×

A modified Laurent series for hole/inclusion problems in plane elasticity. (English) Zbl 1468.30010

Summary: We propose a modified Laurent series for investigating the elastic field around holes/inclusions under plane deformation by dividing the classical Laurent series over the first derivative of the conformal mapping, which is justified from a mathematical point of view. Through a group of numerical examples concerning the stress concentration around holes of common shapes, the accuracy of the modified Laurent series is verified. It is also demonstrated that the use of the modified Laurent series as compared with the classical one generally leads to significantly more accurate results with even much fewer terms of the series. Utilizing the modified Laurent series, we revisit the stress field around an irregularly shaped elastic inclusion embedded in an infinite matrix and effectively eliminate the severe interfacial stress fluctuation reported earlier in the literature. More importantly, the modified Laurent series may be very useful for a highly accurate prediction of the physical field in particulate composites with densely packed inclusions.

MSC:

30B10 Power series (including lacunary series) in one complex variable
30B50 Dirichlet series, exponential series and other series in one complex variable
74B05 Classical linear elasticity
74S70 Complex-variable methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Savin, GN, Stress Concentration Around Holes (1961), London: Pergamon, London · Zbl 0124.18303
[2] Muskhelishvili, NI, Some Basic Problems of the Mathematical Theory of Elasticity (1977), Dordrecht: Springer, Dordrecht · doi:10.1007/978-94-017-3034-1
[3] Kang, H.; Kim, E.; Milton, GW, Inclusion pairs satisfying Eshelby’s uniformity property, SIAM J. Appl. Math., 69, 2, 577-595 (2008) · Zbl 1159.74387 · doi:10.1137/070691358
[4] Wang, X., Uniform fields inside two non-elliptical inclusions, Math. Mech. Solids, 17, 7, 736-761 (2012) · Zbl 07278887 · doi:10.1177/1081286511429888
[5] Dai, M.; Gao, CF; Ru, CQ, Uniform stress fields inside multiple inclusions in an elastic infinite plane under plane deformation, Proc. R. Soc. A, 471, 2177, 20140933 (2015) · doi:10.1098/rspa.2014.0933
[6] Dai, M.; Schiavone, P., Need the uniform stress field inside multiple interacting inclusions be hydrostatic?, J. Elast., 143, 195-207 (2021) · Zbl 1465.74020 · doi:10.1007/s10659-021-09813-z
[7] Gao, CF; Fan, WX, Exact solutions for the plane problem in piezoelectric materials with an elliptic or a crack, Int. J. Solids Struct., 36, 17, 2527-2540 (1999) · Zbl 0955.74024 · doi:10.1016/S0020-7683(98)00120-6
[8] Gao, CF; Zhang, TY, Fracture behaviors of piezoelectric materials, Theor. Appl. Fract. Mech., 41, 1-3, 339-379 (2004)
[9] Li, M.; Gao, CF, Electro-elastic fields in an elliptic piezoelectric plane with an elliptic hole or a crack of arbitrary location, Meccanica, 53, 1, 347-357 (2018) · Zbl 1390.74064 · doi:10.1007/s11012-017-0733-y
[10] Wang, GF; Wang, TJ, Deformation around a nanosized elliptical hole with surface effect, Appl. Phys. Lett., 89, 16, 161901 (2006) · doi:10.1063/1.2362988
[11] Wang, S.; Chen, ZT; Gao, CF, Analytic solution for a circular nano-inhomogeneity in a finite matrix, Nano Mater. Sci., 1, 2, 116-120 (2019) · doi:10.1016/j.nanoms.2019.02.002
[12] Dai, M.; Yang, HB; Schiavone, P., Stress concentration around an elliptical hole with surface tension based on the original Gurtin-Murdoch model, Mech. Mater., 135, 144-148 (2019) · doi:10.1016/j.mechmat.2019.05.009
[13] Yu, CB; Wang, S.; Gao, CF; Chen, ZT, Thermal stress analysis of current-carrying media containing an inclusion with arbitrarily-given shape, Appl. Math. Modell., 79, 753-767 (2020) · Zbl 1481.74145 · doi:10.1016/j.apm.2019.11.002
[14] Song, K.; Schiavone, P., Thermal conduction around a circular nanoinhomogeneity, Int. J. Heat Mass Trans, 150, 119297 (2020) · doi:10.1016/j.ijheatmasstransfer.2019.119297
[15] Yang, HB; Yu, CB; Tang, JY; Qiu, J.; Zhang, XQ, Electric-current-induced thermal stress around a non-circular rigid inclusion in a two-dimensional nonlinear thermoelectric material, Acta Mech., 231, 11, 4603-4619 (2020) · Zbl 1457.74051 · doi:10.1007/s00707-020-02770-z
[16] Style, RW; Wettlaufer, JS; Dufresne, ER, Surface tension and the mechanics of liquid inclusions in compliant solids, Soft Matter., 11, 4, 672-679 (2015) · doi:10.1039/C4SM02413C
[17] Mancarella, F.; Style, RW; Wettlaufer, JS, Surface tension and the Mori-Tanaka theory of non-dilute soft composite solids, Proc. R. Soc. A, 472, 2189, 20150853 (2016) · Zbl 1371.74077 · doi:10.1098/rspa.2015.0853
[18] Wu, J.; Ru, CQ; Zhang, L., An elliptical liquid inclusion in an infinite elastic plane, Proc. R. Soc. A, 474, 2215, 20170813 (2018) · doi:10.1098/rspa.2017.0813
[19] Dai, M.; Li, M.; Schiavone, P., Plane deformations of an inhomogeneity-matrix system incorporating a compressible liquid inhomogeneity and complete Gurtin-Murdoch interface model, J. Appl. Mech., 85, 12, 12101085 (2018) · doi:10.1115/1.4041469
[20] Dai, M.; Hua, J.; Schiavone, P., Compressible liquid/gas inclusion with high initial pressure in plane deformation: modified boundary conditions and related analytical solutions, Eur. J. Mech. A Solids, 82, 104000 (2020) · Zbl 1475.74019 · doi:10.1016/j.euromechsol.2020.104000
[21] Dai, M.; Schiavone, P., Deformation-induced change in the geometry of a general material surface and its relation to the Gurtin-Murdoch model, J. Appl. Mech., 87, 6, 061005 (2020) · doi:10.1115/1.4046635
[22] Luo, JC; Gao, CF, Faber series method for plane problems of an arbitrarily shaped inclusion, Acta Mech., 208, 3, 133-145 (2009) · Zbl 1397.74040 · doi:10.1007/s00707-008-0138-z
[23] Luo, JC; Gao, CF, Stress field of a coated arbitrary shape inclusion, Meccanica, 46, 5, 1055-1071 (2011) · Zbl 1271.74045 · doi:10.1007/s11012-010-9363-3
[24] Chen, D.; Nisitani, H., Singular stress field near the corner of jointed dissimilar materials, J. Appl. Mech., 60, 3, 607-613 (1993) · Zbl 0795.73057 · doi:10.1115/1.2900847
[25] Dai, M.; Sun, HY, Thermo-elastic analysis of a finite plate containing multiple elliptical inclusions, Int. J. Mech. Sci., 75, 337-344 (2013) · doi:10.1016/j.ijmecsci.2013.07.012
[26] Faber, G., Über polynomische Entwickelungen, Math. Ann., 57, 3, 389-408 (1903) · JFM 34.0430.01 · doi:10.1007/BF01444293
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.