×

Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models. (English) Zbl 1411.35060

Summary: This paper is concerned with the existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models. By using Schauder’s fixed point theorem and the existence of contracting rectangles, we obtain the existence result. Then we investigate the asymptotic behavior of positive monotone traveling wave solutions by using the modified Ikehara’s Theorem. With the help of their asymptotic behavior, we provide a sufficient condition which guarantee that all positive traveling wave solutions of the system are non-monotone. Furthermore, to illustrate our main results, the existence and non-monotonicity of traveling wave solutions of Lotka-Volterra predator-prey model and modified Leslie-Gower predator-prey models with different kinds of functional responses are also discussed.

MSC:

35C07 Traveling wave solutions
35K57 Reaction-diffusion equations
37C65 Monotone flows as dynamical systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. Ai; Y. Du; R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differential Equations, 263, 7782-7814 (2017) · Zbl 1375.34070 · doi:10.1016/j.jde.2017.08.021
[2] M. A. Aziz-Alaoui; M. D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Applied Mathematics Letters, 16, 1069-1075 (2003) · Zbl 1063.34044 · doi:10.1016/S0893-9659(03)90096-6
[3] J. R. Beddington, Mutual interference between parasites or predators and it’s effect on searching efficiency, J. Anim. Ecol., 44, 331-340 (1975)
[4] A. Boumenir; V. Nguyen, Erron Theorem in the monotone iteration method for traveling waves in delayed reaction-diffusion equations, J. Differential Equations, 244, 1551-1570 (2008) · Zbl 1154.34031 · doi:10.1016/j.jde.2008.01.004
[5] J. B. Conway, Functions of One Complex Variable, \( \begin{document}2^{nd}\end{document}\) edition, Springer-Verlag, New York, 1978.
[6] W. Ding; W. Huang, Traveling wave solutions for some classes of diffusive predator-prey models, Journal of Dynamics and Differential Equations, 28, 1293-1308 (2016) · Zbl 1350.35054 · doi:10.1007/s10884-015-9472-8
[7] Y. H. Du; S. B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203, 331-364 (2004) · Zbl 1330.35467 · doi:10.1016/j.jde.2004.05.010
[8] Y. H. Du; M. X. Wang, Asymptotic behaviour of positive steady states to a predator-prey model, Proc. Roy. Soc. Edinburgh Sect. A, 136, 759-778 (2006) · Zbl 1293.35102 · doi:10.1017/S0308210500004704
[9] S. R. Dubar, Travelling wave solutions of diffusive Lotka-Volterra equations, Journal of Mathematical Biology, 17, 11-32 (1983) · Zbl 0509.92024 · doi:10.1007/BF00276112
[10] S. R. Dubar, Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in \(\begin{document}R^4\end{document} \), Transactions of American Mathematical Society, 286, 557-594 (1984) · Zbl 0556.35078 · doi:10.2307/1999810
[11] S. R. Dubar, Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic orbits, SIAM Journal on Applied Mathematics, 46, 1057-1078 (1986) · Zbl 0617.92020 · doi:10.1137/0146063
[12] W. Ding; W. Huang, Traveling wave solutions for some classes of diffusive predator-prey models, Journal of Dynamics and Differential Equations, 28, 1293-1308 (2016) · Zbl 1350.35054 · doi:10.1007/s10884-015-9472-8
[13] W. Ellison and F. Ellison, Prime Numbers, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1985.
[14] R. Gardner, Existence of traveling wave solutions of predator-prey system via the connection index, SIAM Journal on Applied Mathematics, 44, 56-79 (1984) · Zbl 0541.35044 · doi:10.1137/0144006
[15] C.-H. Hsu; C.-R. Yang; T.-H. Yang; T.-S. Yang, Existence of traveling wave solutions for diffusive predator-prayer type model, J. of Differential Equations, 252, 3040-3075 (2012) · Zbl 1252.34036 · doi:10.1016/j.jde.2011.11.008
[16] Y. L. Huang; G. Lin, Traveling wave solutions in a diffusive system with two preys and one predator, Journal of Mathematical Analysis and Applications, 41, 163-184 (2014) · Zbl 1310.35063 · doi:10.1016/j.jmaa.2014.03.085
[17] J. Huang; X. Zou, Existence of traveling wavefronts of delayed reaction-diffusion systems without monotonicity, Discrete and Continuous Dynamical System, 9, 925-936 (2003) · Zbl 1093.34030 · doi:10.3934/dcds.2003.9.925
[18] J. Huang; G. Lu; S. Ruan, Existence of traveling wave solutions in diffusive predator-prey model, Journal of Mathematical Biology, 46, 132-152 (2003) · Zbl 1018.92026 · doi:10.1007/s00285-002-0171-9
[19] W. Huang, Traveling wave solutions for a class of predator-prey system, Journal of Dynamics and Differential Equations, 24, 633-644 (2012) · Zbl 1365.35056 · doi:10.1007/s10884-012-9255-4
[20] W. Huang, A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems, J. Differential Equations, 260, 2190-2224 (2016) · Zbl 1335.35124 · doi:10.1016/j.jde.2015.09.060
[21] W. Khellaf and N. Hamri, Boundedness and global stability for a predator-prey system with the Beddington-DeAngelis functional response, Differ. Equ. Nonlinear Mech., 2010 (2010), Article ID 813289. · Zbl 1204.34066
[22] W. T. Li; G. Lin; S. Ruan, Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19, 1253-1273 (2006) · Zbl 1103.35049 · doi:10.1088/0951-7715/19/6/003
[23] W. T. Li; S. L. Wu, Traveling waves in a diffusive predator-prey model with holling type-Ⅲ functional response, Chaos Soliton Fractals, 37, 476-486 (2008) · Zbl 1155.37046 · doi:10.1016/j.chaos.2006.09.039
[24] G. Lin, Invasion traveling wave solutions of a predator-prey system, Nonlinear Anal., 96, 4-58 (2014) · Zbl 1284.35109 · doi:10.1016/j.na.2013.10.024
[25] G. Lin; W. T. Li; M. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models, Discrete and Continuous Dynamical System-Series B, 13, 393-414 (2010) · Zbl 1201.35069 · doi:10.3934/dcdsb.2010.13.393
[26] X. Lin; C. Wu; P. Weng, Traveling wave solutions for a predator-prey system with sigmoidal response function, Journal of Dynamics and Differential Equations, 23, 903-921 (2011) · Zbl 1252.34048 · doi:10.1007/s10884-011-9220-7
[27] D. Liang; P. Weng; J. Wu, Travelling wave solutions in a delayed predator-prey diffusion PDE system point-to-periodic and point-to-point waves, IMA Journal of Applied Mathematics, 77, 516-545 (2012) · Zbl 1250.35171 · doi:10.1093/imamat/hxr031
[28] G. Lin; S. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to diffusive Lotka-Volterra competition models with distributed delays, Journal of Dynamics and Differential Equations, 23, 583-605 (2014) · Zbl 1311.35052 · doi:10.1007/s10884-014-9355-4
[29] J. J. Lin; W. Wang; C. Zhao; T. H. Yang, Global dynamics and traveling wave solutions of two predators-one prey models, Discrete and Continuous Dynamical System-Series B, 20, 1135-1154 (2015) · Zbl 1348.37124 · doi:10.3934/dcdsb.2015.20.1135
[30] S. Ma, Traveling wavefronts for delayed reaction-diffusion system via a fixed point theorem, J. Differential Equations, 171, 294-314 (2001) · Zbl 0988.34053 · doi:10.1006/jdeq.2000.3846
[31] S. Pan, Convergence and traveling wave solutions for a predator-prey system with distributed delays, Mediterr. J. Math., 14 (2017). · Zbl 1373.35172
[32] S. Pan, Invasion speed of a predator-prey system, Appl. Math. Lett., 74, 4-51 (2017) · Zbl 1419.37084 · doi:10.1016/j.aml.2017.05.014
[33] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence, 1995. · Zbl 0821.34003
[34] E. Trafimchuk; M. Pinto; S. Trafimchuk, Traveling waves for a model of the Belousov-Zhabotinsky reaction, J. of Differential Equations, 254, 3690-3714 (2013) · Zbl 1271.34066 · doi:10.1016/j.jde.2013.02.005
[35] X. S. Wang; H. Wang; J. Wu, Traveling waves of diffusive predator-prey systems: disease outbreak propagation, Discrete and Continuous Dynamical System-Series A, 32, 3303-3324 (2012) · Zbl 1241.92069 · doi:10.3934/dcds.2012.32.3303
[36] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, NJ, 1941. · JFM 67.0384.01
[37] Q. Ye, Z, Li, M. X. Wang and Y. Wu, Introduction to Reaction-Diffusion Equations, \( \begin{document}2^{nd}\end{document}\) edition, Science Press, Beijing, 2011.
[38] J. Zhou, Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Journal of Mathematical Analysis and Applications, 389, 1380-1393 (2012) · Zbl 1234.35288 · doi:10.1016/j.jmaa.2012.01.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.