Dong, Hongjie; Phan, Tuoc Mixed-norm \(L_p\)-estimates for non-stationary Stokes systems with singular VMO coefficients and applications. (English) Zbl 07297753 J. Differ. Equations 276, 342-367 (2021). MSC: 76D03 76D05 76D07 35K67 35K40 PDF BibTeX XML Cite \textit{H. Dong} and \textit{T. Phan}, J. Differ. Equations 276, 342--367 (2021; Zbl 07297753) Full Text: DOI
Kuroki, Hidesato; Soga, Kohei On convergence of Chorin’s projection method to a Leray-Hopf weak solution. (English) Zbl 1451.35111 Numer. Math. 146, No. 2, 401-433 (2020). MSC: 35Q30 76D05 35D30 65M06 35B35 PDF BibTeX XML Cite \textit{H. Kuroki} and \textit{K. Soga}, Numer. Math. 146, No. 2, 401--433 (2020; Zbl 1451.35111) Full Text: DOI
Farwig, Reinhard The millennium problem of the Navier-Stokes equations. (Das Millenniumsproblem der Navier-Stokes-Gleichungen.) (German) Zbl 1448.35362 Mitt. Dtsch. Math.-Ver. 28, No. 1, 18-25 (2020). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q30 35A01 35A02 35B65 76D05 35-02 PDF BibTeX XML Cite \textit{R. Farwig}, Mitt. Dtsch. Math.-Ver. 28, No. 1, 18--25 (2020; Zbl 1448.35362) Full Text: DOI
Dong, Hongjie; Wang, Kunrui Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. (English) Zbl 1442.35299 Discrete Contin. Dyn. Syst. 40, No. 9, 5289-5323 (2020). MSC: 35Q30 35B65 76D05 76D03 35D30 PDF BibTeX XML Cite \textit{H. Dong} and \textit{K. Wang}, Discrete Contin. Dyn. Syst. 40, No. 9, 5289--5323 (2020; Zbl 1442.35299) Full Text: DOI
Qian, Chenyin The anisotropic regularity criteria for 3D Navier-Stokes equations involving one velocity component. (English) Zbl 1437.35546 Nonlinear Anal., Real World Appl. 54, Article ID 103094, 16 p. (2020). MSC: 35Q30 76D05 35D30 35B35 35R11 26A33 PDF BibTeX XML Cite \textit{C. Qian}, Nonlinear Anal., Real World Appl. 54, Article ID 103094, 16 p. (2020; Zbl 1437.35546) Full Text: DOI
Cheskidov, Alexey; Dai, Mimi Discontinuity of weak solutions to the 3D NSE and MHD equations in critical and supercritical spaces. (English) Zbl 1426.35057 J. Math. Anal. Appl. 481, No. 2, Article ID 123493, 16 p. (2020). MSC: 35B65 76W05 35Q30 35D30 PDF BibTeX XML Cite \textit{A. Cheskidov} and \textit{M. Dai}, J. Math. Anal. Appl. 481, No. 2, Article ID 123493, 16 p. (2020; Zbl 1426.35057) Full Text: DOI
Luo, Xiaoyutao On the possible time singularities for the 3D Navier-Stokes equations. (English) Zbl 1451.76036 Physica D 395, 37-42 (2019). MSC: 76D03 76D05 35A21 PDF BibTeX XML Cite \textit{X. Luo}, Physica D 395, 37--42 (2019; Zbl 1451.76036) Full Text: DOI
Galdi, Giovanni P. On the relation between very weak and Leray-Hopf solutions to Navier-Stokes equations. (English) Zbl 1423.35295 Proc. Am. Math. Soc. 147, No. 12, 5349-5359 (2019). MSC: 35Q30 35D30 76D05 76D03 76D07 PDF BibTeX XML Cite \textit{G. P. Galdi}, Proc. Am. Math. Soc. 147, No. 12, 5349--5359 (2019; Zbl 1423.35295) Full Text: DOI arXiv
Constantin, Peter; Filho, Milton C. Lopes; Lopes, Helena J. Nussenzveig; Vicol, Vlad Vorticity measures and the inviscid limit. (English) Zbl 1428.35352 Arch. Ration. Mech. Anal. 234, No. 2, 575-593 (2019). MSC: 35Q35 76B03 76D05 35B65 35D35 PDF BibTeX XML Cite \textit{P. Constantin} et al., Arch. Ration. Mech. Anal. 234, No. 2, 575--593 (2019; Zbl 1428.35352) Full Text: DOI
Ożański, Wojciech S. The partial regularity theory of Caffarelli, Kohn, and Nirenberg and its sharpness. (English) Zbl 1441.35004 Advances in Mathematical Fluid Mechanics. Lecture Notes in Mathematical Fluid Mechanics. Cham: Birkhäuser (ISBN 978-3-030-26660-8/pbk; 978-3-030-26661-5/ebook). vi, 138 p. (2019). Reviewer: Florin Catrina (New York) MSC: 35-02 35B65 35Q30 76D03 76D05 PDF BibTeX XML Cite \textit{W. S. Ożański}, The partial regularity theory of Caffarelli, Kohn, and Nirenberg and its sharpness. Cham: Birkhäuser (2019; Zbl 1441.35004) Full Text: DOI
Mauro, Jmmy A. Partial regularity of Hopf weak solutions of the Navier-Stokes equations, which satisfy a suitable extra-condition. (English) Zbl 1424.76013 PLISKA, Stud. Math. 29, 93-108 (2018). Reviewer: Angela Slavova (Sofia) MSC: 76D05 35Q30 76D03 PDF BibTeX XML Cite \textit{J. A. Mauro}, PLISKA, Stud. Math. 29, 93--108 (2018; Zbl 1424.76013) Full Text: Link
Constantin, Peter; Ignatova, Mihaela; Nguyen, Huy Q. Inviscid limit for SQG in bounded domains. (English) Zbl 1405.35158 SIAM J. Math. Anal. 50, No. 6, 6196-6207 (2018). MSC: 35Q35 35Q86 35D30 PDF BibTeX XML Cite \textit{P. Constantin} et al., SIAM J. Math. Anal. 50, No. 6, 6196--6207 (2018; Zbl 1405.35158) Full Text: DOI
Kakizawa, Ryôhei The existence of Leray-Hopf weak solutions with linear strain. (English) Zbl 1406.35225 Hokkaido Math. J. 47, No. 3, 487-500 (2018). Reviewer: Gelu Paşa (Bucureşti) MSC: 35Q30 76D03 76D05 35D30 PDF BibTeX XML Cite \textit{R. Kakizawa}, Hokkaido Math. J. 47, No. 3, 487--500 (2018; Zbl 1406.35225) Full Text: DOI
Liu, Qiao; Dai, Guowei On the 3D Navier-Stokes equations with regularity in pressure. (English) Zbl 1378.35222 J. Math. Anal. Appl. 458, No. 1, 497-507 (2018). MSC: 35Q30 35B65 76D05 35D30 PDF BibTeX XML Cite \textit{Q. Liu} and \textit{G. Dai}, J. Math. Anal. Appl. 458, No. 1, 497--507 (2018; Zbl 1378.35222) Full Text: DOI
Hoang, Luan T.; Martinez, Vincent R. Asymptotic expansion in Gevrey spaces for solutions of Navier-Stokes equations. (English) Zbl 1375.35317 Asymptotic Anal. 104, No. 3-4, 167-190 (2017). MSC: 35Q30 76D05 35C20 35D30 35B65 PDF BibTeX XML Cite \textit{L. T. Hoang} and \textit{V. R. Martinez}, Asymptotic Anal. 104, No. 3--4, 167--190 (2017; Zbl 1375.35317) Full Text: DOI arXiv
Filonov, N. D. Uniqueness of the Leray-Hopf solution for a dyadic model. (English) Zbl 1393.34026 Trans. Am. Math. Soc. 369, No. 12, 8663-8684 (2017). Reviewer: Daniela Danciu (Craiova) MSC: 34A33 34G20 PDF BibTeX XML Cite \textit{N. D. Filonov}, Trans. Am. Math. Soc. 369, No. 12, 8663--8684 (2017; Zbl 1393.34026) Full Text: DOI
Šverák, Vladimír Aspects of PDEs related to fluid flows. (English) Zbl 1372.35004 Marcellini, Paolo (ed.) et al., Vector-valued partial differential equations and applications. Cetraro, Italy, July 8–12, 2013. Cham: Springer; Florence: Fondazione CIME (ISBN 978-3-319-54513-4/pbk; 978-3-319-54514-1/ebook). Lecture Notes in Mathematics 2179. CIME Foundation Subseries, 195-248 (2017). MSC: 35-02 35Q31 35Q55 35Q53 76D05 35B38 35Q30 35A15 37A60 37K05 82C40 35D30 PDF BibTeX XML Cite \textit{V. Šverák}, Lect. Notes Math. 2179, 195--248 (2017; Zbl 1372.35004) Full Text: DOI
Bradshaw, Z.; Grujić, Z. Frequency localized regularity criteria for the 3D Navier-Stokes equations. (English) Zbl 1428.35345 Arch. Ration. Mech. Anal. 224, No. 1, 125-133 (2017). MSC: 35Q35 35B65 42B25 76D05 35D30 PDF BibTeX XML Cite \textit{Z. Bradshaw} and \textit{Z. Grujić}, Arch. Ration. Mech. Anal. 224, No. 1, 125--133 (2017; Zbl 1428.35345) Full Text: DOI arXiv
Silva, Pablo Braz E.; Lorenz, Jens; Melo, Wilberclay G.; Zingano, Paulo R. On the large time approximation of the Navier-Stokes equations in \(\mathbb{R}^n\) by Stokes flows. (English) Zbl 1367.35111 Methods Appl. Anal. 23, No. 4, 293-316 (2016). MSC: 35Q30 76D05 76D07 35D30 35B40 PDF BibTeX XML Cite \textit{P. B. E. Silva} et al., Methods Appl. Anal. 23, No. 4, 293--316 (2016; Zbl 1367.35111) Full Text: DOI
Disser, Karoline; Galdi, Giovanni P.; Mazzone, Giusy; Zunino, Paolo Inertial motions of a rigid body with a cavity filled with a viscous liquid. (English) Zbl 1342.35245 Arch. Ration. Mech. Anal. 221, No. 1, 487-526 (2016). MSC: 35Q35 35Q70 76D05 70E15 76U05 35D30 35B35 PDF BibTeX XML Cite \textit{K. Disser} et al., Arch. Ration. Mech. Anal. 221, No. 1, 487--526 (2016; Zbl 1342.35245) Full Text: DOI
Qian, Chenyin A remark on the global regularity for the 3D Navier-Stokes equations. (English) Zbl 1381.35121 Appl. Math. Lett. 57, 126-131 (2016). MSC: 35Q30 76D03 76D05 35B65 PDF BibTeX XML Cite \textit{C. Qian}, Appl. Math. Lett. 57, 126--131 (2016; Zbl 1381.35121) Full Text: DOI
Lei, Zhen; Navas, Esteban A.; Zhang, Qi S. A priori bound on the velocity in axially symmetric Navier-Stokes equations. (English) Zbl 1341.35102 Commun. Math. Phys. 341, No. 1, 289-307 (2016). Reviewer: Cheng He (Beijing) MSC: 35Q30 35B45 76D05 PDF BibTeX XML Cite \textit{Z. Lei} et al., Commun. Math. Phys. 341, No. 1, 289--307 (2016; Zbl 1341.35102) Full Text: DOI arXiv
Qian, Chenyin A generalized regularity criterion for 3D Navier-Stokes equations in terms of one velocity component. (English) Zbl 1333.35164 J. Differ. Equations 260, No. 4, 3477-3494 (2016). MSC: 35Q30 76D05 35D30 35B65 PDF BibTeX XML Cite \textit{C. Qian}, J. Differ. Equations 260, No. 4, 3477--3494 (2016; Zbl 1333.35164) Full Text: DOI
Jia, Hao; Sverak, Vladimir Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space? (English) Zbl 1317.35176 J. Funct. Anal. 268, No. 12, 3734-3766 (2015). MSC: 35Q30 35D30 35B30 76D05 PDF BibTeX XML Cite \textit{H. Jia} and \textit{V. Sverak}, J. Funct. Anal. 268, No. 12, 3734--3766 (2015; Zbl 1317.35176) Full Text: DOI
Mauro, J. Alfonso On the regularity properties of the pressure field associated to a Hopf weak solution to the Navier-Stokes equations. (English) Zbl 1363.76017 PLISKA, Stud. Math. Bulg. 23, 95-118 (2014). MSC: 76D05 35Q30 76D03 PDF BibTeX XML Cite \textit{J. A. Mauro}, PLISKA, Stud. Math. Bulg. 23, 95--118 (2014; Zbl 1363.76017) Full Text: Link
Zheng, Xiaoxin A regularity criterion for the tridimensional Navier-Stokes equations in term of one velocity component. (English) Zbl 1331.35266 J. Differ. Equations 256, No. 1, 283-309 (2014). Reviewer: Pavel Burda (Praha) MSC: 35Q30 76D05 35D30 35B65 PDF BibTeX XML Cite \textit{X. Zheng}, J. Differ. Equations 256, No. 1, 283--309 (2014; Zbl 1331.35266) Full Text: DOI
Cheskidov, A.; Shvydkoy, R. A unified approach to regularity problems for the 3D Navier-Stokes and Euler equations: the use of Kolmogorov’s dissipation range. (English) Zbl 1433.76031 J. Math. Fluid Mech. 16, No. 2, 263-273 (2014). MSC: 76D03 76B03 35Q30 35Q31 76F02 PDF BibTeX XML Cite \textit{A. Cheskidov} and \textit{R. Shvydkoy}, J. Math. Fluid Mech. 16, No. 2, 263--273 (2014; Zbl 1433.76031) Full Text: DOI
Bardos, C.; Lopes Filho, M. C.; Niu, Dongjuan; Nussenzveig Lopes, H. J.; Titi, E. S. Stability of two-dimensional viscous incompressible flows under three-dimensional perturbations and inviscid symmetry breaking. (English) Zbl 1291.35207 SIAM J. Math. Anal. 45, No. 3, 1871-1885 (2013). MSC: 35Q35 65M70 PDF BibTeX XML Cite \textit{C. Bardos} et al., SIAM J. Math. Anal. 45, No. 3, 1871--1885 (2013; Zbl 1291.35207) Full Text: DOI
Gigli, Nicola; Mosconi, Sunra J. N. A variational approach to the Navier-Stokes equations. (English. French) Zbl 1242.49063 Bull. Sci. Math. 136, No. 3, 256-276 (2012). MSC: 49M25 35Q30 76Y05 PDF BibTeX XML Cite \textit{N. Gigli} and \textit{S. J. N. Mosconi}, Bull. Sci. Math. 136, No. 3, 256--276 (2012; Zbl 1242.49063) Full Text: DOI
Seregin, Gregory A note on necessary conditions for blow-up of energy solutions to the Navier-Stokes equations. (English) Zbl 1247.35096 Escher, Joachim (ed.) et al., Parabolic problems. The Herbert Amann Festschrift. Based on the conference on nonlinear parabolic problems held in celebration of Herbert Amann’s 70th birthday at the Banach Center in Bȩdlewo, Poland, May 10–16, 2009. Basel: Birkhäuser (ISBN 978-3-0348-0074-7/hbk; 978-3-0348-0075-4/ebook). Progress in Nonlinear Differential Equations and Their Applications 80, 631-645 (2011). MSC: 35Q30 35B44 PDF BibTeX XML Cite \textit{G. Seregin}, Prog. Nonlinear Differ. Equ. Appl. 80, 631--645 (2011; Zbl 1247.35096) Full Text: DOI
Seregin, Gregory A. Weak solutions to the Navier-Stokes equations with bounded scale-invariant quantities. (English) Zbl 1229.35191 Bhatia, Rajendra (ed.) et al., Proceedings of the international congress of mathematicians (ICM 2010), Hyderabad, India, August 19–27, 2010. Vol. III: Invited lectures. Hackensack, NJ: World Scientific; New Delhi: Hindustan Book Agency (ISBN 978-981-4324-33-5/hbk; 978-81-85931-08-3/hbk; 978-981-4324-30-4/set; 978-981-4324-35-9/ebook). 2105-2127 (2011). MSC: 35Q30 76D05 35D30 PDF BibTeX XML Cite \textit{G. A. Seregin}, in: Proceedings of the international congress of mathematicians (ICM 2010), Hyderabad, India, August 19--27, 2010. Vol. III: Invited lectures. Hackensack, NJ: World Scientific; New Delhi: Hindustan Book Agency. 2105--2127 (2011; Zbl 1229.35191) Full Text: Link
Chen, Wenying; Gala, Sadek A regularity criterion for the Navier-Stokes equations in terms of the horizontal derivatives of the two velocity components. (English) Zbl 1220.35116 Electron. J. Differ. Equ. 2011, Paper No. 06, 7 p. (2011). MSC: 35Q30 76F65 76D05 76D03 PDF BibTeX XML Cite \textit{W. Chen} and \textit{S. Gala}, Electron. J. Differ. Equ. 2011, Paper No. 06, 7 p. (2011; Zbl 1220.35116) Full Text: EMIS EuDML
Cheskidov, A.; Shvydkoy, R. The regularity of weak solutions of the 3D Navier-Stokes equations in \(B^{-1}_{\infty,\infty}\). (English) Zbl 1186.35137 Arch. Ration. Mech. Anal. 195, No. 1, 159-169 (2010). MSC: 35Q30 76D03 76D05 35B65 35D30 PDF BibTeX XML Cite \textit{A. Cheskidov} and \textit{R. Shvydkoy}, Arch. Ration. Mech. Anal. 195, No. 1, 159--169 (2010; Zbl 1186.35137) Full Text: DOI
Yue, Hu; Zhao, Yuanshan New regularity criterion for the Navier-Stokes equations. (English) Zbl 1198.35185 Proc. Jangjeon Math. Soc. 12, No. 3, 299-306 (2009). MSC: 35Q30 76D03 76D05 86A10 PDF BibTeX XML Cite \textit{H. Yue} and \textit{Y. Zhao}, Proc. Jangjeon Math. Soc. 12, No. 3, 299--306 (2009; Zbl 1198.35185)
Kukavica, Igor The fractal dimension of the singular set for solutions of the Navier-Stokes system. (English) Zbl 1181.35173 Nonlinearity 22, No. 12, 2889-2900 (2009). MSC: 35Q30 76D05 28A78 76D03 28A80 PDF BibTeX XML Cite \textit{I. Kukavica}, Nonlinearity 22, No. 12, 2889--2900 (2009; Zbl 1181.35173) Full Text: DOI
Constantin, Peter; Wu, Jiahong Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations. (English) Zbl 1163.76010 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26, No. 1, 159-180 (2009). MSC: 76D03 35Q35 PDF BibTeX XML Cite \textit{P. Constantin} and \textit{J. Wu}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26, No. 1, 159--180 (2009; Zbl 1163.76010) Full Text: DOI EuDML arXiv
Gala, Sadek Uniqueness of weak solutions of the Navier-Stokes equations. (English) Zbl 1199.35274 Appl. Math., Praha 53, No. 6, 561-582 (2008). MSC: 35Q30 76D05 35D30 76D03 PDF BibTeX XML Cite \textit{S. Gala}, Appl. Math., Praha 53, No. 6, 561--582 (2008; Zbl 1199.35274) Full Text: DOI EuDML
Yuan, Jia A remark on the blow-up criterion of strong solutions and regularity for weak solutions of Navier-Stokes equations. (English) Zbl 1174.76005 J. Partial Differ. Equations 21, No. 3, 208-220 (2008). MSC: 76D05 35B65 PDF BibTeX XML Cite \textit{J. Yuan}, J. Partial Differ. Equations 21, No. 3, 208--220 (2008; Zbl 1174.76005)
Dong, Bo-Qing; Chen, Zhi-Min Regularity criterion of weak solutions to the 3D Navier-Stokes equations via two velocity components. (English) Zbl 1132.35432 J. Math. Anal. Appl. 338, No. 1, 1-10 (2008). MSC: 35Q30 35D10 76D05 76D03 PDF BibTeX XML Cite \textit{B.-Q. Dong} and \textit{Z.-M. Chen}, J. Math. Anal. Appl. 338, No. 1, 1--10 (2008; Zbl 1132.35432) Full Text: DOI
Chen, Qionglei; Zhang, Zhifei Regularity criterion via the pressure on weak solutions to the 3D Navier-Stokes equations. (English) Zbl 1126.35047 Proc. Am. Math. Soc. 135, No. 6, 1829-1837 (2007). Reviewer: Klaus Deckelnick (Magdeburg) MSC: 35Q30 76D03 35B65 PDF BibTeX XML Cite \textit{Q. Chen} and \textit{Z. Zhang}, Proc. Am. Math. Soc. 135, No. 6, 1829--1837 (2007; Zbl 1126.35047) Full Text: DOI
Cannone, Marco; Miao, Changxing; Prioux, Nicolas; Yuan, Baoquan The Cauchy problem for the magneto-hydrodynamic system. (English) Zbl 1104.76085 Biler, Piotr (ed.) et al., Self-similar solutions of nonlinear PDE. Selected papers of the conference, Bȩdlewo, Poland, September 5–9, 2005. Warsaw: Polish Academy of Sciences, Institute of Mathematics. Banach Center Publications 74, 59-93 (2006). MSC: 76W05 35Q35 35Q60 PDF BibTeX XML Cite \textit{M. Cannone} et al., Banach Cent. Publ. 74, 59--93 (2006; Zbl 1104.76085)
Dong, Boqing A note on \(L^2\) decay of Ladyzhenskaya model. (English) Zbl 1115.35022 J. Partial Differ. Equations 19, No. 4, 304-318 (2006). MSC: 35B40 35Q35 76A05 76D03 PDF BibTeX XML Cite \textit{B. Dong}, J. Partial Differ. Equations 19, No. 4, 304--318 (2006; Zbl 1115.35022)
Kukavica, Igor; Ziane, Mohammed Conditional regularity of the 3D Navier-Stokes equation. (Régularité conditionnelle des équations de Navier-Stokes.) (French. Abridged English version) Zbl 1099.35082 C. R., Math., Acad. Sci. Paris 343, No. 1, 31-36 (2006). MSC: 35Q30 76D03 76D05 35D10 PDF BibTeX XML Cite \textit{I. Kukavica} and \textit{M. Ziane}, C. R., Math., Acad. Sci. Paris 343, No. 1, 31--36 (2006; Zbl 1099.35082) Full Text: DOI
Zhou, Yong On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in \(\mathbb R^N\). (English) Zbl 1099.35091 Z. Angew. Math. Phys. 57, No. 3, 384-392 (2006). Reviewer: Il’ya Sh. Mogilevskij (Tver’) MSC: 35Q30 76D03 76D05 35B45 35D10 PDF BibTeX XML Cite \textit{Y. Zhou}, Z. Angew. Math. Phys. 57, No. 3, 384--392 (2006; Zbl 1099.35091) Full Text: DOI
Zhang, Zhifei; Chen, Qionglei Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in \(\mathbb R^3\). (English) Zbl 1091.35064 J. Differ. Equations 216, No. 2, 470-481 (2005). Reviewer: Jana Stará (Praha) MSC: 35Q30 76D03 76D05 35B65 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{Q. Chen}, J. Differ. Equations 216, No. 2, 470--481 (2005; Zbl 1091.35064) Full Text: DOI
Zhou, Yong Direction of vorticity and a new regularity criterion for the Navier-Stokes equations. (English) Zbl 1072.35565 ANZIAM J. 46, No. 3, 309-316 (2005). Reviewer: Valeriu Al. Sava (Iaşi) MSC: 35Q30 76D03 35B65 76D05 PDF BibTeX XML Cite \textit{Y. Zhou}, ANZIAM J. 46, No. 3, 309--316 (2005; Zbl 1072.35565) Full Text: DOI
Zhou, Yong A new regularity criterion for the Navier-Stokes equations in terms of the direction of vorticity. (English) Zbl 1072.35148 Monatsh. Math. 144, No. 3, 251-257 (2005). Reviewer: Valeriu Al. Sava (Iaşi) MSC: 35Q30 76D03 35B65 76D05 PDF BibTeX XML Cite \textit{Y. Zhou}, Monatsh. Math. 144, No. 3, 251--257 (2005; Zbl 1072.35148) Full Text: DOI
Zhang, Qi S. Global solutions of Navier-Stokes equations with large \(L^2\) norms in a new function space. (English) Zbl 1100.35083 Adv. Differ. Equ. 9, No. 5-6, 587-624 (2004). MSC: 35Q30 76D03 76D05 35A08 PDF BibTeX XML Cite \textit{Q. S. Zhang}, Adv. Differ. Equ. 9, No. 5--6, 587--624 (2004; Zbl 1100.35083)
He, Cheng On partial regularity for weak solutions to the Navier-Stokes equations. (English) Zbl 1062.35065 J. Funct. Anal. 211, No. 1, 153-162 (2004). Reviewer: Messoud A. Efendiev (Berlin) MSC: 35Q30 76D03 35D10 PDF BibTeX XML Cite \textit{C. He}, J. Funct. Anal. 211, No. 1, 153--162 (2004; Zbl 1062.35065) Full Text: DOI
Miao, Changxing A remark on the regularity of solutions to the Navier-Stokes equations. (English) Zbl 1040.35062 J. Partial Differ. Equations 16, No. 1, 75-81 (2003). MSC: 35Q30 35B65 76D03 PDF BibTeX XML Cite \textit{C. Miao}, J. Partial Differ. Equations 16, No. 1, 75--81 (2003; Zbl 1040.35062)
Amann, H. Remarks on the strong solvability of the Navier-Stokes equations. (English) Zbl 1060.35102 Funct. Differ. Equ. 8, No. 1-2, 3-9 (2001). Reviewer: Messoud A. Efendiev (Berlin) MSC: 35Q30 76D03 PDF BibTeX XML Cite \textit{H. Amann}, Funct. Differ. Equ. 8, No. 1--2, 3--9 (2001; Zbl 1060.35102)
Nagasawa, Takeyuki A new energy inequality and partial regularity for weak solutions of Navier-Stokes equations. (English) Zbl 0991.35060 J. Math. Fluid Mech. 3, No. 1, 40-56 (2001). Reviewer: Il’ya Sh. Mogilevskii (Tver’) MSC: 35Q30 76D05 35D30 PDF BibTeX XML Cite \textit{T. Nagasawa}, J. Math. Fluid Mech. 3, No. 1, 40--56 (2001; Zbl 0991.35060) Full Text: DOI
Galdi, Giovanni P. An introduction to the Navier-Stokes initial-boundary value problem. (English) Zbl 1108.35133 Galdi, Giovanni P. (ed.) et al., Fundamental directions in mathematical fluid mechanics. Basel: Birkhäuser (ISBN 3-7643-6414-9). 1-70 (2000). MSC: 35Q30 76D05 76D03 PDF BibTeX XML Cite \textit{G. P. Galdi}, in: Fundamental directions in mathematical fluid mechanics. Basel: Birkhäuser. 1--70 (2000; Zbl 1108.35133)
Amann, Herbert On the strong solvability of the Navier-Stokes equations. (English) Zbl 0989.35107 J. Math. Fluid Mech. 2, No. 1, 16-98 (2000). MSC: 35Q30 76D03 76D05 35K55 PDF BibTeX XML Cite \textit{H. Amann}, J. Math. Fluid Mech. 2, No. 1, 16--98 (2000; Zbl 0989.35107) Full Text: DOI
Kozono, Hideo; Yamazaki, Masao Local and global unique solvability of the Navier-Stokes exterior problem with Cauchy data in the space \(L^{n,\infty}\). (English) Zbl 0848.35099 Houston J. Math. 21, No. 4, 755-799 (1995). Reviewer: Th.Sonar (Hamburg) MSC: 35Q35 35Q30 PDF BibTeX XML Cite \textit{H. Kozono} and \textit{M. Yamazaki}, Houston J. Math. 21, No. 4, 755--799 (1995; Zbl 0848.35099)
Borchers, Wolfgang; Galdi, Giovanni P.; Pileckas, Konstantin On the uniqueness of Leray-Hopf solutions for the flow through an aperture. (English) Zbl 0781.35050 Arch. Ration. Mech. Anal. 122, No. 1, 19-33 (1993). Reviewer: I.Sh.Mogilevskij (Tver’) MSC: 35Q30 76D05 35D05 PDF BibTeX XML Cite \textit{W. Borchers} et al., Arch. Ration. Mech. Anal. 122, No. 1, 19--33 (1993; Zbl 0781.35050) Full Text: DOI
DiPerna, Ronald J.; Majda, Andrew J. Oscillations and concentrations in weak solutions of the incompressible fluid equations. (English) Zbl 0626.35059 Commun. Math. Phys. 108, 667-689 (1987). Reviewer: R.Racke MSC: 35L60 35Q30 35D10 35A35 76D05 35B65 PDF BibTeX XML Cite \textit{R. J. DiPerna} and \textit{A. J. Majda}, Commun. Math. Phys. 108, 667--689 (1987; Zbl 0626.35059) Full Text: DOI
Giga, Yoshikazu Regularity criteria for weak solutions of the Navier-Stokes system. (English) Zbl 0598.35094 Nonlinear functional analysis and its applications, Proc. Summer. Res. Inst., Berkeley/Calif. 1983, Proc. Symp. Pure Math. 45, Pt. 1, 449-453 (1986). Reviewer: T.Shaposhnikova MSC: 35Q30 35D10 76D05 PDF BibTeX XML
Schonbek, Maria Elena \(L^ 2\) decay for weak solutions of the Navier-Stokes equations. (English) Zbl 0602.76031 Arch. Ration. Mech. Anal. 88, 209-222 (1985). Reviewer: B.Straughan MSC: 76D05 35Q30 PDF BibTeX XML Cite \textit{M. E. Schonbek}, Arch. Ration. Mech. Anal. 88, 209--222 (1985; Zbl 0602.76031) Full Text: DOI