×

On the \(\mathrm{mod}p\) Steenrod algebra and the Leibniz-Hopf algebra. (English) Zbl 1453.55013

For an odd prime \(p\), let \(\mathcal{A}_p\) denote the Bockstein-free part of the \(\mathrm{mod} \ p\) Steenrod algebra (which is generated as an associative algebra by the Steenrod powers \(\mathcal{P}^i\)). Using the Milnor coproduct definition, one gets a Hopf algebra structure for \(\mathcal{A}_p\), and its conjugation map is the subject of the present paper. The author considers the Leibnitz-Hopf algebra and its \(\mathrm{mod} \ p\) reduction, \(\mathcal{F}_p\), defined as the free associative \(\mathbb{Z}/p\) algebra on generators \(S^1, S^2, \ldots\), and carrying a natural Hopf algebra structure (using again a version of the Milnor coproduct). If each \(S^i\) is given the same degree as the corresponding \(\mathcal{P}^i\), by considering the Adem relations one gets a quotient map \(\pi : \mathcal{F}_p \rightarrow \mathcal{A}_p\). The point of this paper is to use this map, together with the known formula for the conjugation on \(\mathcal{F}_p\) (appearing here at the beginning of Section 3), to determine the conjugation of some admissible elements of \(\mathcal{A}_p\). The method is exemplified in Section 3, and is most successful for those that are images of elements of \(\mathcal{F}_p\) whose conjugation becomes simpler once one applies the Adem relations.
The last section of this work gives a new, combinatorial proof of a result on the coarsening operation in the \(\mathrm{mod} \ 2\) dual Leibnitz-Hopf algebra, \(\mathcal{F}_2^*\), and presents an additional result on the conjugation invariants in \(\mathcal{F}_2^*\) using its algebra structure.

MSC:

55S10 Steenrod algebra
16T05 Hopf algebras and their applications
57T05 Hopf algebras (aspects of homology and homotopy of topological groups)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. F. Adams, Lectures on generalised cohomology, in Category Theory, Homology Theory and their Applications, III, Lecture Notes in Mathematics, 99, Springer, Berlin, 1969, 1-138. · Zbl 0193.51702
[2] D. Arnon, Monomial bases in the Steenrod algebra, J. Pure Appl. Algebra, 96, 215-223 (1994) · Zbl 0840.55012 · doi:10.1016/0022-4049(94)90099-X
[3] M. G. Barratt and H. R. Miller, On the anti-automorphism of the Steenrod algebra, in Symposium on Algebraic Topology in honor of José Adem (Oaxtepec, 1981), Contemp. Math., 12, Amer. Math. Soc., Providence, RI, 1982, 47-52. · Zbl 0509.55011
[4] D. Bulacu, S. Caenepeel, F. Panaite and F. Van Oystaeyen, Quasi-Hopf Algebras, Encyclopedia of Mathematics and its Applications, 171, Cambridge University Press, Cambridge, 2019. · Zbl 1425.16001
[5] S. R. Bullet; I. G. Macdonald, On the Adem relations, Topology, 21, 329-332 (1982) · Zbl 0506.55015 · doi:10.1016/0040-9383(82)90015-5
[6] D. P. Carlisle; G. Walker; R. M. W. Wood, The intersection of the admissible basis and the Milnor basis of the Steenrod algebra, J. Pure Appl. Algebra, 128, 1-10 (1998) · Zbl 0921.55015 · doi:10.1016/S0022-4049(97)00035-2
[7] M. D. Crossley, The Steenrod algebra and other copolynomial Hopf algebras, Bull. London Math. Soc., 32, 609-614 (2000) · Zbl 1026.55022 · doi:10.1112/S0024609300007128
[8] M. D. Crossley, Some Hopf algebras of words, Glasg. Math. J., 48, 575-582 (2006) · Zbl 1115.16018 · doi:10.1017/S0017089506003302
[9] M. Crossley; N. D. Turgay, Conjugation invariants in the mod 2 dual Leibniz-Hopf algebra, Comm. Algebra, 41, 3261-3266 (2013) · Zbl 1284.16038 · doi:10.1080/00927872.2012.682675
[10] M. Crossley; N. D. Turgay, Conjugation invariants in the Leibniz-Hopf algebra, J. Pure Appl. Algebra, 217, 2247-2254 (2013) · Zbl 1290.16030 · doi:10.1016/j.jpaa.2013.03.003
[11] M. D. Crossley; S. Whitehouse, On conjugation invariants in the dual Steenrod algebra, Proc. Amer. Math. Soc., 128, 2809-2818 (2000) · Zbl 0986.55015 · doi:10.1090/S0002-9939-00-05283-7
[12] M. D. Crossley; S. Whitehouse, Higher conjugation cohomology in commutative Hopf algebras, Proc. Edinb. Math. Soc. (2), 44, 19-26 (2001) · Zbl 0980.16032 · doi:10.1017/S0013091599000826
[13] D. M. Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc., 44, 235-236 (1974) · Zbl 0256.55016 · doi:10.1090/S0002-9939-1974-0328934-1
[14] V. G. Drinfel’d, Quasi-Hopf algebras, Leningr. Math. J., 1, 1419-1457 (1990) · Zbl 0718.16033
[15] R. Ehrenborg, On posets and Hopf algebras, Adv. Math., 119, 1-25 (1996) · Zbl 0851.16033 · doi:10.1006/aima.1996.0026
[16] D. Y. Emelyanov; T. Y. Popelensky, On monomial bases in the mod \(p\) Steenrod algebra, J. Fixed Point Theory Appl., 17, 341-353 (2015) · Zbl 1326.55017 · doi:10.1007/s11784-014-0166-3
[17] K. Emir, Graphical calculus of Hopf crossed modules, Hacettepe J. Math. Statistics, 49, 695-707 (2020) · Zbl 1477.18033 · doi:10.15672/hujms.467966
[18] M. Hazewinkel, Generalized overlapping shuffle algebras, J. Math. Sci. (New York), 106, 3168-3186 (2001) · Zbl 1168.16306 · doi:10.1023/A:1011386821910
[19] M. Hazewinkel, The algebra of quasi-symmetric functions is free over the integers, Adv. Math., 164, 283-300 (2001) · Zbl 0991.05102 · doi:10.1006/aima.2001.2017
[20] M. Hazewinkel, Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions. Monodromy and differential equations, Acta Appl. Math., 75, 55-83 (2003) · Zbl 1020.16027 · doi:10.1023/A:1022323609001
[21] M. Hazewinkel, Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions. II, Acta Appl. Math., 85, 319-340 (2005) · Zbl 1139.16026 · doi:10.1007/s10440-004-5635-z
[22] M. Hazewinkel, Explicit polynomial generators for the ring of quasisymmetric functions over the integers, Acta. Appl. Math., 109, 39-44 (2010) · Zbl 1209.05260 · doi:10.1007/s10440-009-9439-z
[23] S. Kaji, A Maple Code for the Dual Leibniz-Hopf Algebra. Available from: http://www.skaji.org/files/Leibniz-Hopf.mw.
[24] I. Karaca; I. Y. Karaca, On conjugation in the mod-\(p\) Steenrod algebra, Turkish J. Math., 24, 359-365 (2000) · Zbl 0971.55019
[25] I. Karaca, Monomial bases in the mod-\(p\) Steenrod algebra, Czechoslovak Math. J., 55, 699-707 (2005) · Zbl 1081.55016 · doi:10.1007/s10587-005-0057-2
[26] C. Malvenuto; C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra, 177, 967-982 (1995) · Zbl 0838.05100 · doi:10.1006/jabr.1995.1336
[27] C. Malvenuto; C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra, 177, 967-982 (1995) · Zbl 0080.38003 · doi:10.1006/jabr.1995.1336
[28] J. Milnor, The Steenrod algebra and its dual, Ann. of Math. (2), 67, 150-171 (1958) · Zbl 0163.28202 · doi:10.2307/1969932
[29] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2), 81, (1965), 211-264. · Zbl 0889.55009 · doi:10.1016/S0022-4049(96)00140-5
[30] K. G. Monks, Change of basis, monomial relations, and the \(P_t^s\) bases for the Steenrod algebra, J. Pure Appl. Algebra, 125, 235-260 (1998) · Zbl 0889.55009 · doi:10.1016/S0022-4049(96)00140-5
[31] K. G. Monks, STEENROD: A Maple package for computing with the Steenrod algebra, 1995. · Zbl 0052.19501 · doi:10.1007/BF02564562
[32] J.-P. Serre, Cohomologie modulo 2 des complexes d’Eilenberg-MacLane, Comment. Math. Helv., 27, 198-232 (1953) · Zbl 0781.55011 · doi:10.1007/BF02564562
[33] J. H. Silverman, Conjugation and excess in the Steenrod algebra, Proc. Amer. Math. Soc., 119, 657-661 (1993) · Zbl 0781.55011 · doi:10.1090/S0002-9939-1993-1152292-8
[34] N. E. Steenrod, Cohomology Operations, Annals of Math Studies, 50, Princeton University Press, Princeton, NJ, 1962. · Zbl 0102.38104
[35] W. Stein, et al., Sage Mathematics Software (Version 5.4.1), The Sage Development Team, 2012. Available from: http://www.sagemath.org. · Zbl 0274.55021 · doi:10.1090/S0002-9939-1975-0380796-3
[36] P. D. Straffin Jr., Identities for conjugation in the Steenrod algebra, Proc. Amer. Math. Soc., 49, 253-255 (1975) · Zbl 0057.15502 · doi:10.1090/S0002-9939-1975-0380796-3
[37] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv., 28, 17-86 (1954) · Zbl 1338.55010 · doi:10.1007/BF02566923
[38] N. D. Turgay, On the conjugation invariant problem in the mod \(p\) dual Steenrod algebra, Ital. J. Pure Appl. Math., 34, 151-158 (2015) · Zbl 1337.55021 · doi:10.4134/CKMS.2015.30.3.269
[39] N. D. Turgay, A remark on the conjugation in the Steenrod algebra, Commun. Korean Math. Soc., 30, 269-276 (2015) · Zbl 1300.55023 · doi:10.4134/CKMS.2015.30.3.269
[40] N. D. Turgay, An alternative approach to the Adem relations in the mod 2 Steenrod algebra, Turkish J. Mathematics, 38, 924-934 (2014) · Zbl 1389.55003 · doi:10.3906/mat-1309-6
[41] N. D. Turgay, An alternative approach to the Adem relations in the mod \(p\) Steenrod algebra, C. R. Acad. Bulgare Sci., 70, 457-466 (2017) · Zbl 1424.16066 · doi:10.18514/MMN.2018.2591
[42] N. D. Turgay, Invariants under decomposition of the conjugation in the mod 2 dual Leibniz-Hopf algebra, Miskolc Math. Notes, 19, 1217-1222 (2018) · Zbl 1379.55017 · doi:10.18514/MMN.2018.2591
[43] N. D. Turgay; S. Kaji, The mod 2 dual Steenrod algebra as a subalgebra of the mod 2 dual Leibniz-Hopf algebra, J. Homotopy Relat. Struct., 12, 727-739 (2017) · Zbl 1379.55017 · doi:10.1007/s40062-016-0163-x
[44] N. D. Turgay and I. Karaca, The Arnon bases in the Steenrod algebra, Georgian Math. J., (2018). · Zbl 0861.55023 · doi:10.1090/S0002-9939-96-03203-0
[45] G. Walker; R. M. W. Wood, The nilpotence height of \({S}q^{2n}\), Proc. Amer. Math. Soc., 124, 1291-1295 (1996) · Zbl 0892.55008 · doi:10.1090/S0002-9939-96-03203-0
[46] G. Walker; R. M. W. Wood, The nilpotence height of \({P}^{p^n}\), Math. Proc. Cambridge Philos. Soc., 123, 85-93 (1998) · Zbl 0137.16603 · doi:10.1017/S0305004197001813
[47] C. T. C. Wall, Generators and relations for the Steenrod algebra, Ann. of Math. (2), 72, 429-444 (1960) · Zbl 0840.55013 · doi:10.2307/1970225
[48] R. M. W. Wood, A note on bases and relations in the Steenrod algebra, Bull. London Math. Soc., 27, 380-386 (1995) · Zbl 0840.55013 · doi:10.1112/blms/27.4.380
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.