Yan, Xiang-Ping; Zhang, Cun-Hua Global stability of a delayed diffusive predator-prey model with prey harvesting of Michaelis-Menten type. (English) Zbl 07307174 Appl. Math. Lett. 114, Article ID 106904, 7 p. (2021). MSC: 35Q92 92D25 35B35 35B40 35R07 PDF BibTeX XML Cite \textit{X.-P. Yan} and \textit{C.-H. Zhang}, Appl. Math. Lett. 114, Article ID 106904, 7 p. (2021; Zbl 07307174) Full Text: DOI
Gyllenberg, Mats; Jiang, Jifa; Niu, Lei Chaotic attractors in the four-dimensional Leslie-Gower competition model. (English) Zbl 1453.37084 Physica D 402, Article ID 132186, 9 p. (2020). MSC: 37N25 39A33 39A28 92D25 PDF BibTeX XML Cite \textit{M. Gyllenberg} et al., Physica D 402, Article ID 132186, 9 p. (2020; Zbl 1453.37084) Full Text: DOI
Huang, Ying; Li, Zhong Global stability of a Leslie-Gower predator-prey model with mutual interference and fear effect. (English) Zbl 07295656 J. Shanghai Norm. Univ., Nat. Sci. 49, No. 3, 334-343 (2020). MSC: 34C60 34D23 92D25 34C05 PDF BibTeX XML Cite \textit{Y. Huang} and \textit{Z. Li}, J. Shanghai Norm. Univ., Nat. Sci. 49, No. 3, 334--343 (2020; Zbl 07295656) Full Text: DOI
Zuo, Wei-Qin; Ma, Zhan-Ping; Cheng, Zhi-Bo Spatiotemporal dynamics induced by Michaelis-Menten type prey harvesting in a diffusive Leslie-Gower predator-prey model. (English) Zbl 1454.35403 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050204, 24 p. (2020). MSC: 35Q92 92D25 92C15 35B35 35B32 35A01 35B36 PDF BibTeX XML Cite \textit{W.-Q. Zuo} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050204, 24 p. (2020; Zbl 1454.35403) Full Text: DOI
Vinoth, S.; Sivasamy, R.; Sathiyanathan, K. Qualitative analysis of a modified Leslie-Gower model with addictive Allee effect and gestation delay. (English) Zbl 1453.92266 Discontin. Nonlinearity Complex. 9, No. 3, 461-476 (2020). MSC: 92D25 34K18 34K20 PDF BibTeX XML Cite \textit{S. Vinoth} et al., Discontin. Nonlinearity Complex. 9, No. 3, 461--476 (2020; Zbl 1453.92266) Full Text: DOI
Zhang, Conghui; Yang, Wenbin Dynamic behaviors of a predator-prey model with weak additive Allee effect on prey. (English) Zbl 07269758 Nonlinear Anal., Real World Appl. 55, Article ID 103137, 25 p. (2020). Reviewer: Thomas Giletti (Vandœuvre-lès-Nancy) MSC: 35K57 35B36 35B32 92D25 35K51 35B35 PDF BibTeX XML Cite \textit{C. Zhang} and \textit{W. Yang}, Nonlinear Anal., Real World Appl. 55, Article ID 103137, 25 p. (2020; Zbl 07269758) Full Text: DOI
Han, Renji; Guin, Lakshmi Narayan; Dai, Binxiang Cross-diffusion-driven pattern formation and selection in a modified Leslie-Gower predator-prey model with fear effect. (English) Zbl 1445.92239 J. Biol. Syst. 28, No. 1, 27-64 (2020). MSC: 92D25 92D40 PDF BibTeX XML Cite \textit{R. Han} et al., J. Biol. Syst. 28, No. 1, 27--64 (2020; Zbl 1445.92239) Full Text: DOI
Gao, Jianping; Guo, Shangjiang Patterns in a modified Leslie-Gower model with Beddington-DeAngelis functional response and nonlocal prey competition. (English) Zbl 1446.35220 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 5, Article ID 2050074, 28 p. (2020). MSC: 35Q92 92D25 92C15 35B32 35B36 35D35 35A01 92-08 PDF BibTeX XML Cite \textit{J. Gao} and \textit{S. Guo}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 5, Article ID 2050074, 28 p. (2020; Zbl 1446.35220) Full Text: DOI
Li, Yan; Li, Sanyun; Zhang, Fengrong Dynamics of a diffusive predator-prey model with herd behavior. (English) Zbl 1432.92080 Nonlinear Anal., Model. Control 25, No. 1, 19-35 (2020). MSC: 92D25 35B32 35B10 35Q92 34C23 PDF BibTeX XML Cite \textit{Y. Li} et al., Nonlinear Anal., Model. Control 25, No. 1, 19--35 (2020; Zbl 1432.92080) Full Text: DOI
Giné, Jaume; Valls, Claudia Nonlinear oscillations in the modified Leslie-Gower model. (English) Zbl 07155444 Nonlinear Anal., Real World Appl. 51, Article ID 103010, 7 p. (2020). Reviewer: Klaus R. Schneider (Berlin) MSC: 34C60 34C05 34C23 PDF BibTeX XML Cite \textit{J. Giné} and \textit{C. Valls}, Nonlinear Anal., Real World Appl. 51, Article ID 103010, 7 p. (2020; Zbl 07155444) Full Text: DOI
Su, Juan Identifying weak focus of order 3 in a Leslie-Gower prey-predator model with prey harvesting. (English) Zbl 07254377 Adv. Difference Equ. 2019, Paper No. 363, 14 p. (2019). MSC: 34C25 92D25 PDF BibTeX XML Cite \textit{J. Su}, Adv. Difference Equ. 2019, Paper No. 363, 14 p. (2019; Zbl 07254377) Full Text: DOI
Zhao, Dan; Yang, Wenbin; Li, Yanling Qualitative analysis of a modified Leslie-Gower model with Allee effect in predator. (Chinese. English summary) Zbl 1449.35274 J. Shaanxi Norm. Univ., Nat. Sci. Ed. 47, No. 6, 105-110 (2019). MSC: 35K57 35B09 35B35 92D25 PDF BibTeX XML Cite \textit{D. Zhao} et al., J. Shaanxi Norm. Univ., Nat. Sci. Ed. 47, No. 6, 105--110 (2019; Zbl 1449.35274) Full Text: DOI
Liu, Meng Dynamics of a stochastic regime-switching predator-prey model with modified Leslie-Gower Holling-type II schemes and prey harvesting. (English) Zbl 1437.37120 Nonlinear Dyn. 96, No. 1, 417-442 (2019). MSC: 37N25 60H10 60H30 92D25 PDF BibTeX XML Cite \textit{M. Liu}, Nonlinear Dyn. 96, No. 1, 417--442 (2019; Zbl 1437.37120) Full Text: DOI
Ma, Zhan-Ping Spatiotemporal dynamics of a diffusive Leslie-Gower prey-predator model with strong allee effect. (English) Zbl 1430.37114 Nonlinear Anal., Real World Appl. 50, 651-674 (2019). MSC: 37N25 92D25 PDF BibTeX XML Cite \textit{Z.-P. Ma}, Nonlinear Anal., Real World Appl. 50, 651--674 (2019; Zbl 1430.37114) Full Text: DOI
Qiu, Huanhuan; Guo, Shangjiang Steady-states of a Leslie-Gower model with diffusion and advection. (English) Zbl 1428.35160 Appl. Math. Comput. 346, 695-709 (2019). MSC: 35K51 35K57 92D25 35Q92 PDF BibTeX XML Cite \textit{H. Qiu} and \textit{S. Guo}, Appl. Math. Comput. 346, 695--709 (2019; Zbl 1428.35160) Full Text: DOI
Yang, Bowen; Liu, Ping; Wang, Yuwen Dynamics analysis of predator-prey system with Beddington-Deangelis response and strong Allee effect. (Chinese. English summary) Zbl 1438.34171 Math. Pract. Theory 49, No. 7, 241-247 (2019). MSC: 34C60 34C23 34D20 92D25 34C05 PDF BibTeX XML Cite \textit{B. Yang} et al., Math. Pract. Theory 49, No. 7, 241--247 (2019; Zbl 1438.34171)
Zhang, Li’na; Lin, Nana Stability and Hopf bifurcation for a diffusive predator-prey model with nonlinear harvesting. (Chinese. English summary) Zbl 1438.35035 J. Northwest Norm. Univ., Nat. Sci. 55, No. 2, 17-21, 64 (2019). MSC: 35B35 35B32 35K57 92D25 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{N. Lin}, J. Northwest Norm. Univ., Nat. Sci. 55, No. 2, 17--21, 64 (2019; Zbl 1438.35035) Full Text: DOI
Lian, Tong; Li, Yanling Spatio-temporal bifurcation of a Leslie-Gower predator-prey system with prey refuge. (Chinese. English summary) Zbl 1438.35230 Basic Sci. J. Text. Univ. 32, No. 1, 44-49 (2019). MSC: 35K57 35B32 35B35 92D25 PDF BibTeX XML Cite \textit{T. Lian} and \textit{Y. Li}, Basic Sci. J. Text. Univ. 32, No. 1, 44--49 (2019; Zbl 1438.35230) Full Text: DOI
Lu, Yin’er; Xu, Fei; Zhang, Li’na Hopf bifurcation analysis on a diffusion Leslie-Gower predator-prey model with nonlinear harvesting. (Chinese. English summary) Zbl 1438.35030 Appl. Math., Ser. A (Chin. Ed.) 34, No. 1, 101-106 (2019). MSC: 35B32 35K57 92D25 PDF BibTeX XML Cite \textit{Y. Lu} et al., Appl. Math., Ser. A (Chin. Ed.) 34, No. 1, 101--106 (2019; Zbl 1438.35030)
Sivasamy, R.; Sivakumar, M.; Sathiyanathan, K.; Balachandran, K. Dynamics of modified Leslie-Gower harvested predator-prey model with Beddington-De Angelis functional response. (English) Zbl 1418.37084 Discontin. Nonlinearity Complex. 8, No. 2, 111-125 (2019). MSC: 37G10 37N25 92D25 PDF BibTeX XML Cite \textit{R. Sivasamy} et al., Discontin. Nonlinearity Complex. 8, No. 2, 111--125 (2019; Zbl 1418.37084) Full Text: DOI
Singh, Manoj Kumar; Bhadauria, B. S. Qualitative analysis of a modified Leslie-Gower predator-prey model with weak Allee effect II. (English) Zbl 1418.92130 Appl. Appl. Math. 14, No. 1, 139-163 (2019). MSC: 92D25 92D40 34D20 34C23 PDF BibTeX XML Cite \textit{M. K. Singh} and \textit{B. S. Bhadauria}, Appl. Appl. Math. 14, No. 1, 139--163 (2019; Zbl 1418.92130) Full Text: Link
Hsu, Cheng-Hsiung; Lin, Jian-Jhong Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models. (English) Zbl 1411.35060 Commun. Pure Appl. Anal. 18, No. 3, 1483-1508 (2019). MSC: 35C07 35K57 37C65 PDF BibTeX XML Cite \textit{C.-H. Hsu} and \textit{J.-J. Lin}, Commun. Pure Appl. Anal. 18, No. 3, 1483--1508 (2019; Zbl 1411.35060) Full Text: DOI
Martínez-Jeraldo, Nicole; Aguirre, Pablo Allee effect acting on the prey species in a Leslie-Gower predation model. (English) Zbl 1408.34039 Nonlinear Anal., Real World Appl. 45, 895-917 (2019). MSC: 34C60 34C05 92D25 34D20 34C23 34C37 PDF BibTeX XML Cite \textit{N. Martínez-Jeraldo} and \textit{P. Aguirre}, Nonlinear Anal., Real World Appl. 45, 895--917 (2019; Zbl 1408.34039) Full Text: DOI
Min, Na; Wang, Mingxin Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong allee effect in prey. (English) Zbl 1404.35014 Discrete Contin. Dyn. Syst. 39, No. 2, 1071-1099 (2019). MSC: 35B10 35B36 35B32 92D25 PDF BibTeX XML Cite \textit{N. Min} and \textit{M. Wang}, Discrete Contin. Dyn. Syst. 39, No. 2, 1071--1099 (2019; Zbl 1404.35014) Full Text: DOI
Xu, Changjin; Li, Peiluan Dynamics of a discrete Leslie-Gower predator-prey model with feedback controls. (English) Zbl 1442.37109 Int. J. Dyn. Syst. Differ. Equ. 8, No. 3, 217-227 (2018). MSC: 37N25 92D25 93B52 PDF BibTeX XML Cite \textit{C. Xu} and \textit{P. Li}, Int. J. Dyn. Syst. Differ. Equ. 8, No. 3, 217--227 (2018; Zbl 1442.37109) Full Text: DOI
Yin, Hongwei; Xiao, Xiaoyong; Wen, Xiaoqing Analysis of a Lévy-diffusion Leslie-gower predator-prey model with nonmonotonic functional response. (English) Zbl 1404.92164 Discrete Contin. Dyn. Syst., Ser. B 23, No. 6, 2121-2151 (2018). MSC: 92D25 PDF BibTeX XML Cite \textit{H. Yin} et al., Discrete Contin. Dyn. Syst., Ser. B 23, No. 6, 2121--2151 (2018; Zbl 1404.92164) Full Text: DOI
Gaiko, Valery A.; Vuik, Cornelis Global dynamics in the Leslie-Gower model with the Allee effect. (English) Zbl 1404.34058 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 12, Article ID 1850151, 10 p. (2018). MSC: 34C60 92D25 34C05 34C23 PDF BibTeX XML Cite \textit{V. A. Gaiko} and \textit{C. Vuik}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 12, Article ID 1850151, 10 p. (2018; Zbl 1404.34058) Full Text: DOI
Xu, Jing; Tian, Yuan; Guo, Hongjian; Song, Xinyu Dynamical analysis of a pest management Leslie-Gower model with ratio-dependent functional response. (English) Zbl 1398.92263 Nonlinear Dyn. 93, No. 2, 705-720 (2018). MSC: 92D30 92D40 PDF BibTeX XML Cite \textit{J. Xu} et al., Nonlinear Dyn. 93, No. 2, 705--720 (2018; Zbl 1398.92263) Full Text: DOI
Wang, Mingxin; Zhang, Qianying Dynamics for the diffusive Leslie-Gower model with double free boundaries. (English) Zbl 1393.35086 Discrete Contin. Dyn. Syst. 38, No. 5, 2591-2607 (2018). MSC: 35K51 35R35 35A02 35B40 92B05 PDF BibTeX XML Cite \textit{M. Wang} and \textit{Q. Zhang}, Discrete Contin. Dyn. Syst. 38, No. 5, 2591--2607 (2018; Zbl 1393.35086) Full Text: DOI arXiv
Tian, Yanling; Wu, Chufen Traveling wave solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes. (English) Zbl 1393.35104 Proc. Indian Acad. Sci., Math. Sci. 128, No. 3, Paper No. 35, 18 p. (2018). MSC: 35K57 35Q92 35C07 92D25 PDF BibTeX XML Cite \textit{Y. Tian} and \textit{C. Wu}, Proc. Indian Acad. Sci., Math. Sci. 128, No. 3, Paper No. 35, 18 p. (2018; Zbl 1393.35104) Full Text: DOI
Zhang, Yan; Chen, Shihua; Gao, Shujing; Fan, Kuangang; Wang, Qingyun A new non-autonomous model for migratory birds with Leslie-Gower Holling-type II schemes and saturation recovery rate. (English) Zbl 07313762 Math. Comput. Simul. 132, 289-306 (2017). MSC: 92 34 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Math. Comput. Simul. 132, 289--306 (2017; Zbl 07313762) Full Text: DOI
Yin, Zhenjie; Rong, Yuetang The analysis of equilibrium state solutions about a modified Leslie-Gower model. (Chinese. English summary) Zbl 1389.35067 Basic Sci. J. Text. Univ. 30, No. 2, 183-193 (2017). MSC: 35B35 35B40 35B45 92D25 PDF BibTeX XML Cite \textit{Z. Yin} and \textit{Y. Rong}, Basic Sci. J. Text. Univ. 30, No. 2, 183--193 (2017; Zbl 1389.35067) Full Text: DOI
Ni, Wenjie; Wang, Mingxin Dynamical properties of a Leslie-gower prey-predator model with strong Allee effect in prey. (English) Zbl 1368.92152 Discrete Contin. Dyn. Syst., Ser. B 22, No. 9, 3409-3420 (2017). MSC: 92D25 92D50 34D05 34D20 PDF BibTeX XML Cite \textit{W. Ni} and \textit{M. Wang}, Discrete Contin. Dyn. Syst., Ser. B 22, No. 9, 3409--3420 (2017; Zbl 1368.92152) Full Text: DOI
Jiang, Jifa; Niu, Lei On the equivalent classification of three-dimensional competitive Leslie/Gower models via the boundary dynamics on the carrying simplex. (English) Zbl 1365.37063 J. Math. Biol. 74, No. 5, 1223-1261 (2017). Reviewer: Carlo Laing (Auckland) MSC: 37N25 92D25 39A30 39A60 PDF BibTeX XML Cite \textit{J. Jiang} and \textit{L. Niu}, J. Math. Biol. 74, No. 5, 1223--1261 (2017; Zbl 1365.37063) Full Text: DOI
Gao, Xingxing; Hu, Zhixing; Liao, Fucheng A diffusive predator-prey model. (Chinese. English summary) Zbl 1374.35219 J. Shaanxi Norm. Univ., Nat. Sci. Ed. 44, No. 3, 17-21 (2016). MSC: 35K57 35B35 92D25 PDF BibTeX XML Cite \textit{X. Gao} et al., J. Shaanxi Norm. Univ., Nat. Sci. Ed. 44, No. 3, 17--21 (2016; Zbl 1374.35219) Full Text: DOI
Wang, Baixue; Jia, Yunfeng Stability of positive equilibrium for a modified predator-prey model. (Chinese. English summary) Zbl 1374.35062 J. Shaanxi Norm. Univ., Nat. Sci. Ed. 44, No. 4, 1-4 (2016). MSC: 35B35 35K57 92D40 PDF BibTeX XML Cite \textit{B. Wang} and \textit{Y. Jia}, J. Shaanxi Norm. Univ., Nat. Sci. Ed. 44, No. 4, 1--4 (2016; Zbl 1374.35062) Full Text: DOI
Zhong, Lihua Almost periodic solutions of an impulsive Leslie-Gower prey-predator system. (Chinese. English summary) Zbl 1374.34202 J. Northeast Norm. Univ., Nat. Sci. Ed. 48, No. 3, 48-53 (2016). MSC: 34C60 34C27 92D25 34A37 34D05 PDF BibTeX XML Cite \textit{L. Zhong}, J. Northeast Norm. Univ., Nat. Sci. Ed. 48, No. 3, 48--53 (2016; Zbl 1374.34202) Full Text: DOI
Zhang, Lina; Zhang, Xiaojie Effects of diffusions in a Leslie-Gower predator-prey model. (Chinese. English summary) Zbl 1363.35187 Math. Appl. 29, No. 3, 672-677 (2016). MSC: 35K57 35B35 92D25 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{X. Zhang}, Math. Appl. 29, No. 3, 672--677 (2016; Zbl 1363.35187)
Bairagi, N.; Adak, D. Switching from simple to complex dynamics in a predator-prey-parasite model: an interplay between infection rate and incubation delay. (English) Zbl 1358.92084 Math. Biosci. 277, 1-14 (2016). MSC: 92D30 92D25 34C23 PDF BibTeX XML Cite \textit{N. Bairagi} and \textit{D. Adak}, Math. Biosci. 277, 1--14 (2016; Zbl 1358.92084) Full Text: DOI
Li, Yan; Zhang, Xinhong; Liu, Bingchen Global stability and stationary pattern of a diffusive prey-predator model with modified Leslie-Gower term and Holling II functional response. (English) Zbl 1335.35257 J. Nonlinear Sci. Appl. 9, No. 5, 2527-2540 (2016). MSC: 35Q92 92D25 35B32 35B40 PDF BibTeX XML Cite \textit{Y. Li} et al., J. Nonlinear Sci. Appl. 9, No. 5, 2527--2540 (2016; Zbl 1335.35257) Full Text: DOI Link
Cai, Yongli; Zhao, Caidi; Wang, Weiming; Wang, Jinfeng Dynamics of a Leslie-Gower predator-prey model with additive Allee effect. (English) Zbl 1443.92149 Appl. Math. Modelling 39, No. 7, 2092-2106 (2015). MSC: 92D25 34C23 PDF BibTeX XML Cite \textit{Y. Cai} et al., Appl. Math. Modelling 39, No. 7, 2092--2106 (2015; Zbl 1443.92149) Full Text: DOI
Sharma, Swarnali; Samanta, G. P. A Leslie-Gower predator-prey model with disease in prey incorporating a prey refuge. (English) Zbl 1352.92134 Chaos Solitons Fractals 70, 69-84 (2015). MSC: 92D25 92D30 34C60 PDF BibTeX XML Cite \textit{S. Sharma} and \textit{G. P. Samanta}, Chaos Solitons Fractals 70, 69--84 (2015; Zbl 1352.92134) Full Text: DOI
Yue, Qin Permanence for a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and feedback controls. (English) Zbl 1351.34053 Adv. Difference Equ. 2015, Paper No. 81, 10 p. (2015). MSC: 34C60 34D05 92D25 34H05 93B52 PDF BibTeX XML Cite \textit{Q. Yue}, Adv. Difference Equ. 2015, Paper No. 81, 10 p. (2015; Zbl 1351.34053) Full Text: DOI
Li, Mei-Feng; Zhang, Guang; Lu, Zhi-Yi; Zhang, Lu Diffusion-driven instability and wave patterns of Leslie-Gower competition model. (English) Zbl 1343.92423 J. Biol. Syst. 23, No. 3, 385-399 (2015). MSC: 92D25 PDF BibTeX XML Cite \textit{M.-F. Li} et al., J. Biol. Syst. 23, No. 3, 385--399 (2015; Zbl 1343.92423) Full Text: DOI
Fu, Shengmao; Wu, Shouyan Stability of a diffusive Leslie-Gower predator-prey model with weak and strong prey. (Chinese. English summary) Zbl 1340.35135 J. Northwest Norm. Univ., Nat. Sci. 51, No. 1, 1-5 (2015). MSC: 35K57 35B35 92D40 PDF BibTeX XML Cite \textit{S. Fu} and \textit{S. Wu}, J. Northwest Norm. Univ., Nat. Sci. 51, No. 1, 1--5 (2015; Zbl 1340.35135)
Li, Zuxiong Periodic solutions for a modified Leslie-Gower model with feedback control. (Chinese. English summary) Zbl 1340.34168 Acta Math. Appl. Sin. 38, No. 1, 37-52 (2015). MSC: 34C60 34H05 93B52 34C25 34D23 92D25 PDF BibTeX XML Cite \textit{Z. Li}, Acta Math. Appl. Sin. 38, No. 1, 37--52 (2015; Zbl 1340.34168)
Feng, Peng; Kang, Yun Dynamics of a modified Leslie-Gower model with double Allee effects. (English) Zbl 1345.92115 Nonlinear Dyn. 80, No. 1-2, 1051-1062 (2015). MSC: 92D25 34C11 34D20 34D05 34C23 34C60 PDF BibTeX XML Cite \textit{P. Feng} and \textit{Y. Kang}, Nonlinear Dyn. 80, No. 1--2, 1051--1062 (2015; Zbl 1345.92115) Full Text: DOI
Yang, Liu; Zhong, Shouming Dynamics of a diffusive predator-prey model with modified Leslie-Gower schemes and additive Allee effect. (English) Zbl 1325.35239 Comput. Appl. Math. 34, No. 2, 671-690 (2015). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 35Q92 92D25 35B40 PDF BibTeX XML Cite \textit{L. Yang} and \textit{S. Zhong}, Comput. Appl. Math. 34, No. 2, 671--690 (2015; Zbl 1325.35239) Full Text: DOI
Darti, Isnani; Suryanto, Agus Stability preserving non-standard finite difference scheme for a harvesting Leslie-gower predator-prey model. (English) Zbl 1358.37121 J. Difference Equ. Appl. 21, No. 6, 528-534 (2015). MSC: 37N25 92D40 PDF BibTeX XML Cite \textit{I. Darti} and \textit{A. Suryanto}, J. Difference Equ. Appl. 21, No. 6, 528--534 (2015; Zbl 1358.37121) Full Text: DOI
Zhou, Jun Qualitative analysis of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses. (English) Zbl 1312.35015 Commun. Pure Appl. Anal. 14, No. 3, 1127-1145 (2015). MSC: 35B32 35B50 35J65 35K57 37C25 92D25 35B35 PDF BibTeX XML Cite \textit{J. Zhou}, Commun. Pure Appl. Anal. 14, No. 3, 1127--1145 (2015; Zbl 1312.35015) Full Text: DOI
Pal, Pallav Jyoti; Mandal, Prashanta Kumar Bifurcation analysis of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and strong Allee effect. (English) Zbl 07312560 Math. Comput. Simul. 97, 123-146 (2014). MSC: 92 34 PDF BibTeX XML Cite \textit{P. J. Pal} and \textit{P. K. Mandal}, Math. Comput. Simul. 97, 123--146 (2014; Zbl 07312560) Full Text: DOI
Jiang, Jiao; Song, Yongli Delay-induced Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with nonmonotonic functional response. (English) Zbl 07172589 Commun. Nonlinear Sci. Numer. Simul. 19, No. 7, 2454-2465 (2014). MSC: 92D25 PDF BibTeX XML Cite \textit{J. Jiang} and \textit{Y. Song}, Commun. Nonlinear Sci. Numer. Simul. 19, No. 7, 2454--2465 (2014; Zbl 07172589) Full Text: DOI
Zhang, Kerong; Li, Jianli; Yu, Aiwen Almost periodic solution of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and feedback controls. (English) Zbl 1406.92539 Abstr. Appl. Anal. 2014, Article ID 252579, 8 p. (2014). MSC: 92D25 34C25 PDF BibTeX XML Cite \textit{K. Zhang} et al., Abstr. Appl. Anal. 2014, Article ID 252579, 8 p. (2014; Zbl 1406.92539) Full Text: DOI
Yin, Hongwei; Xiao, Xiaoyong; Wen, Xiaoqing; Liu, Kai Pattern analysis of a modified Leslie-Gower predator-prey model with Crowley-Martin functional response and diffusion. (English) Zbl 1357.35194 Comput. Math. Appl. 67, No. 8, 1607-1621 (2014). MSC: 35K57 35B09 35B40 92D25 PDF BibTeX XML Cite \textit{H. Yin} et al., Comput. Math. Appl. 67, No. 8, 1607--1621 (2014; Zbl 1357.35194) Full Text: DOI
Wang, Yuquan; Pan, Xiaohong Global stability for a modified Leslie-Gower food chain model with infinite delay and discrete delays. (Chinese. English summary) Zbl 1324.92041 J. Biomath. 29, No. 4, 653-657 (2014). MSC: 92D25 34D23 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{X. Pan}, J. Biomath. 29, No. 4, 653--657 (2014; Zbl 1324.92041)
Zhou, Jun Positive solutions for a modified Leslie-Gower prey-predator model with Crowley-Martin functional responses. (English) Zbl 1316.92078 NoDEA, Nonlinear Differ. Equ. Appl. 21, No. 5, 621-661 (2014). Reviewer: Yuriy V. Rogovchenko (Kristiansand) MSC: 92D25 35B32 35B50 35J65 35K57 37C25 PDF BibTeX XML Cite \textit{J. Zhou}, NoDEA, Nonlinear Differ. Equ. Appl. 21, No. 5, 621--661 (2014; Zbl 1316.92078) Full Text: DOI
Gao, Fang; Wang, Wenshuang; Wang, Jing Stability and optimal tax of a Leslie-Gower predator-prey model with a prey refuge and diffusion. (Chinese. English summary) Zbl 1313.92053 J. Northeast Norm. Univ., Nat. Sci. Ed. 46, No. 2, 1-8 (2014). MSC: 92D25 92D40 34D20 PDF BibTeX XML Cite \textit{F. Gao} et al., J. Northeast Norm. Univ., Nat. Sci. Ed. 46, No. 2, 1--8 (2014; Zbl 1313.92053) Full Text: DOI
Liu, Zhenjie Stochastic dynamics for the solutions of a modified Holling-Tanner model with random perturbation. (English) Zbl 1309.34083 Int. J. Math. 25, No. 11, Article ID 1450105, 23 p. (2014). MSC: 34C60 34F05 92D25 34D05 34C45 PDF BibTeX XML Cite \textit{Z. Liu}, Int. J. Math. 25, No. 11, Article ID 1450105, 23 p. (2014; Zbl 1309.34083) Full Text: DOI
Zhou, Jun; Kim, Chan-Gyun; Shi, Junping Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. (English) Zbl 1304.35275 Discrete Contin. Dyn. Syst. 34, No. 9, 3875-3899 (2014). MSC: 35J57 35K55 92C15 92C40 92D25 35B09 35B40 PDF BibTeX XML Cite \textit{J. Zhou} et al., Discrete Contin. Dyn. Syst. 34, No. 9, 3875--3899 (2014; Zbl 1304.35275) Full Text: DOI
Zhang, Lina; Li, Yuexia Global asymptotic stability of a positive equilibrium for a modified Leslie-Gower predator-prey model with diffusion. (Chinese. English summary) Zbl 1313.35182 Math. Appl. 27, No. 2, 381-386 (2014). MSC: 35K57 35B35 92D25 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{Y. Li}, Math. Appl. 27, No. 2, 381--386 (2014; Zbl 1313.35182)
Zhang, Lina; Wu, Shouyan Global behavior of solutions for a modified Leslie-Gower predator-prey system with diffusion. (Chinese. English summary) Zbl 1313.35183 J. Shandong Univ., Nat. Sci. 49, No. 1, 86-91 (2014). MSC: 35K57 35B35 92D40 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{S. Wu}, J. Shandong Univ., Nat. Sci. 49, No. 1, 86--91 (2014; Zbl 1313.35183) Full Text: DOI
Tian, Yanling Stability for a diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes. (English) Zbl 1324.35069 Appl. Math., Praha 59, No. 2, 217-240 (2014). MSC: 35K55 92C40 35B35 35Q92 PDF BibTeX XML Cite \textit{Y. Tian}, Appl. Math., Praha 59, No. 2, 217--240 (2014; Zbl 1324.35069) Full Text: DOI
Yu, Shengbin; Chen, Fengde Almost periodic solution of a modified Leslie-Gower predator-prey model with Holling-type II schemes and mutual interference. (English) Zbl 1305.34081 Int. J. Biomath. 7, No. 3, Article ID 1450028, 15 p. (2014). MSC: 34C60 34C27 92D25 34D20 34D05 PDF BibTeX XML Cite \textit{S. Yu} and \textit{F. Chen}, Int. J. Biomath. 7, No. 3, Article ID 1450028, 15 p. (2014; Zbl 1305.34081) Full Text: DOI
Gong, Yi-Jun; Huang, Ji-Cai Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with prey harvesting. (English) Zbl 1301.34062 Acta Math. Appl. Sin., Engl. Ser. 30, No. 1, 239-244 (2014). MSC: 34C60 34C23 92D25 34C05 34C37 PDF BibTeX XML Cite \textit{Y.-J. Gong} and \textit{J.-C. Huang}, Acta Math. Appl. Sin., Engl. Ser. 30, No. 1, 239--244 (2014; Zbl 1301.34062) Full Text: DOI
Zhou, Jun Positive solutions of a diffusive Leslie-Gower predator-prey model with Bazykin functional response. (English) Zbl 1293.35349 Z. Angew. Math. Phys. 65, No. 1, 1-18 (2014). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 35Q92 92D25 35B09 35K55 92C15 PDF BibTeX XML Cite \textit{J. Zhou}, Z. Angew. Math. Phys. 65, No. 1, 1--18 (2014; Zbl 1293.35349) Full Text: DOI
Cai, Yongli; Zhao, Caidi; Wang, Weiming Spatiotemporal complexity of a Leslie-Gower predator-prey model with the weak Allee effect. (English) Zbl 1397.92563 J. Appl. Math. 2013, Article ID 535746, 16 p. (2013). MSC: 92D25 92D40 35K57 PDF BibTeX XML Cite \textit{Y. Cai} et al., J. Appl. Math. 2013, Article ID 535746, 16 p. (2013; Zbl 1397.92563) Full Text: DOI
Yan, Shuling; Lian, Xinzhe; Wang, Weiming; Upadhyay, R. K. Spatiotemporal dynamics in a delayed diffusive predator model. (English) Zbl 1334.92382 Appl. Math. Comput. 224, 524-534 (2013). MSC: 92D25 PDF BibTeX XML Cite \textit{S. Yan} et al., Appl. Math. Comput. 224, 524--534 (2013; Zbl 1334.92382) Full Text: DOI
Priyadarshi, A.; Gakkhar, S. Dynamics of Leslie-Gower type generalist predator in a tri-trophic food web system. (English) Zbl 1328.92065 Commun. Nonlinear Sci. Numer. Simul. 18, No. 11, 3202-3218 (2013). MSC: 92D25 34C23 PDF BibTeX XML Cite \textit{A. Priyadarshi} and \textit{S. Gakkhar}, Commun. Nonlinear Sci. Numer. Simul. 18, No. 11, 3202--3218 (2013; Zbl 1328.92065) Full Text: DOI
Zhou, Jun; Shi, Junping The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses. (English) Zbl 1306.92054 J. Math. Anal. Appl. 405, No. 2, 618-630 (2013). MSC: 92D25 PDF BibTeX XML Cite \textit{J. Zhou} and \textit{J. Shi}, J. Math. Anal. Appl. 405, No. 2, 618--630 (2013; Zbl 1306.92054) Full Text: DOI
Zhang, Bei; Teng, Zhidong Stability analysis of a discrete Leslie-Gower predator-prey model. (Chinese. English summary) Zbl 1313.39028 J. Xinjiang Univ., Nat. Sci. 30, No. 1, 19-24 (2013). MSC: 39A30 92D25 92D40 39A12 PDF BibTeX XML Cite \textit{B. Zhang} and \textit{Z. Teng}, J. Xinjiang Univ., Nat. Sci. 30, No. 1, 19--24 (2013; Zbl 1313.39028)
Lian, Xinze; Yan, Shuling; Wang, Hailing Pattern formation in predator-prey model with delay and cross diffusion. (English) Zbl 1297.35030 Abstr. Appl. Anal. 2013, Article ID 147232, 10 p. (2013). MSC: 35B36 35K40 35K58 35B32 92C15 92D25 PDF BibTeX XML Cite \textit{X. Lian} et al., Abstr. Appl. Anal. 2013, Article ID 147232, 10 p. (2013; Zbl 1297.35030) Full Text: DOI
Huda, Mohammad Khoridatul; Kusumawinahyu, Wuryansari Muharini; Alghofari, Abdul Rouf Dynamical analysis on a modified Leslie-Gower predator-prey model. (English) Zbl 1400.37108 Far East J. Appl. Math. 82, No. 2, 87-100 (2013). MSC: 37N25 37N35 37B55 92D25 PDF BibTeX XML Cite \textit{M. K. Huda} et al., Far East J. Appl. Math. 82, No. 2, 87--100 (2013; Zbl 1400.37108) Full Text: Link
Zhang, Tianwei; Gan, Xiaorong Existence and permanence of almost periodic solutions for Leslie-Gower predator-prey model with variable delays. (English) Zbl 1287.39005 Electron. J. Differ. Equ. 2013, Paper No. 105, 21 p. (2013). MSC: 39A12 39A10 92D25 39A24 39A30 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{X. Gan}, Electron. J. Differ. Equ. 2013, Paper No. 105, 21 p. (2013; Zbl 1287.39005) Full Text: EMIS
Guo, Yuting; Wei, Fengying Optimal taxation of predator-prey models with prey refuge and modified Leslie-Gower terms. (Chinese. English summary) Zbl 1289.92072 J. Fuzhou Univ., Nat. Sci. 41, No. 2, 132-136 (2013). MSC: 92D40 34D20 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{F. Wei}, J. Fuzhou Univ., Nat. Sci. 41, No. 2, 132--136 (2013; Zbl 1289.92072) Full Text: DOI
Yan, Shuling; Lian, Xinze; Wang, Weiming; Wang, Youbin Bifurcation analysis in a delayed diffusive Leslie-Gower model. (English) Zbl 1264.34168 Discrete Dyn. Nat. Soc. 2013, Article ID 170501, 11 p. (2013). MSC: 34K60 34K18 34K20 PDF BibTeX XML Cite \textit{S. Yan} et al., Discrete Dyn. Nat. Soc. 2013, Article ID 170501, 11 p. (2013; Zbl 1264.34168) Full Text: DOI
Chow, Yunshyong; Hsieh, June On multidimensional discrete-time Beverton-Holt competition models. (English) Zbl 1328.92058 J. Difference Equ. Appl. 19, No. 3, 491-506 (2013). MSC: 92D25 37N25 39A14 PDF BibTeX XML Cite \textit{Y. Chow} and \textit{J. Hsieh}, J. Difference Equ. Appl. 19, No. 3, 491--506 (2013; Zbl 1328.92058) Full Text: DOI
Zhou, Jun Positive steady state solutions of a Leslie-Gower predator-prey model with Holling type II functional response and density-dependent diffusion. (English) Zbl 1318.92045 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 82, 47-65 (2013). MSC: 92D25 35K55 PDF BibTeX XML Cite \textit{J. Zhou}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 82, 47--65 (2013; Zbl 1318.92045) Full Text: DOI
Li, Zhong; Han, Maoan; Chen, Fengde Global stability of a stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes. (English) Zbl 1297.92066 Int. J. Biomath. 5, No. 6, Article ID 1250057, 13 p. (2012). MSC: 92D25 34D23 PDF BibTeX XML Cite \textit{Z. Li} et al., Int. J. Biomath. 5, No. 6, Article ID 1250057, 13 p. (2012; Zbl 1297.92066) Full Text: DOI
Song, Yang; Tan, Yuanshun; Nie, Yuwen Permanence and extinction for a Leslie-Gower model with Holling III response function. (Chinese. English summary) Zbl 1289.92045 J. North Univ. China, Nat. Sci. 33, No. 6, 623-626 (2012). MSC: 92D25 92D40 PDF BibTeX XML Cite \textit{Y. Song} et al., J. North Univ. China, Nat. Sci. 33, No. 6, 623--626 (2012; Zbl 1289.92045) Full Text: DOI
Wang, Xixi; Huang, Huilin; Cai, Yongli; Wang, Weiming The complex dynamics of a stochastic predator-prey model. (English) Zbl 1253.93142 Abstr. Appl. Anal. 2012, Article ID 401031, 24 p. (2012). MSC: 93E20 92D25 37N25 60H30 PDF BibTeX XML Cite \textit{X. Wang} et al., Abstr. Appl. Anal. 2012, Article ID 401031, 24 p. (2012; Zbl 1253.93142) Full Text: DOI
Ma, Yongfeng Global Hopf bifurcation in the Leslie-Gower predator-prey model with two delays. (English) Zbl 1238.34130 Nonlinear Anal., Real World Appl. 13, No. 1, 370-375 (2012). MSC: 34K13 92D25 34K18 PDF BibTeX XML Cite \textit{Y. Ma}, Nonlinear Anal., Real World Appl. 13, No. 1, 370--375 (2012; Zbl 1238.34130) Full Text: DOI
Sacker, Robert J. Global stability in a multi-species periodic Leslie-Gower model. (English) Zbl 1225.92060 J. Biol. Dyn. 5, No. 5, 549-562 (2011). MSC: 92D40 39A30 39A60 65C60 PDF BibTeX XML Cite \textit{R. J. Sacker}, J. Biol. Dyn. 5, No. 5, 549--562 (2011; Zbl 1225.92060) Full Text: DOI
Tian, Yanling; Weng, Peixuan Stability analysis of diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes. (English) Zbl 1216.35159 Acta Appl. Math. 114, No. 3, 173-192 (2011). MSC: 35Q92 35J57 35B25 35B35 35B09 92D25 PDF BibTeX XML Cite \textit{Y. Tian} and \textit{P. Weng}, Acta Appl. Math. 114, No. 3, 173--192 (2011; Zbl 1216.35159) Full Text: DOI
Sun, G.; Sarwardi, S.; Pal, P. J.; Rahman, Md. S. The spatial patterns through diffusion-driven instability in modified Leslie-Gower and Holling-type II predator-prey model. (English) Zbl 1404.92162 J. Biol. Syst. 18, No. 3, 593-603 (2010). MSC: 92D25 35Q92 PDF BibTeX XML Cite \textit{G. Sun} et al., J. Biol. Syst. 18, No. 3, 593--603 (2010; Zbl 1404.92162) Full Text: DOI
Chen, Liujuan; Chen, Fengde Global stability of a Leslie-Gower predator-prey model with feedback controls. (English) Zbl 1173.34333 Appl. Math. Lett. 22, No. 9, 1330-1334 (2009). MSC: 34D23 PDF BibTeX XML Cite \textit{L. Chen} and \textit{F. Chen}, Appl. Math. Lett. 22, No. 9, 1330--1334 (2009; Zbl 1173.34333) Full Text: DOI
Alsharawi, Ziyad; Rhouma, Mohamed Coexistence and extinction in a competitive exclusion Leslie/Gower model with harvesting and stocking. (English) Zbl 1176.92050 J. Difference Equ. Appl. 15, No. 11-12, 1031-1053 (2009). MSC: 92D40 91B76 39A60 39A30 PDF BibTeX XML Cite \textit{Z. Alsharawi} and \textit{M. Rhouma}, J. Difference Equ. Appl. 15, No. 11--12, 1031--1053 (2009; Zbl 1176.92050) Full Text: DOI
Korobeinikov, Andrei; Lee, William T. Global asymptotic properties for a Leslie-Gower food chain model. (English) Zbl 1168.92322 Math. Biosci. Eng. 6, No. 3, 585-590 (2009). MSC: 92D30 34D23 34D20 PDF BibTeX XML Cite \textit{A. Korobeinikov} and \textit{W. T. Lee}, Math. Biosci. Eng. 6, No. 3, 585--590 (2009; Zbl 1168.92322) Full Text: DOI
Basu, Sukanya; Merino, Orlando On the global behavior of solutions to a planar system of difference equations. (English) Zbl 1176.39014 Commun. Appl. Nonlinear Anal. 16, No. 1, 89-101 (2009). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A30 92D25 39A20 PDF BibTeX XML Cite \textit{S. Basu} and \textit{O. Merino}, Commun. Appl. Nonlinear Anal. 16, No. 1, 89--101 (2009; Zbl 1176.39014) Full Text: arXiv
Chen, Fengde; Chen, Liujuan; Xie, Xiangdong On a Leslie-Gower predator-prey model incorporating a prey refuge. (English) Zbl 1167.92032 Nonlinear Anal., Real World Appl. 10, No. 5, 2905-2908 (2009). Reviewer: J. M. Tchuenche (Dar es Salaam) MSC: 92D40 34D20 34D23 PDF BibTeX XML Cite \textit{F. Chen} et al., Nonlinear Anal., Real World Appl. 10, No. 5, 2905--2908 (2009; Zbl 1167.92032) Full Text: DOI
Liu, Kaiyuan Dynamic behaviors of a Leslie-Gower predator-prey model with birth pulse. (English) Zbl 1199.34231 J. Biomath. 23, No. 3, 390-398 (2008). MSC: 34C60 34C05 92D25 34D05 34C23 PDF BibTeX XML Cite \textit{K. Liu}, J. Biomath. 23, No. 3, 390--398 (2008; Zbl 1199.34231)
Song, Xinyu; Li, Yongfeng Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect. (English) Zbl 1142.34031 Nonlinear Anal., Real World Appl. 9, No. 1, 64-79 (2008). Reviewer: Josef Hainzl (Freiburg) MSC: 34C60 92D25 34A37 34C23 34C25 PDF BibTeX XML Cite \textit{X. Song} and \textit{Y. Li}, Nonlinear Anal., Real World Appl. 9, No. 1, 64--79 (2008; Zbl 1142.34031) Full Text: DOI
Cushing, J. M.; LeVarge, Sheree Some discrete competition models and the principle of competitive exclusion. (English) Zbl 1091.92047 Allen, Linda J. S. (ed.) et al., Difference equations and discrete dynamical systems. Proceedings of the 9th international conference, Los Angeles, CA, USA, August 2–7, 2004. Hackensack, NJ: World Scientific (ISBN 981-256-520-5/hbk). 283-301 (2005). MSC: 92D40 39A11 37N25 PDF BibTeX XML Cite \textit{J. M. Cushing} and \textit{S. LeVarge}, in: Difference equations and discrete dynamical systems. Proceedings of the 9th international conference, Los Angeles, CA, USA, August 2--7, 2004. Hackensack, NJ: World Scientific. 283--301 (2005; Zbl 1091.92047)
Gakkhar, Sunita; Singh, Brahampal Complex dynamic behavior in a food web consisting of two preys and a predator. (English) Zbl 1081.37060 Chaos Solitons Fractals 24, No. 3, 789-801 (2005). Reviewer: Messoud A. Efendiev (Berlin) MSC: 37N99 92D25 34K23 34D20 PDF BibTeX XML Cite \textit{S. Gakkhar} and \textit{B. Singh}, Chaos Solitons Fractals 24, No. 3, 789--801 (2005; Zbl 1081.37060) Full Text: DOI
Cushing, J. M.; Levarge, Sheree; Chitnis, Nakul; Henson, Shandelle M. Some discrete competition models and the competitive exclusion principle. (English) Zbl 1071.39005 J. Difference Equ. Appl. 10, No. 13-15, 1139-1151 (2004). Reviewer: José L. Lopez (Pamplona) MSC: 39A11 92D40 39A12 PDF BibTeX XML Cite \textit{J. M. Cushing} et al., J. Difference Equ. Appl. 10, No. 13--15, 1139--1151 (2004; Zbl 1071.39005) Full Text: DOI
Huo, Hai-Feng; Li, Wan-Tong Stable periodic solution of the discrete periodic Leslie-Gower predator-prey model. (English) Zbl 1067.39008 Math. Comput. Modelling 40, No. 3-4, 261-269 (2004). Reviewer: Lothar Berg (Rostock) MSC: 39A11 92D25 PDF BibTeX XML Cite \textit{H.-F. Huo} and \textit{W.-T. Li}, Math. Comput. Modelling 40, No. 3--4, 261--269 (2004; Zbl 1067.39008) Full Text: DOI
Letellier, Christophe; Aguirre, Luis A.; Maquet, Jean; Aziz-Alaoui, M. A. Should all the species of a food chain be counted to investigate the global dynamics? (English) Zbl 1004.92039 Chaos Solitons Fractals 13, No. 5, 1099-1113 (2002). MSC: 92D40 37N25 37M10 PDF BibTeX XML Cite \textit{C. Letellier} et al., Chaos Solitons Fractals 13, No. 5, 1099--1113 (2002; Zbl 1004.92039) Full Text: DOI
Letellier, Christophe; Aziz-Alaoui, M. A. Analysis of the dynamics of a realistic ecological model. (English) Zbl 0977.92029 Chaos Solitons Fractals 13, No. 1, 95-107 (2002). MSC: 92D40 37N25 PDF BibTeX XML Cite \textit{C. Letellier} and \textit{M. A. Aziz-Alaoui}, Chaos Solitons Fractals 13, No. 1, 95--107 (2002; Zbl 0977.92029) Full Text: DOI