sayed, A. M. A.; Ahmed, Reda Gamal On an integro-differential equation of arbitrary (fractional) orders with nonlocal integral and infinite-point boundary conditions. (English) Zbl 07159424 Fract. Differ. Calc. 9, No. 2, 227-242 (2019). MSC: 34A08 26A33 34B18 34A30 34K37 34B10 PDF BibTeX XML Cite \textit{H. El-Owaidy} et al., Fract. Differ. Calc. 9, No. 2, 227--242 (2019; Zbl 07159424) Full Text: DOI
Wang, Yanyong; Yan, Yubin; Hu, Ye Numerical methods for solving space fractional partial differential equations using Hadamard finite-part integral approach. (English) Zbl 1449.65204 Commun. Appl. Math. Comput. 1, No. 4, 505-523 (2019). MSC: 65M06 65M12 65M70 65M15 35R11 26A33 65R20 PDF BibTeX XML Cite \textit{Y. Wang} et al., Commun. Appl. Math. Comput. 1, No. 4, 505--523 (2019; Zbl 1449.65204) Full Text: DOI
Li, Lin; Jia, Mei; Liu, Xiping; Song, Junqiu Existence of positive solutions for nonhomogeneous boundary value problems of fractional differential equations with sign changing nonlinearities. (Chinese. English summary) Zbl 1449.34077 J. Jilin Univ., Sci. 57, No. 2, 219-228 (2019). MSC: 34B18 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{L. Li} et al., J. Jilin Univ., Sci. 57, No. 2, 219--228 (2019; Zbl 1449.34077) Full Text: DOI