Sin, Chung-Sik Cauchy problem for nonlocal diffusion equations modelling Lévy flights. (English) Zbl 07541803 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 18, 22 p. (2022). MSC: 35R11 35A08 35B40 35C15 45K05 47G20 PDF BibTeX XML Cite \textit{C.-S. Sin}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 18, 22 p. (2022; Zbl 07541803) Full Text: DOI OpenURL
Ascione, Giacomo; Lőrinczi, József Potentials for non-local Schrödinger operators with zero eigenvalues. (English) Zbl 07483924 J. Differ. Equations 317, 264-364 (2022). MSC: 47D08 60G51 47D03 PDF BibTeX XML Cite \textit{G. Ascione} and \textit{J. Lőrinczi}, J. Differ. Equations 317, 264--364 (2022; Zbl 07483924) Full Text: DOI arXiv OpenURL
de Pablo, Arturo; Quirós, Fernando; Ritorto, Antonella Extremals in Hardy-Littlewood-Sobolev inequalities for stable processes. (English) Zbl 1480.35199 J. Math. Anal. Appl. 507, No. 1, Article ID 125742, 18 p. (2022). MSC: 35J61 35R11 PDF BibTeX XML Cite \textit{A. de Pablo} et al., J. Math. Anal. Appl. 507, No. 1, Article ID 125742, 18 p. (2022; Zbl 1480.35199) Full Text: DOI arXiv OpenURL
Liu, Senli; Chen, Haibo Fractional Kirchhoff-type equation with singular potential and critical exponent. (English) Zbl 07441709 J. Math. Phys. 62, No. 11, 111505, 15 p. (2021). MSC: 35R11 35J62 35R09 PDF BibTeX XML Cite \textit{S. Liu} and \textit{H. Chen}, J. Math. Phys. 62, No. 11, 111505, 15 p. (2021; Zbl 07441709) Full Text: DOI OpenURL
Xue, Xiaoru; Tang, Min Individual based models exhibiting Lévy-flight type movement induced by intracellular noise. (English) Zbl 1475.35027 J. Math. Biol. 83, No. 3, Paper No. 27, 39 p. (2021). MSC: 35B25 35Q49 35R11 82C40 92C17 PDF BibTeX XML Cite \textit{X. Xue} and \textit{M. Tang}, J. Math. Biol. 83, No. 3, Paper No. 27, 39 p. (2021; Zbl 1475.35027) Full Text: DOI OpenURL
Uchaikin, V. V. Nonlocal turbulent diffusion models. (English. Russian original) Zbl 1458.76055 J. Math. Sci., New York 253, No. 4, 573-582 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 154, 113-122 (2018). MSC: 76F25 76R50 PDF BibTeX XML Cite \textit{V. V. Uchaikin}, J. Math. Sci., New York 253, No. 4, 573--582 (2021; Zbl 1458.76055); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 154, 113--122 (2018) Full Text: DOI OpenURL
Volkov, B. O. Applications of Lévy differential operators in the theory of gauge fields. (English. Russian original) Zbl 1468.60087 J. Math. Sci., New York 252, No. 1, 20-35 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 151, 21-36 (2018). MSC: 60H40 60H07 81S25 PDF BibTeX XML Cite \textit{B. O. Volkov}, J. Math. Sci., New York 252, No. 1, 20--35 (2021; Zbl 1468.60087); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 151, 21--36 (2018) Full Text: DOI OpenURL
Lischke, Anna; Pang, Guofei; Gulian, Mamikon; Song, Fangying; Glusa, Christian; Zheng, Xiaoning; Mao, Zhiping; Cai, Wei; Meerschaert, Mark M.; Ainsworth, Mark; Karniadakis, George Em What is the fractional Laplacian? A comparative review with new results. (English) Zbl 1453.35179 J. Comput. Phys. 404, Article ID 109009, 62 p. (2020). MSC: 35R11 60G51 35A01 35A02 65N30 65C05 35-02 65-02 PDF BibTeX XML Cite \textit{A. Lischke} et al., J. Comput. Phys. 404, Article ID 109009, 62 p. (2020; Zbl 1453.35179) Full Text: DOI OpenURL
Volkov, Boris O. Lévy Laplacians and instantons on manifolds. (English) Zbl 1460.58005 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23, No. 2, Article ID 2050008, 20 p. (2020). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 58B20 53C07 70S15 58J35 PDF BibTeX XML Cite \textit{B. O. Volkov}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23, No. 2, Article ID 2050008, 20 p. (2020; Zbl 1460.58005) Full Text: DOI arXiv OpenURL
Estrada-Rodriguez, Gissell; Gimperlein, Heiko Interacting particles with Lévy strategies: limits of transport equations for swarm robotic systems. (English) Zbl 1437.93091 SIAM J. Appl. Math. 80, No. 1, 476-498 (2020). Reviewer: Clementina Mladenova (Sofia) MSC: 93C85 93A16 93C20 35Q93 35R11 PDF BibTeX XML Cite \textit{G. Estrada-Rodriguez} and \textit{H. Gimperlein}, SIAM J. Appl. Math. 80, No. 1, 476--498 (2020; Zbl 1437.93091) Full Text: DOI arXiv Link OpenURL
Sin, Chung-Sik; O, Hyong-Chol; Kim, Sang-Mun Diffusion equations with general nonlocal time and space derivatives. (English) Zbl 1443.60076 Comput. Math. Appl. 78, No. 10, 3268-3284 (2019). MSC: 60J60 35R11 60G51 60J70 PDF BibTeX XML Cite \textit{C.-S. Sin} et al., Comput. Math. Appl. 78, No. 10, 3268--3284 (2019; Zbl 1443.60076) Full Text: DOI arXiv OpenURL
Zhang, Zhijiang; Deng, Weihua; Fan, Hongtao Finite difference schemes for the tempered fractional Laplacian. (English) Zbl 1449.65213 Numer. Math., Theory Methods Appl. 12, No. 2, 492-516 (2019). MSC: 65M06 35R11 26A33 60G51 35B65 65F08 PDF BibTeX XML Cite \textit{Z. Zhang} et al., Numer. Math., Theory Methods Appl. 12, No. 2, 492--516 (2019; Zbl 1449.65213) Full Text: DOI arXiv OpenURL
Volkov, Boris. O. Lévy Laplacian on manifold and Yang-Mills heat flow. (English) Zbl 1432.58009 Lobachevskii J. Math. 40, No. 10, 1619-1630 (2019). Reviewer: Georgios Kydonakis (Strasbourg) MSC: 58E15 58B20 PDF BibTeX XML Cite \textit{Boris. O. Volkov}, Lobachevskii J. Math. 40, No. 10, 1619--1630 (2019; Zbl 1432.58009) Full Text: DOI arXiv OpenURL
Mamon, S. V. On the Hölder property of trajectories in a set of full Wiener measure on the Heisenberg group. (English. Russian original) Zbl 1439.60045 Math. Notes 106, No. 2, 308-312 (2019); translation from Mat. Zametki 106, No. 2, 316-320 (2019). MSC: 60G51 60G57 47D06 PDF BibTeX XML Cite \textit{S. V. Mamon}, Math. Notes 106, No. 2, 308--312 (2019; Zbl 1439.60045); translation from Mat. Zametki 106, No. 2, 316--320 (2019) Full Text: DOI OpenURL
Salem, Samir Propagation of chaos for fractional Keller Segel equations in diffusion dominated and fair competition cases. (English. French summary) Zbl 1427.35297 J. Math. Pures Appl. (9) 132, 79-132 (2019). MSC: 35Q92 35R11 60G52 92C17 60G51 PDF BibTeX XML Cite \textit{S. Salem}, J. Math. Pures Appl. (9) 132, 79--132 (2019; Zbl 1427.35297) Full Text: DOI OpenURL
Wang, Jian Compactness and density estimates for weighted fractional heat semigroups. (English) Zbl 1480.60256 J. Theor. Probab. 32, No. 4, 2066-2087 (2019). MSC: 60J76 47D07 60G51 60G52 60J25 PDF BibTeX XML Cite \textit{J. Wang}, J. Theor. Probab. 32, No. 4, 2066--2087 (2019; Zbl 1480.60256) Full Text: DOI arXiv OpenURL
Demni, Nizar Markov semi-groups associated with the complex unimodular group \(\mathrm{Sl}(2,{\mathbb{C}})\). (English) Zbl 1422.60012 J. Fourier Anal. Appl. 25, No. 5, 2503-2520 (2019). MSC: 60B15 60G51 42A82 22E46 PDF BibTeX XML Cite \textit{N. Demni}, J. Fourier Anal. Appl. 25, No. 5, 2503--2520 (2019; Zbl 1422.60012) Full Text: DOI arXiv OpenURL
Shardlow, Tony A walk outside spheres for the fractional Laplacian: fields and first eigenvalue. (English) Zbl 1416.65034 Math. Comput. 88, No. 320, 2767-2792 (2019). MSC: 65C30 35R11 65C05 60J75 65F15 PDF BibTeX XML Cite \textit{T. Shardlow}, Math. Comput. 88, No. 320, 2767--2792 (2019; Zbl 1416.65034) Full Text: DOI arXiv OpenURL
Volkov, Boris O. Lévy differential operators and gauge invariant equations for Dirac and Higgs fields. (English) Zbl 07076786 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22, No. 1, Article ID 1950001, 20 p. (2019). MSC: 70S15 PDF BibTeX XML Cite \textit{B. O. Volkov}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22, No. 1, Article ID 1950001, 20 p. (2019; Zbl 07076786) Full Text: DOI arXiv OpenURL
Högele, Michael Anton The first exit problem of reaction-diffusion equations for small multiplicative Lévy noise. (English) Zbl 1423.60100 ALEA, Lat. Am. J. Probab. Math. Stat. 16, No. 1, 665-709 (2019). MSC: 60H15 60G51 60G52 60G55 35K05 35K91 PDF BibTeX XML Cite \textit{M. A. Högele}, ALEA, Lat. Am. J. Probab. Math. Stat. 16, No. 1, 665--709 (2019; Zbl 1423.60100) Full Text: arXiv Link OpenURL
Toniazzi, Lorenzo Stochastic classical solutions for space-time fractional evolution equations on a bounded domain. (English) Zbl 1401.60126 J. Math. Anal. Appl. 469, No. 2, 594-622 (2019). MSC: 60H15 35R11 35R60 60J60 PDF BibTeX XML Cite \textit{L. Toniazzi}, J. Math. Anal. Appl. 469, No. 2, 594--622 (2019; Zbl 1401.60126) Full Text: DOI arXiv OpenURL
Kyprianou, Andreas E.; Osojnik, Ana; Shardlow, Tony Unbiased ‘walk-on-spheres’ Monte Carlo methods for the fractional Laplacian. (English) Zbl 1477.65016 IMA J. Numer. Anal. 38, No. 3, 1550-1578 (2018). MSC: 65C05 35R11 PDF BibTeX XML Cite \textit{A. E. Kyprianou} et al., IMA J. Numer. Anal. 38, No. 3, 1550--1578 (2018; Zbl 1477.65016) Full Text: DOI arXiv OpenURL
Gottwald, Sebastian Two-term spectral asymptotics for the Dirichlet pseudo-relativistic kinetic energy operator on a bounded domain. (English) Zbl 1404.60065 Ann. Henri Poincaré 19, No. 12, 3743-3781 (2018). MSC: 60G51 47A10 35P20 PDF BibTeX XML Cite \textit{S. Gottwald}, Ann. Henri Poincaré 19, No. 12, 3743--3781 (2018; Zbl 1404.60065) Full Text: DOI arXiv OpenURL
Perthame, Benoît; Sun, Weiran; Tang, Min The fractional diffusion limit of a kinetic model with biochemical pathway. (English) Zbl 1395.35015 Z. Angew. Math. Phys. 69, No. 3, Paper No. 67, 15 p. (2018). MSC: 35B25 35R11 82C40 92C17 35Q92 PDF BibTeX XML Cite \textit{B. Perthame} et al., Z. Angew. Math. Phys. 69, No. 3, Paper No. 67, 15 p. (2018; Zbl 1395.35015) Full Text: DOI arXiv OpenURL
Chen, Zhen-Qing; Wang, Jie-Ming Perturbation by non-local operators. (English. French summary) Zbl 1391.60190 Ann. Inst. Henri Poincaré, Probab. Stat. 54, No. 2, 606-639 (2018); erratum ibid. 54, No. 2, 606–639 (2018). MSC: 60J35 47G20 60J76 47D07 PDF BibTeX XML Cite \textit{Z.-Q. Chen} and \textit{J.-M. Wang}, Ann. Inst. Henri Poincaré, Probab. Stat. 54, No. 2, 606--639 (2018; Zbl 1391.60190) Full Text: DOI arXiv Euclid OpenURL
Xue, Liutang; Ye, Zhuan On the differentiability issue of the drift-diffusion equation with nonlocal Lévy-type diffusion. (English) Zbl 1379.35049 Pac. J. Math. 293, No. 2, 471-510 (2018). MSC: 35B65 35Q35 35R11 35B45 35R09 PDF BibTeX XML Cite \textit{L. Xue} and \textit{Z. Ye}, Pac. J. Math. 293, No. 2, 471--510 (2018; Zbl 1379.35049) Full Text: DOI arXiv OpenURL
Cusimano, Nicole; Burrage, Kevin; Turner, I.; Kay, David On reflecting boundary conditions for space-fractional equations on a finite interval: proof of the matrix transfer technique. (English) Zbl 1443.35166 Appl. Math. Modelling 42, 554-565 (2017). MSC: 35R11 PDF BibTeX XML Cite \textit{N. Cusimano} et al., Appl. Math. Modelling 42, 554--565 (2017; Zbl 1443.35166) Full Text: DOI OpenURL
Volkov, Boris O. Stochastic Lévy differential operators and Yang-Mills equations. (English) Zbl 1393.70045 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 20, No. 2, Article ID 1750008, 23 p. (2017). MSC: 70S15 81S25 PDF BibTeX XML Cite \textit{B. O. Volkov}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 20, No. 2, Article ID 1750008, 23 p. (2017; Zbl 1393.70045) Full Text: DOI arXiv OpenURL
Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A. Fractional random walk lattice dynamics. (English) Zbl 1357.82059 J. Phys. A, Math. Theor. 50, No. 5, Article ID 055003, 22 p. (2017). MSC: 82C41 82C20 82C70 82D25 PDF BibTeX XML Cite \textit{T. M. Michelitsch} et al., J. Phys. A, Math. Theor. 50, No. 5, Article ID 055003, 22 p. (2017; Zbl 1357.82059) Full Text: DOI arXiv Link OpenURL
Wang, Ming; Duan, Jinqiao Existence and regularity of a linear nonlocal Fokker-Planck equation with growing drift. (English) Zbl 1366.35230 J. Math. Anal. Appl. 449, No. 1, 228-243 (2017). MSC: 35R11 35R60 35B65 60H15 PDF BibTeX XML Cite \textit{M. Wang} and \textit{J. Duan}, J. Math. Anal. Appl. 449, No. 1, 228--243 (2017; Zbl 1366.35230) Full Text: DOI OpenURL
Gao, Ting; Duan, Jinqiao; Li, Xiaofan Fokker-Planck equations for stochastic dynamical systems with symmetric Lévy motions. (English) Zbl 1410.82017 Appl. Math. Comput. 278, 1-20 (2016). MSC: 82C31 82C80 60G17 60G52 60H10 65C30 65C50 PDF BibTeX XML Cite \textit{T. Gao} et al., Appl. Math. Comput. 278, 1--20 (2016; Zbl 1410.82017) Full Text: DOI arXiv OpenURL
Orsingher, Enzo; Ricciuti, Costantino; Toaldo, Bruno Time-inhomogeneous jump processes and variable order operators. (English) Zbl 1361.60075 Potential Anal. 45, No. 3, 435-461 (2016). Reviewer: Nicolas Privault (Singapore) MSC: 60J75 60G51 60G55 60J65 PDF BibTeX XML Cite \textit{E. Orsingher} et al., Potential Anal. 45, No. 3, 435--461 (2016; Zbl 1361.60075) Full Text: DOI arXiv OpenURL
Lalley, Steven P.; Shao, Yuan Maximal displacement of critical branching symmetric stable processes. (English. French summary) Zbl 1352.60122 Ann. Inst. Henri Poincaré, Probab. Stat. 52, No. 3, 1161-1177 (2016). Reviewer: Zakhar Kabluchko (Münster) MSC: 60J80 60J25 60G52 60G51 PDF BibTeX XML Cite \textit{S. P. Lalley} and \textit{Y. Shao}, Ann. Inst. Henri Poincaré, Probab. Stat. 52, No. 3, 1161--1177 (2016; Zbl 1352.60122) Full Text: DOI arXiv Euclid OpenURL
Luo, Chaoliang; Guo, Shangjiang Existence and stability of mild solutions to parabolic stochastic partial differential equations driven by Lévy space-time noise. (English) Zbl 1363.60087 Electron. J. Qual. Theory Differ. Equ. 2016, Paper No. 53, 25 p. (2016). MSC: 60H15 35R60 35K91 35B35 PDF BibTeX XML Cite \textit{C. Luo} and \textit{S. Guo}, Electron. J. Qual. Theory Differ. Equ. 2016, Paper No. 53, 25 p. (2016; Zbl 1363.60087) Full Text: DOI OpenURL
Mitter, P. K. On a finite range decomposition of the resolvent of a fractional power of the Laplacian. (English) Zbl 1342.82040 J. Stat. Phys. 163, No. 5, 1235-1246 (2016); erratum ibid. 166, No. 2, 453-455 (2017). MSC: 82B20 82B41 82B27 PDF BibTeX XML Cite \textit{P. K. Mitter}, J. Stat. Phys. 163, No. 5, 1235--1246 (2016; Zbl 1342.82040) Full Text: DOI arXiv OpenURL
Wang, Ming; Duan, Jinqiao Smooth solution of a nonlocal Fokker-Planck equation associated with stochastic systems with Lévy noise. (English) Zbl 1342.35398 Appl. Math. Lett. 58, 172-177 (2016). MSC: 35Q84 82C31 26A33 35R11 35R60 PDF BibTeX XML Cite \textit{M. Wang} and \textit{J. Duan}, Appl. Math. Lett. 58, 172--177 (2016; Zbl 1342.35398) Full Text: DOI OpenURL
Volkov, B. O. Lévy d’Alambertians and their application in the quantum theory. (Russian. English summary) Zbl 1413.81036 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 19, No. 2, 241-258 (2015). MSC: 81T13 PDF BibTeX XML Cite \textit{B. O. Volkov}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 19, No. 2, 241--258 (2015; Zbl 1413.81036) Full Text: DOI MNR OpenURL
He, Jinchun; Duan, Jinqiao; Gao, Hongjun A nonlocal Fokker-Planck equation for non-Gaussian stochastic dynamical systems. (English) Zbl 1342.35396 Appl. Math. Lett. 49, 1-6 (2015). MSC: 35Q84 82C31 35R60 35D30 60G51 35D40 PDF BibTeX XML Cite \textit{J. He} et al., Appl. Math. Lett. 49, 1--6 (2015; Zbl 1342.35396) Full Text: DOI OpenURL
Feller, M. N. Boundary-value problems for a nonlinear hyperbolic equation with variable coefficients and the Lévy Laplacian. II. (English. Russian original) Zbl 1334.35411 Math. Notes 97, No. 6, 930-936 (2015); translation from Mat. Zametki 97, No. 6, 917-924 (2015). MSC: 35R15 PDF BibTeX XML Cite \textit{M. N. Feller}, Math. Notes 97, No. 6, 930--936 (2015; Zbl 1334.35411); translation from Mat. Zametki 97, No. 6, 917--924 (2015) Full Text: DOI OpenURL
Michelitsch, Thomas M.; Collet, Bernard; Nowakowski, Andrzej F.; Nicolleau, Franck C. G. A. Fractional Laplacian matrix on the finite periodic linear chain and its periodic Riesz fractional derivative continuum limit. (English) Zbl 1330.82013 J. Phys. A, Math. Theor. 48, No. 29, Article ID 295202, 27 p. (2015). Reviewer: Nasir N. Ganikhodjaev (Kuantan) MSC: 82B20 82B41 26A33 81T27 06B15 35R11 PDF BibTeX XML Cite \textit{T. M. Michelitsch} et al., J. Phys. A, Math. Theor. 48, No. 29, Article ID 295202, 27 p. (2015; Zbl 1330.82013) Full Text: DOI arXiv OpenURL
Yang, Minsuk A parabolic Triebel-Lizorkin space estimate for the fractional Laplacian operator. (English) Zbl 1318.42025 Proc. Am. Math. Soc. 143, No. 6, 2571-2578 (2015). Reviewer: Kôzô Yabuta (Nishinomiya) MSC: 42B25 42B35 60H15 46E35 60G51 26D10 PDF BibTeX XML Cite \textit{M. Yang}, Proc. Am. Math. Soc. 143, No. 6, 2571--2578 (2015; Zbl 1318.42025) Full Text: DOI arXiv OpenURL
Wang, Jie-Ming Laplacian perturbed by non-local operators. (English) Zbl 1334.60158 Math. Z. 279, No. 1-2, 521-556 (2015). MSC: 60J35 47D07 60J75 60J65 47G20 PDF BibTeX XML Cite \textit{J.-M. Wang}, Math. Z. 279, No. 1--2, 521--556 (2015; Zbl 1334.60158) Full Text: DOI arXiv Link OpenURL
Feller, M. N. Boundary-value problems for a nonlinear hyperbolic equation with variable coefficients and the Lévy Laplacian. (English. Russian original) Zbl 1323.35206 Math. Notes 96, No. 3, 423-431 (2014); translation from Mat. Zametki 96, No. 3, 440-449 (2014). MSC: 35R15 PDF BibTeX XML Cite \textit{M. N. Feller}, Math. Notes 96, No. 3, 423--431 (2014; Zbl 1323.35206); translation from Mat. Zametki 96, No. 3, 440--449 (2014) Full Text: DOI OpenURL
Schwab, Russell W.; Rang, Marcus; Kassmann, Moritz Integro-differential equations with nonlinear directional dependence. (English) Zbl 1311.35047 Indiana Univ. Math. J. 63, No. 5, 1467-1498 (2014). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B65 35J60 35R09 60J75 PDF BibTeX XML Cite \textit{R. W. Schwab} et al., Indiana Univ. Math. J. 63, No. 5, 1467--1498 (2014; Zbl 1311.35047) Full Text: DOI arXiv Link Link OpenURL
D’Ovidio, Mirko; Orsingher, Enzo; Toaldo, Bruno Time-changed processes governed by space-time fractional telegraph equations. (English) Zbl 1309.60046 Stochastic Anal. Appl. 32, No. 6, 1009-1045 (2014). Reviewer: Yuliya S. Mishura (Kyïv) MSC: 60G52 60G51 26A33 35R11 34A08 34K37 35C05 33C10 PDF BibTeX XML Cite \textit{M. D'Ovidio} et al., Stochastic Anal. Appl. 32, No. 6, 1009--1045 (2014; Zbl 1309.60046) Full Text: DOI arXiv OpenURL
Bogdan, Krzysztof; Dyda, Bartłomiej; Luks, Tomasz On Hardy spaces of local and nonlocal operators. (English) Zbl 1312.42026 Hiroshima Math. J. 44, No. 2, 193-215 (2014). Reviewer: Nicolas Privault (Singapore) MSC: 42B30 42B35 60G51 60G52 60J75 60J50 30H10 30H20 35J05 35R11 31B25 PDF BibTeX XML Cite \textit{K. Bogdan} et al., Hiroshima Math. J. 44, No. 2, 193--215 (2014; Zbl 1312.42026) Full Text: arXiv Euclid OpenURL
Bogdan, Krzysztof; Komorowski, Tomasz Principal eigenvalue of the fractional Laplacian with a large incompressible drift. (English) Zbl 1296.35101 NoDEA, Nonlinear Differ. Equ. Appl. 21, No. 4, 541-566 (2014). MSC: 35P20 35R11 35R09 47G20 60G51 60J75 PDF BibTeX XML Cite \textit{K. Bogdan} and \textit{T. Komorowski}, NoDEA, Nonlinear Differ. Equ. Appl. 21, No. 4, 541--566 (2014; Zbl 1296.35101) Full Text: DOI arXiv OpenURL
Jo, Sihun; Yang, Minsuk Precise asymptotic approximations for kernels corresponding to Lévy processes. (English) Zbl 1292.60028 Potential Anal. 40, No. 3, 203-230 (2014). MSC: 60E07 60E10 60G51 PDF BibTeX XML Cite \textit{S. Jo} and \textit{M. Yang}, Potential Anal. 40, No. 3, 203--230 (2014; Zbl 1292.60028) Full Text: DOI arXiv OpenURL
D’Ovidio, Mirko; Orsingher, Enzo; Toaldo, Bruno Fractional telegraph-type equations and hyperbolic Brownian motion. (English) Zbl 1339.60087 Stat. Probab. Lett. 89, 131-137 (2014). MSC: 60H30 60J65 35R11 60G22 60G51 60G52 35C05 26A33 PDF BibTeX XML Cite \textit{M. D'Ovidio} et al., Stat. Probab. Lett. 89, 131--137 (2014; Zbl 1339.60087) Full Text: DOI OpenURL
Erbar, Matthias Ricci curvature and gradient flows of the entropy for jump processes. (English) Zbl 1294.53001 Bonn: Univ. Bonn, Mathematisch-Naturwissenschaftliche Fakultät (Diss.). viii, 93 p. (2013). MSC: 53-02 53C21 60J75 28A33 PDF BibTeX XML Cite \textit{M. Erbar}, Ricci curvature and gradient flows of the entropy for jump processes. Bonn: Univ. Bonn, Mathematisch-Naturwissenschaftliche Fakultät (Diss.) (2013; Zbl 1294.53001) Full Text: Link OpenURL
Volkov, Boris O. Hierarchy of Lévy-Laplacians and quantum stochastic processes. (English) Zbl 1303.60062 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16, No. 4, Article ID 1350028, 20 p. (2013). Reviewer: Dora Seleši (Novi Sad) MSC: 60H40 PDF BibTeX XML Cite \textit{B. O. Volkov}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16, No. 4, Article ID 1350028, 20 p. (2013; Zbl 1303.60062) Full Text: DOI OpenURL
Chaturapruek, Sorathan; Breslau, Jonah; Yazdi, Daniel; Kolokolnikov, Theodore; McCalla, Scott G. Crime modeling with Lévy flights. (English) Zbl 1280.35158 SIAM J. Appl. Math. 73, No. 4, 1703-1720 (2013). Reviewer: Laurent Thomann (Nantes) MSC: 35Q91 35Q92 60G22 PDF BibTeX XML Cite \textit{S. Chaturapruek} et al., SIAM J. Appl. Math. 73, No. 4, 1703--1720 (2013; Zbl 1280.35158) Full Text: DOI Link OpenURL
Accardi, Luigi; Ji, Un Cig; Saitô, Kimiaki The exotic (higher order Lévy) Laplacians generate the Markov processes given by distribution derivatives of white noise. (English) Zbl 1285.60069 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16, No. 3, Article ID 1350020, 26 p. (2013). Reviewer: Dora Seleši (Novi Sad) MSC: 60H40 60J25 81S25 PDF BibTeX XML Cite \textit{L. Accardi} et al., Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16, No. 3, Article ID 1350020, 26 p. (2013; Zbl 1285.60069) Full Text: DOI OpenURL
Kovtun, I. I.; Feller, M. N. Boundary-value problems for a nonlinear hyperbolic equation with Lévy Laplacian. (English. Ukrainian original) Zbl 1273.35178 Ukr. Math. J. 64, No. 11, 1688-1697 (2013); translation from Ukr. Mat. Zh. 64, No. 11, 1492-1499 (2012). MSC: 35L20 35L71 PDF BibTeX XML Cite \textit{I. I. Kovtun} and \textit{M. N. Feller}, Ukr. Math. J. 64, No. 11, 1688--1697 (2013; Zbl 1273.35178); translation from Ukr. Mat. Zh. 64, No. 11, 1492--1499 (2012) Full Text: DOI OpenURL
Luks, Tomasz Boundary behavior of \(\alpha \)-harmonic functions on the complement of the sphere and hyperplane. (English) Zbl 1277.60135 Potential Anal. 39, No. 1, 29-67 (2013). Reviewer: Ferenc Weisz (Budapest) MSC: 60J75 60J50 60J45 42B30 31B25 PDF BibTeX XML Cite \textit{T. Luks}, Potential Anal. 39, No. 1, 29--67 (2013; Zbl 1277.60135) Full Text: DOI arXiv HAL OpenURL
Wang, Jian Sub-Markovian \(C _{0}\)-semigroups generated by fractional Laplacian with gradient perturbation. (English) Zbl 1284.47030 Integral Equations Oper. Theory 76, No. 2, 151-161 (2013). Reviewer: Ruhollah Jahanipur (Kashan) MSC: 47D07 60J25 60J75 35S05 PDF BibTeX XML Cite \textit{J. Wang}, Integral Equations Oper. Theory 76, No. 2, 151--161 (2013; Zbl 1284.47030) Full Text: DOI OpenURL
Volkov, Boris O. Lévy-Laplacian and the gauge fields. (English) Zbl 1268.58011 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15, No. 4, Paper No. 1250027, 19 p. (2012). MSC: 58E15 81T13 53C07 58B99 PDF BibTeX XML Cite \textit{B. O. Volkov}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15, No. 4, Paper No. 1250027, 19 p. (2012; Zbl 1268.58011) Full Text: DOI OpenURL
Ren, Jian; Li, Chujin; Gao, Ting; Kan, Xingye; Duan, Jinqiao Mean exit time and escape probability for a tumor growth system under non-Gaussian noise. (English) Zbl 1258.34106 Int. J. Bifurcation Chaos Appl. Sci. Eng. 22, No. 4, Paper No. 1250090, 10 p. (2012). MSC: 34C60 92C37 34F10 34A08 PDF BibTeX XML Cite \textit{J. Ren} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 22, No. 4, Paper No. 1250090, 10 p. (2012; Zbl 1258.34106) Full Text: DOI arXiv OpenURL
Harada, Kei Relationships between usual and exotic Hida-Kubo-Takenaka spaces. (English) Zbl 1255.60118 Stochastics 84, No. 2-3, 307-313 (2012). MSC: 60H40 PDF BibTeX XML Cite \textit{K. Harada}, Stochastics 84, No. 2--3, 307--313 (2012; Zbl 1255.60118) Full Text: DOI arXiv OpenURL
Kim, Kyeong-Hun; Kim, Panki An \(L_p\)-theory of a class of stochastic equations with the random fractional Laplacian driven by Lévy processes. (English) Zbl 1260.60121 Stochastic Processes Appl. 122, No. 12, 3921-3952 (2012). Reviewer: Dora Seleši (Novi Sad) MSC: 60H15 35R60 PDF BibTeX XML Cite \textit{K.-H. Kim} and \textit{P. Kim}, Stochastic Processes Appl. 122, No. 12, 3921--3952 (2012; Zbl 1260.60121) Full Text: DOI arXiv OpenURL
Chen, Zhen-Qing; Kim, Panki; Song, Renming Global heat kernel estimates for \(\Delta+\Delta^{\alpha/2}\) in half-space-like domains. (English) Zbl 1247.60115 Electron. J. Probab. 17, Paper No. 32, 32 p. (2012). MSC: 60J35 47G20 60J75 47D07 PDF BibTeX XML Cite \textit{Z.-Q. Chen} et al., Electron. J. Probab. 17, Paper No. 32, 32 p. (2012; Zbl 1247.60115) Full Text: DOI arXiv OpenURL
Ottobre, Michela Long time asymptotics of a Brownian particle coupled with a random environment with non-diffusive feedback force. (English) Zbl 1254.60041 Stochastic Processes Appl. 122, No. 3, 844-884 (2012). Reviewer: Rudolf Gorenflo (Berlin) MSC: 60G22 60G50 60G15 60H10 60J65 60K37 PDF BibTeX XML Cite \textit{M. Ottobre}, Stochastic Processes Appl. 122, No. 3, 844--884 (2012; Zbl 1254.60041) Full Text: DOI arXiv OpenURL
Accardi, Luigi; Barhoumi, Abdessatar; Ji, Un Cig Quantum Laplacians on generalized operators on boson Fock space. (English) Zbl 1260.60136 Probab. Math. Stat. 31, No. 2, 203-225 (2011). MSC: 60H40 46F25 PDF BibTeX XML Cite \textit{L. Accardi} et al., Probab. Math. Stat. 31, No. 2, 203--225 (2011; Zbl 1260.60136) Full Text: Link OpenURL
Cifani, Simone; Jakobsen, Espen R.; Karlsen, Kenneth H. The discontinuous Galerkin method for fractional degenerate convection-diffusion equations. (English) Zbl 1247.65128 BIT 51, No. 4, 809-844 (2011). Reviewer: Angela Handlovičová (Bratislava) MSC: 65M60 65M12 35K65 35K59 35L67 35R11 PDF BibTeX XML Cite \textit{S. Cifani} et al., BIT 51, No. 4, 809--844 (2011; Zbl 1247.65128) Full Text: DOI arXiv OpenURL
Feller, M. N.; Kovtun, I. I. Boundary problems and initial-boundary value problems for one class of nonlinear parabolic equations with Lévy Laplacian. (English) Zbl 1240.35568 Methods Funct. Anal. Topol. 17, No. 2, 118-125 (2011). Reviewer: A. N. Kochubei (Kyïv) MSC: 35R15 PDF BibTeX XML Cite \textit{M. N. Feller} and \textit{I. I. Kovtun}, Methods Funct. Anal. Topol. 17, No. 2, 118--125 (2011; Zbl 1240.35568) OpenURL
Accardi, Luigi; Ji, Un Cig; Saitô, Kimiaki Exotic laplacians and derivatives of white noise. (English) Zbl 1213.60114 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14, No. 1, 1-14 (2011). MSC: 60H40 PDF BibTeX XML Cite \textit{L. Accardi} et al., Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14, No. 1, 1--14 (2011; Zbl 1213.60114) Full Text: DOI OpenURL
Feller, M. N.; Kovtun, I. I. Boundary-value problems for a nonlinear parabolic equation with Lévy Laplacian resolved with respect to the derivative. (Russian, English) Zbl 1240.35238 Ukr. Mat. Zh. 62, No. 10, 1400-1407 (2010); translation in Ukr. Math. J. 62, No. 10, 1625-1634 (2010). MSC: 35K55 PDF BibTeX XML Cite \textit{M. N. Feller} and \textit{I. I. Kovtun}, Ukr. Mat. Zh. 62, No. 10, 1400--1407 (2010; Zbl 1240.35238); translation in Ukr. Math. J. 62, No. 10, 1625--1634 (2010) Full Text: DOI OpenURL
Albeverio, S.; Belopolskaya, Ya. I.; Feller, M. N. Boundary problems for the wave equation with the Lévy Laplacian in Shilov’s class. (English) Zbl 1224.35417 Methods Funct. Anal. Topol. 16, No. 3, 197-202 (2010). Reviewer: A. N. Kochubei (Kyïv) MSC: 35R15 46G05 PDF BibTeX XML Cite \textit{S. Albeverio} et al., Methods Funct. Anal. Topol. 16, No. 3, 197--202 (2010; Zbl 1224.35417) OpenURL
Alibaud, Nathaël; Andreianov, Boris Non-uniqueness of weak solutions for the fractal Burgers equation. (English) Zbl 1201.35006 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, No. 4, 997-1016 (2010). Reviewer: Nasser-eddine Tatar (Dhahran) MSC: 35A02 35R11 35L45 35L65 35L67 35L82 35S10 35S30 PDF BibTeX XML Cite \textit{N. Alibaud} and \textit{B. Andreianov}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, No. 4, 997--1016 (2010; Zbl 1201.35006) Full Text: DOI arXiv OpenURL
Bogdan, Krzysztof; Grzywny, Tomasz Heat kernel of fractional Laplacian in cones. (English) Zbl 1196.60137 Colloq. Math. 118, No. 2, 365-377 (2010). Reviewer: Liliana Popa (Iaşi) MSC: 60J35 60J50 60J75 31B25 PDF BibTeX XML Cite \textit{K. Bogdan} and \textit{T. Grzywny}, Colloq. Math. 118, No. 2, 365--377 (2010; Zbl 1196.60137) Full Text: DOI arXiv OpenURL
Feller, M. N. Boundary-value problems for the wave equation with Lévy Laplacian in the Gâteaux class. (Russian, English) Zbl 1224.35242 Ukr. Mat. Zh. 61, No. 11, 1564-1574 (2009); translation in Ukr. Math. J. 61, No. 11, 1839-1852 (2009). MSC: 35L05 PDF BibTeX XML Cite \textit{M. N. Feller}, Ukr. Mat. Zh. 61, No. 11, 1564--1574 (2009; Zbl 1224.35242); translation in Ukr. Math. J. 61, No. 11, 1839--1852 (2009) Full Text: DOI OpenURL
Saitô, Kimiaki A Gauss-Poisson correspondence and the Lévy Laplacian. (English) Zbl 1179.60048 Interdiscip. Inf. Sci. 15, No. 3, 431-440 (2009). MSC: 60H40 PDF BibTeX XML Cite \textit{K. Saitô}, Interdiscip. Inf. Sci. 15, No. 3, 431--440 (2009; Zbl 1179.60048) Full Text: DOI OpenURL
Gentil, Ivan; Imbert, Cyril Logarithmic Sobolev inequalities: regularizing effect of Lévy operators and asymptotic convergence in the Lévy-Fokker-Planck equation. (English) Zbl 1202.47093 Stochastics 81, No. 3-4, 401-414 (2009). Reviewer: Victoria Knopova (Kiev) MSC: 47N20 46N20 47G20 35K15 47D07 60G60 PDF BibTeX XML Cite \textit{I. Gentil} and \textit{C. Imbert}, Stochastics 81, No. 3--4, 401--414 (2009; Zbl 1202.47093) Full Text: DOI arXiv OpenURL
Caffarelli, Luis; Silvestre, Luis Regularity theory for fully nonlinear integro-differential equations. (English) Zbl 1170.45006 Commun. Pure Appl. Math. 62, No. 5, 597-638 (2009). Reviewer: Iulian Stoleriu (Iaşi) MSC: 45K05 45G10 93E03 PDF BibTeX XML Cite \textit{L. Caffarelli} and \textit{L. Silvestre}, Commun. Pure Appl. Math. 62, No. 5, 597--638 (2009; Zbl 1170.45006) Full Text: DOI arXiv OpenURL
Alibaud, Nathaël; Imbert, Cyril Fractional semi-linear parabolic equations with unbounded data. (English) Zbl 1173.35525 Trans. Am. Math. Soc. 361, No. 5, 2527-2566 (2009). Reviewer: Juan J. Trujillo (La Laguna) MSC: 35K55 26A33 35B65 35D05 35B05 PDF BibTeX XML Cite \textit{N. Alibaud} and \textit{C. Imbert}, Trans. Am. Math. Soc. 361, No. 5, 2527--2566 (2009; Zbl 1173.35525) Full Text: DOI OpenURL
Saitô, Kimiaki; Sakabe, Kazuyoshi; Hirose, Kazumasa A Gauss-Poisson correspondence and infinite dimensional Laplacians. (English) Zbl 1221.60102 Far East J. Math. Sci. (FJMS) 31, No. 1, 31-47 (2008). Reviewer: Martin Ondreját (Praha) MSC: 60H40 PDF BibTeX XML Cite \textit{K. Saitô} et al., Far East J. Math. Sci. (FJMS) 31, No. 1, 31--47 (2008; Zbl 1221.60102) Full Text: Link OpenURL
Jourdain, Benjamin; Méléard, Sylvie; Woyczynski, Wojbor A. Nonlinear SDEs driven by Lévy processes and related PDEs. (English) Zbl 1162.60327 ALEA, Lat. Am. J. Probab. Math. Stat. 4, 1-29 (2008). MSC: 60H10 35R60 65C30 PDF BibTeX XML Cite \textit{B. Jourdain} et al., ALEA, Lat. Am. J. Probab. Math. Stat. 4, 1--29 (2008; Zbl 1162.60327) Full Text: arXiv OpenURL
Feller, M. N.; Kovtun, I. I. Quasilinear parabolic equations with Lévy Laplacian for functions of an infinite number of variables. (English) Zbl 1164.35076 Methods Funct. Anal. Topol. 14, No. 2, 117-123 (2008). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 35R15 46G05 PDF BibTeX XML Cite \textit{M. N. Feller} and \textit{I. I. Kovtun}, Methods Funct. Anal. Topol. 14, No. 2, 117--123 (2008; Zbl 1164.35076) OpenURL
Albeverio, S.; Belopolskaya, Ya.; Feller, M. Boundary problems for fully nonlinear parabolic equations with Lévy Laplacian. (English) Zbl 1164.35075 Methods Funct. Anal. Topol. 14, No. 1, 1-9 (2008). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 35R15 46G05 PDF BibTeX XML Cite \textit{S. Albeverio} et al., Methods Funct. Anal. Topol. 14, No. 1, 1--9 (2008; Zbl 1164.35075) OpenURL
Gentil, Ivan; Imbert, Cyril The Lévy-Fokker-Planck equation: \(\Phi\)-entropies and convergence to equilibrium. (English) Zbl 1170.35337 Asymptotic Anal. 59, No. 3-4, 125-138 (2008). MSC: 35B40 82C31 PDF BibTeX XML Cite \textit{I. Gentil} and \textit{C. Imbert}, Asymptotic Anal. 59, No. 3--4, 125--138 (2008; Zbl 1170.35337) Full Text: DOI OpenURL
Wang, Jian Criteria for ergodicity of Lévy type operators in dimension one. (English) Zbl 1157.60072 Stochastic Processes Appl. 118, No. 10, 1909-1928 (2008). Reviewer: Liliana Popa (Iaşi) MSC: 60J25 60J75 PDF BibTeX XML Cite \textit{J. Wang}, Stochastic Processes Appl. 118, No. 10, 1909--1928 (2008; Zbl 1157.60072) Full Text: DOI OpenURL
Si, Si An aspect of quadratic Hida distributions in the realization of a duality between Gaussian and Poisson noises. (English) Zbl 1145.60039 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11, No. 1, 109-118 (2008). MSC: 60H40 46F25 PDF BibTeX XML Cite \textit{S. Si}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11, No. 1, 109--118 (2008; Zbl 1145.60039) Full Text: DOI OpenURL
Accardi, L.; Smolyanov, O. G. Classical and nonclassical Levy Laplacians. (English. Russian original) Zbl 1155.35482 Dokl. Math. 76, No. 3, 801-805 (2007); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 417, No. 1, 7-11 (2007). Reviewer: Nils Ackermann (México) MSC: 35R15 46G05 81S25 PDF BibTeX XML Cite \textit{L. Accardi} and \textit{O. G. Smolyanov}, Dokl. Math. 76, No. 3, 801--805 (2007; Zbl 1155.35482); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 417, No. 1, 7--11 (2007) Full Text: DOI OpenURL
Sakabe, Kazuyoshi Schrödinger type equation associated with the Lévy and Volterra Laplacians. (English) Zbl 1149.60046 Commun. Stoch. Anal. 1, No. 3, 429-439 (2007). MSC: 60H40 46F25 PDF BibTeX XML Cite \textit{K. Sakabe}, Commun. Stoch. Anal. 1, No. 3, 429--439 (2007; Zbl 1149.60046) OpenURL
Grzywny, Tomasz; Ryznar, Michał Estimates of Green functions for some perturbations of fractional Laplacian. (English) Zbl 1152.60060 Ill. J. Math. 51, No. 4, 1409-1438 (2007). Reviewer: Liliana Popa (Iaşi) MSC: 60J45 60J50 60G51 PDF BibTeX XML Cite \textit{T. Grzywny} and \textit{M. Ryznar}, Ill. J. Math. 51, No. 4, 1409--1438 (2007; Zbl 1152.60060) Full Text: arXiv OpenURL
Alibaud, Nathaël; Droniou, Jéromé; Vovelle, Julien Occurrence and non-appearence of shocks in fractal Burgers equations. (English) Zbl 1144.35038 J. Hyperbolic Differ. Equ. 4, No. 3, 479-499 (2007). MSC: 35L67 35L65 35B65 35S30 PDF BibTeX XML Cite \textit{N. Alibaud} et al., J. Hyperbolic Differ. Equ. 4, No. 3, 479--499 (2007; Zbl 1144.35038) Full Text: DOI OpenURL
Ji, Un Cig; Saitô, Kimiaki A similarity between the Gross Laplacian and the Lévy Laplacian. (English) Zbl 1118.60057 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10, No. 2, 261-276 (2007). MSC: 60H40 PDF BibTeX XML Cite \textit{U. C. Ji} and \textit{K. Saitô}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10, No. 2, 261--276 (2007; Zbl 1118.60057) Full Text: DOI OpenURL
Albeverio, S.; Belopolskaya, Ya.; Feller, M. Lévy-Dirichlet forms. II. (English) Zbl 1118.35056 Methods Funct. Anal. Topol. 12, No. 4, 302-314 (2006). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 35R15 46G05 31C25 60J25 60J60 PDF BibTeX XML Cite \textit{S. Albeverio} et al., Methods Funct. Anal. Topol. 12, No. 4, 302--314 (2006; Zbl 1118.35056) OpenURL
Barhoumi, A.; Ouerdiane, H. Quantum Lévy-type Laplacian and associated stochastic differential equations. (English) Zbl 1105.60049 Bożejko, Marek (ed.) et al., Quantum probability. Papers presented at the 25th QP conference on quantum probability and related topics, Będlewo, Poland, June 20–26, 2004. Warsaw: Polish Academy of Sciences, Institute of Mathematics. Banach Center Publications 73, 81-97 (2006). MSC: 60H40 46A32 46F25 46G20 PDF BibTeX XML Cite \textit{A. Barhoumi} and \textit{H. Ouerdiane}, Banach Cent. Publ. 73, 81--97 (2006; Zbl 1105.60049) Full Text: Link OpenURL
Nishi, Kenjiro; Saitô, Kimiaki; Tsoi, Allanus H. Fractional Brownian motions and the Lévy Laplacian. (English) Zbl 1103.60042 Hida, Takeyuki (ed.) et al., Quantum information V. Proceedings of the 5th international conference, Nagoya, Japan, December 17–19, 2001. Hackensack, NJ: World Scientific (ISBN 981-238-585-1/hbk). 181-191 (2006). MSC: 60G15 60H40 PDF BibTeX XML Cite \textit{K. Nishi} et al., in: Quantum information V. Proceedings of the 5th international conference, Nagoya, Japan, December 17--19, 2001. Hackensack, NJ: World Scientific. 181--191 (2006; Zbl 1103.60042) OpenURL
Accardi, Luigi; Barhoumi, Abdessatar; Ouerdiane, Habib A quantum approach to Laplace operators. (English) Zbl 1097.60065 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9, No. 2, 215-248 (2006). MSC: 60J65 60J45 60H40 PDF BibTeX XML Cite \textit{L. Accardi} et al., Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9, No. 2, 215--248 (2006; Zbl 1097.60065) Full Text: DOI OpenURL
Albeverio, S.; Belopolskaya, Ya.; Feller, M. The Cauchy problem for nonlinear parabolic equations with Lévy Laplacian. (English) Zbl 1091.35110 Potential Anal. 24, No. 2, 125-136 (2006). MSC: 35R15 35K55 46G05 PDF BibTeX XML Cite \textit{S. Albeverio} et al., Potential Anal. 24, No. 2, 125--136 (2006; Zbl 1091.35110) Full Text: DOI OpenURL
Obrezkov, Oleg O. Non-selfadjoint extensions of the Lévy-Laplacian and the Lévy-Laplace equation. (English) Zbl 1104.35067 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9, No. 1, 67-76 (2006). Reviewer: Uta Freiberg (Canberra) MSC: 35R15 35P05 47A10 47A70 47A75 60J35 PDF BibTeX XML Cite \textit{O. O. Obrezkov}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9, No. 1, 67--76 (2006; Zbl 1104.35067) Full Text: DOI OpenURL
Saitô, Kimiaki An infinite dimensional Laplacian acting on multiple Wiener integrals by some Lévy processes. (English) Zbl 1118.28009 Heyer, Herbert (ed.) et al., Infinite dimensional harmonic analysis III. Proceedings of the 3rd German-Japanese symposium, University of Tübingen, Tübingen, Germany, September 15–20, 2003. Hackensack, NJ: World Scientific (ISBN 981-256-593-0/hbk). 265-276 (2005). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 28C20 60G51 46G05 60H40 PDF BibTeX XML Cite \textit{K. Saitô}, in: Infinite dimensional harmonic analysis III. Proceedings of the 3rd German-Japanese symposium, University of Tübingen, Tübingen, Germany, September 15--20, 2003. Hackensack, NJ: World Scientific. 265--276 (2005; Zbl 1118.28009) OpenURL
Albeverio, S.; Belopolskaya, Ya.; Feller, M. Riquier problem for nonlinear elliptic equations with Lévy Laplacians. (English) Zbl 1094.35131 Methods Funct. Anal. Topol. 11, No. 1, 1-9 (2005). Reviewer: A. N. Kochubei (Kyïv) MSC: 35R15 46G05 PDF BibTeX XML Cite \textit{S. Albeverio} et al., Methods Funct. Anal. Topol. 11, No. 1, 1--9 (2005; Zbl 1094.35131) OpenURL
Feller, M. N. The Lévy Laplacian. (English) Zbl 1085.47057 Cambridge Tracts in Mathematics 166. Cambridge: Cambridge University Press (ISBN 0-521-84622-6/hbk). vi, 153 p. (2005). Reviewer: Niels Jacob (Swansea) MSC: 47J35 35R15 35-02 47-02 46-02 60Hxx PDF BibTeX XML Cite \textit{M. N. Feller}, The Lévy Laplacian. Cambridge: Cambridge University Press (2005; Zbl 1085.47057) OpenURL
Wu, Chai Wah On bounds of extremal eigenvalues of irreducible and \(m\)-reducible matrices. (English) Zbl 1079.15018 Linear Algebra Appl. 402, 29-45 (2005). Reviewer: Jaspal Singh Aujla (Jalandhar) MSC: 15A42 05C20 05C50 15B48 15B51 60J10 PDF BibTeX XML Cite \textit{C. W. Wu}, Linear Algebra Appl. 402, 29--45 (2005; Zbl 1079.15018) Full Text: DOI OpenURL
Bendikov, Alexandre; Saloff-Coste, Laurent On the hypoellipticity of sub-Laplacians on infinite dimensional compact groups. (English) Zbl 1032.43004 Forum Math. 15, No. 1, 135-163 (2003). Reviewer: Wilfried Hazod (Dortmund) MSC: 43A77 43A05 22A20 60G51 PDF BibTeX XML Cite \textit{A. Bendikov} and \textit{L. Saloff-Coste}, Forum Math. 15, No. 1, 135--163 (2003; Zbl 1032.43004) Full Text: DOI OpenURL
Tsoi, Allanus H. \({\mathcal L}\)-transform, normal functionals, and Lévy Laplacian in Poisson noise analysis. (English) Zbl 1050.93067 Pasik-Duncan, Bozenna (ed.), Stochastic theory and control. Proceedings of the workshop, Lawrence, KS, USA, October 18–20, 2001. Berlin: Springer (ISBN 3-540-43777-0/pbk). Lect. Notes Control Inf. Sci. 280, 471-489 (2002). Reviewer: Liviu Goras (Iaşi) MSC: 93E03 PDF BibTeX XML Cite \textit{A. H. Tsoi}, Lect. Notes Control Inf. Sci. 280, 471--489 (2002; Zbl 1050.93067) OpenURL
Ishikawa, Atsushi; Saitô, Kimiaki; Tsoi, Allanus H. Poisson noise analysis based on the Lévy Laplacian. (English) Zbl 1014.60065 Hida, Takeyuki (ed.) et al., Quantum information IV. Proceedings of the 4th international conference, Meijo Univ., Nagoya, Japan, February 27 - March 1, 2001. Singapore: World Scientific. 103-114 (2002). MSC: 60H40 PDF BibTeX XML Cite \textit{A. Ishikawa} et al., in: Quantum information IV. Proceedings of the 4th international conference, Meijo Univ., Nagoya, Japan, February 27 -- March 1, 2001. Singapore: World Scientific. 103--114 (2002; Zbl 1014.60065) OpenURL