Ding, Ming-Hui; Zheng, Guang-Hui Determination of the reaction coefficient in a time dependent nonlocal diffusion process. (English) Zbl 07305945 Inverse Probl. 37, No. 2, Article ID 025005, 28 p. (2021). MSC: 65M32 65M30 65M06 35B65 35A02 44A10 76M30 76M21 35Q35 62F15 PDF BibTeX XML Cite \textit{M.-H. Ding} and \textit{G.-H. Zheng}, Inverse Probl. 37, No. 2, Article ID 025005, 28 p. (2021; Zbl 07305945) Full Text: DOI
Feng, Hongsong; Long, Guangqing; Zhao, Shan FFT-based high order central difference schemes for Poisson’s equation with staggered boundaries. (English) Zbl 07301285 J. Sci. Comput. 86, No. 1, Paper No. 7, 25 p. (2021). MSC: 65N06 65T50 65N85 35J05 PDF BibTeX XML Cite \textit{H. Feng} et al., J. Sci. Comput. 86, No. 1, Paper No. 7, 25 p. (2021; Zbl 07301285) Full Text: DOI
Bairwa, R. K.; Kumar, Ajay; Singh, Karan Analytical solutions for time-fractional Cauchy reaction-diffusion equations using iterative Laplace transform method. (English) Zbl 07303932 Jñānābha 50, No. 1, 207-217 (2020). MSC: 35A20 35A22 34A08 33E12 PDF BibTeX XML Cite \textit{R. K. Bairwa} et al., Jñānābha 50, No. 1, 207--217 (2020; Zbl 07303932) Full Text: Link
Sun, Ting; Wang, Jilu; Zheng, Chunxiong Fast evaluation of artificial boundary conditions for advection diffusion equations. (English) Zbl 07292989 SIAM J. Numer. Anal. 58, No. 6, 3530-3557 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65N30 65M12 65N15 65D30 65Y20 44A10 PDF BibTeX XML Cite \textit{T. Sun} et al., SIAM J. Numer. Anal. 58, No. 6, 3530--3557 (2020; Zbl 07292989) Full Text: DOI
Prakasha, Doddabhadrappla Gowda; Malagi, Naveen Sanju; Veeresha, Pundikala New approach for fractional Schrödinger-Boussinesq equations with Mittag-Leffler kernel. (English) Zbl 07292696 Math. Methods Appl. Sci. 43, No. 17, 9654-9670 (2020). MSC: 35R11 35G55 35Q55 PDF BibTeX XML Cite \textit{D. G. Prakasha} et al., Math. Methods Appl. Sci. 43, No. 17, 9654--9670 (2020; Zbl 07292696) Full Text: DOI
Duru, Kenneth; Rannabauer, Leonhard; Gabriel, Alice-Agnes; Kreiss, Gunilla; Bader, Michael A stable discontinuous Galerkin method for the perfectly matched layer for elastodynamics in first order form. (English) Zbl 07292211 Numer. Math. 146, No. 4, 729-782 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65M60 65M08 65M12 65M15 35F55 35F46 35Q74 74B10 44A10 PDF BibTeX XML Cite \textit{K. Duru} et al., Numer. Math. 146, No. 4, 729--782 (2020; Zbl 07292211) Full Text: DOI
Mishra, Hradyesh Kumar; Tripathi, Rajnee Homotopy perturbation method of delay differential equation using He’s polynomial with Laplace transform. (English) Zbl 07291452 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 2, 289-298 (2020). MSC: 34K05 34K07 44A10 PDF BibTeX XML Cite \textit{H. K. Mishra} and \textit{R. Tripathi}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 2, 289--298 (2020; Zbl 07291452) Full Text: DOI
Sharma, Ram Prakash; Jain, Madhu; Kumar, Devendra Analytical solution of exothermic reactions model with constant heat source and porous medium. (English) Zbl 07291446 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 2, 239-243 (2020). MSC: 80A19 80A21 44A10 80A32 92E20 35K05 80M99 PDF BibTeX XML Cite \textit{R. P. Sharma} et al., Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 2, 239--243 (2020; Zbl 07291446) Full Text: DOI
Laxmi, P. Vijaya; Kassahun, T. Wondewosen Transient analysis of multi-server Markovian queueing system with synchronous multiple working vacations and impatience of customers. (English) Zbl 1452.90117 Int. J. Math. Oper. Res. 16, No. 2, 217-237 (2020). MSC: 90B22 60K25 PDF BibTeX XML Cite \textit{P. V. Laxmi} and \textit{T. W. Kassahun}, Int. J. Math. Oper. Res. 16, No. 2, 217--237 (2020; Zbl 1452.90117) Full Text: DOI
Moldovan, Ionuţ Dragoş; Cismaşiu, Ildi; De Freitas, João António Teixeira Unified hybrid-Trefftz finite element formulation for dynamic problems. (English) Zbl 1451.65151 Alves, Carlos (ed.) et al., Advances in Trefftz methods and their applications. Selected papers based on the presentations at the 9th conference on Trefftz methods and 5th conference on method of fundamental solutions, Lisbon, Portugal, July 29–31, 2019. Cham: Springer. SEMA SIMAI Springer Ser. 23, 157-188 (2020). MSC: 65M60 65M38 35P05 65M06 65N06 65T50 44A10 42A38 35K99 35L99 PDF BibTeX XML Cite \textit{I. D. Moldovan} et al., SEMA SIMAI Springer Ser. 23, 157--188 (2020; Zbl 1451.65151) Full Text: DOI
Tavares, F. W.; Ndiaye, P. M.; Lenzi, E. K.; Evangelista, L. R.; Ribeiro, H. V.; Zola, R. S. Anomalous diffusion and sorption-desorption process in complex fluid systems. (English) Zbl 07265438 Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105411, 9 p. (2020). MSC: 76R50 PDF BibTeX XML Cite \textit{F. W. Tavares} et al., Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105411, 9 p. (2020; Zbl 07265438) Full Text: DOI
Nordström, Jan; Hagstrom, Thomas M. The number of boundary conditions for initial boundary value problems. (English) Zbl 1450.35126 SIAM J. Numer. Anal. 58, No. 5, 2818-2828 (2020). MSC: 35G46 65M12 PDF BibTeX XML Cite \textit{J. Nordström} and \textit{T. M. Hagstrom}, SIAM J. Numer. Anal. 58, No. 5, 2818--2828 (2020; Zbl 1450.35126) Full Text: DOI
Ahmed, Hoda F. Analytic approximate solutions for the 1D and 2D nonlinear fractional diffusion equations of Fisher type. (English) Zbl 07258544 C. R. Acad. Bulg. Sci. 73, No. 3, 320-330 (2020). Reviewer: Angela Slavova (Sofia) MSC: 45B05 45D05 45A05 45J05 PDF BibTeX XML Cite \textit{H. F. Ahmed}, C. R. Acad. Bulg. Sci. 73, No. 3, 320--330 (2020; Zbl 07258544) Full Text: DOI
Uddin, Marjan; Taufiq, Muhammad On the local transformed based method for partial integro-differential equations of fractional order. (English) Zbl 07254909 Miskolc Math. Notes 21, No. 1, 435-449 (2020). MSC: 65R10 65R20 PDF BibTeX XML Cite \textit{M. Uddin} and \textit{M. Taufiq}, Miskolc Math. Notes 21, No. 1, 435--449 (2020; Zbl 07254909) Full Text: DOI
Hsiao, George C.; Sánchez-Vizuet, Tonatiuh Time-domain boundary integral methods in linear thermoelasticity. (English) Zbl 1447.74044 SIAM J. Math. Anal. 52, No. 3, 2463-2490 (2020). MSC: 74S99 74S15 74F05 74B05 74H15 65M38 PDF BibTeX XML Cite \textit{G. C. Hsiao} and \textit{T. Sánchez-Vizuet}, SIAM J. Math. Anal. 52, No. 3, 2463--2490 (2020; Zbl 1447.74044) Full Text: DOI
Al-Ahmad, S.; Sulaiman, Ibrahim Mohammed; Mamat, M. An efficient modification of differential transform method for solving integral and integro-differential equations. (English) Zbl 07243653 Aust. J. Math. Anal. Appl. 17, No. 2, Article No. 5, 15 p. (2020). MSC: 34A45 44A10 65L99 PDF BibTeX XML Cite \textit{S. Al-Ahmad} et al., Aust. J. Math. Anal. Appl. 17, No. 2, Article No. 5, 15 p. (2020; Zbl 07243653) Full Text: Link
Kumar, Sunil; Nisar, Kottakkaran Sooppy; Kumar, Ranbir; Cattani, Carlo; Samet, Bessem A new Rabotnov fractional-exponential function-based fractional derivative for diffusion equation under external force. (English) Zbl 1447.35359 Math. Methods Appl. Sci. 43, No. 7, 4460-4471 (2020). MSC: 35R11 26A33 PDF BibTeX XML Cite \textit{S. Kumar} et al., Math. Methods Appl. Sci. 43, No. 7, 4460--4471 (2020; Zbl 1447.35359) Full Text: DOI
Veeresha, Pundikala; Prakasha, Doddabhadrappla Gowda; Baskonus, Haci Mehmet; Yel, Gulnur An efficient analytical approach for fractional Lakshmanan-Porsezian-Daniel model. (English) Zbl 07242873 Math. Methods Appl. Sci. 43, No. 7, 4136-4155 (2020). MSC: 35Q55 44A10 65M99 35R11 PDF BibTeX XML Cite \textit{P. Veeresha} et al., Math. Methods Appl. Sci. 43, No. 7, 4136--4155 (2020; Zbl 07242873) Full Text: DOI
Veeresha, Pundikala; Prakasha, Doddabhadrappla Gowda; Baleanu, Dumitru Analysis of fractional Swift-Hohenberg equation using a novel computational technique. (English) Zbl 1446.35256 Math. Methods Appl. Sci. 43, No. 4, 1970-1987 (2020). MSC: 35R11 26A33 41A58 PDF BibTeX XML Cite \textit{P. Veeresha} et al., Math. Methods Appl. Sci. 43, No. 4, 1970--1987 (2020; Zbl 1446.35256) Full Text: DOI
Wu, Xiaolei; Yan, Yuyuan; Yan, Yubin An analysis of the L1 scheme for stochastic subdiffusion problem driven by integrated space-time white noise. (English) Zbl 1446.65120 Appl. Numer. Math. 157, 69-87 (2020). MSC: 65M60 65N30 65M06 65D32 65M15 35R11 26A33 60H15 60H40 60H35 44A10 35R60 PDF BibTeX XML Cite \textit{X. Wu} et al., Appl. Numer. Math. 157, 69--87 (2020; Zbl 1446.65120) Full Text: DOI
Sun, Jiaojiao Mellin transform method for European option pricing under sub-fractional stochastic interest rate model. (Chinese. English summary) Zbl 1449.91159 J. Hebei Norm. Univ., Nat. Sci. Ed. 44, No. 1, 18-24 (2020). MSC: 91G20 91G30 44A10 35Q91 PDF BibTeX XML Cite \textit{J. Sun}, J. Hebei Norm. Univ., Nat. Sci. Ed. 44, No. 1, 18--24 (2020; Zbl 1449.91159) Full Text: DOI
Jassim, Hassan Kamil Analytical approximate solutions for local fractional wave equations. (English) Zbl 1439.35533 Math. Methods Appl. Sci. 43, No. 2, 939-947 (2020). MSC: 35R11 35L05 PDF BibTeX XML Cite \textit{H. K. Jassim}, Math. Methods Appl. Sci. 43, No. 2, 939--947 (2020; Zbl 1439.35533) Full Text: DOI
Feng, Hongsong; Zhao, Shan FFT-based high order central difference schemes for three-dimensional Poisson’s equation with various types of boundary conditions. (English) Zbl 1436.65159 J. Comput. Phys. 410, Article ID 109391, 23 p. (2020). MSC: 65N06 65T50 35J05 PDF BibTeX XML Cite \textit{H. Feng} and \textit{S. Zhao}, J. Comput. Phys. 410, Article ID 109391, 23 p. (2020; Zbl 1436.65159) Full Text: DOI
Akinyemi, Lanre A fractional analysis of Noyes-Field model for the nonlinear Belousov-Zhabotinsky reaction. (English) Zbl 07213932 Comput. Appl. Math. 39, No. 3, Paper No. 175, 34 p. (2020). MSC: 35Q92 35R11 PDF BibTeX XML Cite \textit{L. Akinyemi}, Comput. Appl. Math. 39, No. 3, Paper No. 175, 34 p. (2020; Zbl 07213932) Full Text: DOI
Singh, Jagdev; Kumar, Devendra; Kumar, Sunil An efficient computational method for local fractional transport equation occurring in fractal porous media. (English) Zbl 07208215 Comput. Appl. Math. 39, No. 3, Paper No. 137, 10 p. (2020). MSC: 76S05 26A33 35R11 35Q99 PDF BibTeX XML Cite \textit{J. Singh} et al., Comput. Appl. Math. 39, No. 3, Paper No. 137, 10 p. (2020; Zbl 07208215) Full Text: DOI
Morales-Delgado, Victor Fabian; Gómez-Aguilar, José Francisco; Taneco-Hernández, Marco Antonio Mathematical modeling approach to the fractional Bergman’s model. (English) Zbl 1442.34084 Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 805-821 (2020). MSC: 34C60 92C50 34A08 44A10 34A25 PDF BibTeX XML Cite \textit{V. F. Morales-Delgado} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 805--821 (2020; Zbl 1442.34084) Full Text: DOI
Jiang, Suzhen; Liao, Kaifang; Wei, Ting Inversion of the initial value for a time-fractional diffusion-wave equation by boundary data. (English) Zbl 1437.65124 Comput. Methods Appl. Math. 20, No. 1, 109-120 (2020). MSC: 65M32 65M30 65J20 65K10 65F22 44A10 26A33 35R11 35A02 PDF BibTeX XML Cite \textit{S. Jiang} et al., Comput. Methods Appl. Math. 20, No. 1, 109--120 (2020; Zbl 1437.65124) Full Text: DOI
Łapiński, Tomasz M. Approximations of the sum of states by Laplace’s method for a system of particles with a finite number of energy levels and application to limit theorems. (English) Zbl 1448.82007 Math. Phys. Anal. Geom. 23, No. 1, Paper No. 9, 23 p. (2020). Reviewer: Angelo Lucia (Pasadena) MSC: 82B10 41A60 41A63 60F05 82B20 44A10 PDF BibTeX XML Cite \textit{T. M. Łapiński}, Math. Phys. Anal. Geom. 23, No. 1, Paper No. 9, 23 p. (2020; Zbl 1448.82007) Full Text: DOI
Saratha, S. R.; Bagyalakshmi, M.; Sai Sundara Krishnan, G. Fractional generalised homotopy analysis method for solving nonlinear fractional differential equations. (English) Zbl 1449.65293 Comput. Appl. Math. 39, No. 2, Paper No. 112, 32 p. (2020). MSC: 65M99 35R11 34A08 34A25 35C10 35G31 PDF BibTeX XML Cite \textit{S. R. Saratha} et al., Comput. Appl. Math. 39, No. 2, Paper No. 112, 32 p. (2020; Zbl 1449.65293) Full Text: DOI
Aghili, A. Analytic solutions of fractional ODEs and PDEs. (English) Zbl 1439.35513 Asian-Eur. J. Math. 13, No. 2, Article ID 2050032, 14 p. (2020). MSC: 35R11 34A08 44A10 35Q53 PDF BibTeX XML Cite \textit{A. Aghili}, Asian-Eur. J. Math. 13, No. 2, Article ID 2050032, 14 p. (2020; Zbl 1439.35513) Full Text: DOI
Dubey, Ved Prakash; Kumar, Rajnesh; Kumar, Devendra Numerical solution of time-fractional three-species food chain model arising in the realm of mathematical ecology. (English) Zbl 1443.92192 Int. J. Biomath. 13, No. 2, Article ID 2050011, 22 p. (2020). MSC: 92D40 26A33 65R99 PDF BibTeX XML Cite \textit{V. P. Dubey} et al., Int. J. Biomath. 13, No. 2, Article ID 2050011, 22 p. (2020; Zbl 1443.92192) Full Text: DOI
Yang, Lufeng The rational spectral method combined with the Laplace transform for solving the Robin time-fractional equation. (English) Zbl 1435.65179 Adv. Math. Phys. 2020, Article ID 9865682, 7 p. (2020). MSC: 65M70 44A10 65R10 26A33 35R11 PDF BibTeX XML Cite \textit{L. Yang}, Adv. Math. Phys. 2020, Article ID 9865682, 7 p. (2020; Zbl 1435.65179) Full Text: DOI
Lin, T.-S.; He, C.-Y.; Hu, W.-F. Fast spectral solver for Poisson equation in an annular domain. (English) Zbl 1437.65212 Ann. Math. Sci. Appl. 5, No. 1, 65-74 (2020). MSC: 65N35 65T50 35J05 PDF BibTeX XML Cite \textit{T. S. Lin} et al., Ann. Math. Sci. Appl. 5, No. 1, 65--74 (2020; Zbl 1437.65212) Full Text: DOI
Wei, Chang-Kun; Yang, Jia-Qing; Zhang, Bo A time-dependent interaction problem between an electromagnetic field and an elastic body. (English) Zbl 1447.35309 Acta Math. Appl. Sin., Engl. Ser. 36, No. 1, 95-118 (2020). MSC: 35Q60 35A15 78A45 74B10 44A10 35B35 35B45 35A01 35A02 PDF BibTeX XML Cite \textit{C.-K. Wei} et al., Acta Math. Appl. Sin., Engl. Ser. 36, No. 1, 95--118 (2020; Zbl 1447.35309) Full Text: DOI
Li, Changpin; Wang, Zhen The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: mathematical analysis. (English) Zbl 1450.65125 Appl. Numer. Math. 150, 587-606 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65M06 65M12 65M15 35R11 26A33 46F12 44A10 PDF BibTeX XML Cite \textit{C. Li} and \textit{Z. Wang}, Appl. Numer. Math. 150, 587--606 (2020; Zbl 1450.65125) Full Text: DOI
Guglielmi, Nicola; López-Fernández, María; Nino, Giancarlo Numerical inverse Laplace transform for convection-diffusion equations. (English) Zbl 07169741 Math. Comput. 89, No. 323, 1161-1191 (2020). MSC: 65L05 65R10 65J10 65M20 91-08 PDF BibTeX XML Cite \textit{N. Guglielmi} et al., Math. Comput. 89, No. 323, 1161--1191 (2020; Zbl 07169741) Full Text: DOI
Li, Binjie; Wang, Tao; Xie, Xiaoping Analysis of a time-stepping discontinuous Galerkin method for fractional diffusion-wave equations with nonsmooth data. (English) Zbl 1435.65229 J. Sci. Comput. 82, No. 1, Paper No. 4, 30 p. (2020). MSC: 65R20 26A33 45K05 PDF BibTeX XML Cite \textit{B. Li} et al., J. Sci. Comput. 82, No. 1, Paper No. 4, 30 p. (2020; Zbl 1435.65229) Full Text: DOI
Veeresha, P.; Prakasha, D. G.; Kumar, Devendra An efficient technique for nonlinear time-fractional Klein-Fock-Gordon equation. (English) Zbl 1433.35454 Appl. Math. Comput. 364, Article ID 124637, 15 p. (2020). MSC: 35R11 35Q53 PDF BibTeX XML Cite \textit{P. Veeresha} et al., Appl. Math. Comput. 364, Article ID 124637, 15 p. (2020; Zbl 1433.35454) Full Text: DOI
Krantz, Steven G. Differential equations. A modern approach with wavelets. (English) Zbl 07143136 Textbooks in Mathematics. Boca Raton, FL: CRC Press (ISBN 978-0-367-44409-9/hbk; 978-1-003-00950-4/ebook). xiii, 467 p. (2020). Reviewer: Gudula Rünger (Chemnitz) MSC: 34-01 35-01 42-01 34Axx 35Axx 42C40 65Lxx PDF BibTeX XML Cite \textit{S. G. Krantz}, Differential equations. A modern approach with wavelets. Boca Raton, FL: CRC Press (2020; Zbl 07143136) Full Text: DOI
Meas, Somavatey; Kittipoom, Pisamai Space-fractional telegraph equations. (English) Zbl 07248522 Thai J. Math., Spec. Iss.: Annual Meeting in Mathematics 2018, 153-162 (2019). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{S. Meas} and \textit{P. Kittipoom}, Thai J. Math. , 153--162 (2019; Zbl 07248522) Full Text: Link
Veeresha, P.; Prakasha, D. G.; Baskonus, Haci Mehmet Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method. (English) Zbl 1452.92043 Math. Sci., Springer 13, No. 2, 115-128 (2019). MSC: 92D30 PDF BibTeX XML Cite \textit{P. Veeresha} et al., Math. Sci., Springer 13, No. 2, 115--128 (2019; Zbl 1452.92043) Full Text: DOI
Saad, Khaled M.; Srivastava, H. M.; Kumar, Devendra A reliable analytical algorithm for cubic isothermal auto-catalytic chemical system. (English) Zbl 1429.65265 Singh, Jagdev (ed.) et al., Mathematical modelling, applied analysis and computation. Selected papers of the first international conference, ICMMAAC 2018, JECRC University, Jaipur, India, July 6–8, 2018. Singapore: Springer. Springer Proc. Math. Stat. 272, 243-260 (2019). MSC: 65M99 35Q92 92-08 92E99 PDF BibTeX XML Cite \textit{K. M. Saad} et al., Springer Proc. Math. Stat. 272, 243--260 (2019; Zbl 1429.65265) Full Text: DOI
Bairwa, Rajendra K.; Singh, Jagdev Analytical approach to fractional Navier-Stokes equations by iterative Laplace transform method. (English) Zbl 1429.65261 Singh, Jagdev (ed.) et al., Mathematical modelling, applied analysis and computation. Selected papers of the first international conference, ICMMAAC 2018, JECRC University, Jaipur, India, July 6–8, 2018. Singapore: Springer. Springer Proc. Math. Stat. 272, 179-188 (2019). MSC: 65M99 35Q30 35R11 PDF BibTeX XML Cite \textit{R. K. Bairwa} and \textit{J. Singh}, Springer Proc. Math. Stat. 272, 179--188 (2019; Zbl 1429.65261) Full Text: DOI
Nemati, Ali; Mamehrashi, Kamal The use of the Ritz method and Laplace transform for solving 2D fractional-order optimal control problems described by the Roesser model. (English) Zbl 1433.49046 Asian J. Control 21, No. 3, 1189-1201 (2019). MSC: 49M25 49K20 PDF BibTeX XML Cite \textit{A. Nemati} and \textit{K. Mamehrashi}, Asian J. Control 21, No. 3, 1189--1201 (2019; Zbl 1433.49046) Full Text: DOI
Wang, Kexin; Yan, Xingjie; Yin, Kun Novel methods for time-space fractional diffusion equation. (English) Zbl 1449.35452 J. Shanghai Norm. Univ., Nat. Sci. 48, No. 3, 252-260 (2019). MSC: 35R11 35C10 PDF BibTeX XML Cite \textit{K. Wang} et al., J. Shanghai Norm. Univ., Nat. Sci. 48, No. 3, 252--260 (2019; Zbl 1449.35452) Full Text: DOI
Zhang, Wanlu; Yin, Xiaolong; Zhao, Xianghua On the occupation times in a dual delayed Sparre Andersen risk model. (Chinese. English summary) Zbl 1449.60083 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 4, 918-931 (2019). MSC: 60G40 60K05 91G40 PDF BibTeX XML Cite \textit{W. Zhang} et al., Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 4, 918--931 (2019; Zbl 1449.60083)
Shah, Kamal; Khalil, Hammad; Yildirim, Ahmet On a hybrid technique to handle analytical and approximate solutions of linear and nonlinear fractional order partial differential equations. (English) Zbl 1430.35261 Appl. Appl. Math. 14, No. 2, 910-925 (2019). MSC: 35R11 44A10 35C10 PDF BibTeX XML Cite \textit{K. Shah} et al., Appl. Appl. Math. 14, No. 2, 910--925 (2019; Zbl 1430.35261) Full Text: Link
Riahi, Natascha Analysis of wavepacket tunneling with the method of Laplace transformation. (English) Zbl 1427.81036 Int. J. Mod. Phys. B 33, No. 12, Article ID 1950107, 20 p. (2019). MSC: 81Q05 35Q41 35A22 PDF BibTeX XML Cite \textit{N. Riahi}, Int. J. Mod. Phys. B 33, No. 12, Article ID 1950107, 20 p. (2019; Zbl 1427.81036) Full Text: DOI
Ravnik, Jure; Tibuat, Jan Fast boundary-domain integral method for unsteady convection-diffusion equation with variable diffusivity using the modified Helmholtz fundamental solution. (English) Zbl 1442.65416 Numer. Algorithms 82, No. 4, 1441-1466 (2019). MSC: 65N38 65N35 65N80 65N55 65M06 65T60 35J05 35Q49 PDF BibTeX XML Cite \textit{J. Ravnik} and \textit{J. Tibuat}, Numer. Algorithms 82, No. 4, 1441--1466 (2019; Zbl 1442.65416) Full Text: DOI
Eltayeb, Hassan; Bachar, Imed; Kılıçman, Adem On conformable double Laplace transform and one dimensional fractional coupled Burgers’ equation. (English) Zbl 1423.35394 Symmetry 11, No. 3, Paper No. 417, 13 p. (2019). MSC: 35R11 35A22 PDF BibTeX XML Cite \textit{H. Eltayeb} et al., Symmetry 11, No. 3, Paper No. 417, 13 p. (2019; Zbl 1423.35394) Full Text: DOI
Mohanty, Sanjay Kumar Transient axi-symmetric disturbances in two-layer fluid. (English) Zbl 1444.76035 Int. J. Appl. Comput. Math. 5, No. 5, Paper No. 125, 21 p. (2019). MSC: 76B15 76M45 42A32 PDF BibTeX XML Cite \textit{S. K. Mohanty}, Int. J. Appl. Comput. Math. 5, No. 5, Paper No. 125, 21 p. (2019; Zbl 1444.76035) Full Text: DOI
Gündoǧdu, Hami; Gözükızıl, Ömer Faruk Double Laplace decomposition method and exact solutions of Hirota, Schrödinger and complex mKdV equations. (English) Zbl 1438.35390 Konuralp J. Math. 7, No. 1, 7-15 (2019). MSC: 35Q55 35A22 35Q53 PDF BibTeX XML Cite \textit{H. Gündoǧdu} and \textit{Ö. F. Gözükızıl}, Konuralp J. Math. 7, No. 1, 7--15 (2019; Zbl 1438.35390) Full Text: Link
Hamoud, A. A.; Ghadle, K. P. Approximate solutions of Volterra integro-differential equations of fractional order by using analytical techniques. (English) Zbl 1438.45011 Acta Univ. Apulensis, Math. Inform. 57, 63-74 (2019). MSC: 45J05 44A10 26A33 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{K. P. Ghadle}, Acta Univ. Apulensis, Math. Inform. 57, 63--74 (2019; Zbl 1438.45011) Full Text: DOI
Liu, Xiaoli; Zhang, Ruming Near-field imaging of locally perturbed periodic surfaces. (English) Zbl 1427.35019 Inverse Probl. 35, No. 11, Article ID 114003, 20 p. (2019). MSC: 35J05 35R30 PDF BibTeX XML Cite \textit{X. Liu} and \textit{R. Zhang}, Inverse Probl. 35, No. 11, Article ID 114003, 20 p. (2019; Zbl 1427.35019) Full Text: DOI
Wang, Cuilian; Liu, Xiao Dividend problems for finite time interval in the classical risk model. (Chinese. English summary) Zbl 1438.91179 Chin. J. Appl. Probab. Stat. 35, No. 2, 193-199 (2019). MSC: 91G50 91G05 44A10 PDF BibTeX XML Cite \textit{C. Wang} and \textit{X. Liu}, Chin. J. Appl. Probab. Stat. 35, No. 2, 193--199 (2019; Zbl 1438.91179) Full Text: DOI
Rakhshan, Seyed Ali; Effati, Sohrab A generalized Legendre-Gauss collocation method for solving nonlinear fractional differential equations with time varying delays. (English) Zbl 1448.34147 Appl. Numer. Math. 146, 342-360 (2019). MSC: 34K37 65L60 33C45 PDF BibTeX XML Cite \textit{S. A. Rakhshan} and \textit{S. Effati}, Appl. Numer. Math. 146, 342--360 (2019; Zbl 1448.34147) Full Text: DOI
Maitama, Shehu; Zhao, Weidong Local fractional Laplace homotopy analysis method for solving non-differentiable wave equations on Cantor sets. (English) Zbl 07101287 Comput. Appl. Math. 38, No. 2, Paper No. 65, 22 p. (2019). MSC: 65M99 26A33 PDF BibTeX XML Cite \textit{S. Maitama} and \textit{W. Zhao}, Comput. Appl. Math. 38, No. 2, Paper No. 65, 22 p. (2019; Zbl 07101287) Full Text: DOI
Paré, Youssouf; Youssouf, Minoungou; Nébie, Abdoul Wassiha Resolution of nonlinear convection-diffusion-reaction equations of Cauchy kind by the Laplace SBA method. (English) Zbl 1449.65292 Eur. J. Pure Appl. Math. 12, No. 3, 771-789 (2019). MSC: 65M99 35K57 44A10 PDF BibTeX XML Cite \textit{Y. Paré} et al., Eur. J. Pure Appl. Math. 12, No. 3, 771--789 (2019; Zbl 1449.65292) Full Text: Link
Guezane-Lakoud, A.; Khaldi, R. Solutions for a nonlinear fractional Euler-Lagrange type equation. (English) Zbl 1423.34010 S\(\vec{\text{e}}\)MA J. 76, No. 2, 195-202 (2019). MSC: 34A08 34B15 47N20 PDF BibTeX XML Cite \textit{A. Guezane-Lakoud} and \textit{R. Khaldi}, S\(\vec{\text{e}}\)MA J. 76, No. 2, 195--202 (2019; Zbl 1423.34010) Full Text: DOI
Yavuz, Mehmet Characterizations of two different fractional operators without singular kernel. (English) Zbl 1423.26015 Math. Model. Nat. Phenom. 14, No. 3, Paper No. 302, 13 p. (2019). MSC: 26A33 35R11 44A10 PDF BibTeX XML Cite \textit{M. Yavuz}, Math. Model. Nat. Phenom. 14, No. 3, Paper No. 302, 13 p. (2019; Zbl 1423.26015) Full Text: DOI
Uddin, Marjan; Taufiq, Muhammad Approximation of time fractional Black-Scholes equation via radial kernels and transformations. (English) Zbl 1438.65255 Fract. Differ. Calc. 9, No. 1, 75-90 (2019). MSC: 65M70 65M12 65M15 65M22 26A33 35R11 91G20 91G60 35Q91 65D32 44A10 PDF BibTeX XML Cite \textit{M. Uddin} and \textit{M. Taufiq}, Fract. Differ. Calc. 9, No. 1, 75--90 (2019; Zbl 1438.65255) Full Text: DOI
Fedotenkov, G. V.; Kalinchuk, V. V.; Mitin, A. Y. Three-dimensional non-stationary motion of Timoshenko-type circular cylindrical shell. (English) Zbl 07080230 Lobachevskii J. Math. 40, No. 3, 311-320 (2019). MSC: 74K25 74H10 PDF BibTeX XML Cite \textit{G. V. Fedotenkov} et al., Lobachevskii J. Math. 40, No. 3, 311--320 (2019; Zbl 07080230) Full Text: DOI
Rani, D.; Mishra, V. Solutions of Volterra integral and integro-differential equations using modified Laplace Adomian decomposition method. (English) Zbl 07079022 J. Appl. Math. Stat. Inform. 15, No. 1, 5-18 (2019). MSC: 41A10 44A10 34A34 45D05 65R10 PDF BibTeX XML Cite \textit{D. Rani} and \textit{V. Mishra}, J. Appl. Math. Stat. Inform. 15, No. 1, 5--18 (2019; Zbl 07079022) Full Text: DOI
Veeresha, P.; Prakasha, D. G.; Qurashi, M. A.; Baleanu, D. A reliable technique for fractional modified Boussinesq and approximate long wave equations. (English) Zbl 07078729 Adv. Difference Equ. 2019, Paper No. 253, 23 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{P. Veeresha} et al., Adv. Difference Equ. 2019, Paper No. 253, 23 p. (2019; Zbl 07078729) Full Text: DOI
Himonas, A. Alexandrou; Mantzavinos, Dionyssios; Yan, Fangchi The nonlinear Schrödinger equation on the half-line with Neumann boundary conditions. (English) Zbl 1420.35358 Appl. Numer. Math. 141, 2-18 (2019). MSC: 35Q55 37K10 35C08 44A10 35Q41 PDF BibTeX XML Cite \textit{A. A. Himonas} et al., Appl. Numer. Math. 141, 2--18 (2019; Zbl 1420.35358) Full Text: DOI
Arafa, Anas. A. M.; Hagag, Ahmed. M. Sh. \(Q\)-homotopy analysis transform method applied to fractional Kundu-Eckhaus equation and fractional massive Thirring model arising in quantum field theory. (English) Zbl 1419.35198 Asian-Eur. J. Math. 12, No. 3, Article ID 1950045, 11 p. (2019). MSC: 35R11 35C10 35Q40 PDF BibTeX XML Cite \textit{Anas. A. M. Arafa} and \textit{Ahmed. M. Sh. Hagag}, Asian-Eur. J. Math. 12, No. 3, Article ID 1950045, 11 p. (2019; Zbl 1419.35198) Full Text: DOI
Hamoud, Ahmed A.; Hussain, Khawlah H.; Ghadle, Kirtiwant P. The reliable modified Laplace Adomian decomposition method to solve fractional Volterra-Fredholm integro differential equations. (English) Zbl 1417.65148 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 26, No. 3, 171-184 (2019). MSC: 65L99 45J05 45B05 45D05 45L05 34K37 44A10 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 26, No. 3, 171--184 (2019; Zbl 1417.65148) Full Text: Link
Veeresha, P.; Prakasha, D. G.; Baskonus, Haci Mehmet Novel simulations to the time-fractional Fisher’s equation. (English) Zbl 1452.65296 Math. Sci., Springer 13, No. 1, 33-42 (2019). MSC: 65M99 35Q53 35R11 PDF BibTeX XML Cite \textit{P. Veeresha} et al., Math. Sci., Springer 13, No. 1, 33--42 (2019; Zbl 1452.65296) Full Text: DOI
Gubes, Murat A new calculation technique for the Laplace and Sumudu transforms by means of the variational iteration method. (English) Zbl 1452.44002 Math. Sci., Springer 13, No. 1, 21-25 (2019). MSC: 44A10 44A15 34A25 PDF BibTeX XML Cite \textit{M. Gubes}, Math. Sci., Springer 13, No. 1, 21--25 (2019; Zbl 1452.44002) Full Text: DOI
Shaikh, Amjad; Tassaddiq, Asifa; Nisar, Kottakkaran Sooppy; Baleanu, Dumitru Analysis of differential equations involving Caputo-fabrizio fractional operator and its applications to reaction-diffusion equations. (English) Zbl 07056996 Adv. Difference Equ. 2019, Paper No. 178, 14 p. (2019). MSC: 26A33 34A08 35R11 PDF BibTeX XML Cite \textit{A. Shaikh} et al., Adv. Difference Equ. 2019, Paper No. 178, 14 p. (2019; Zbl 07056996) Full Text: DOI
Morales-Delgado, Victor Fabian; Gómez-Aguilar, José Francisco; Saad, Khaled; Escobar Jiménez, Ricardo Fabricio Application of the Caputo-Fabrizio and Atangana-Baleanu fractional derivatives to mathematical model of cancer chemotherapy effect. (English) Zbl 1419.92009 Math. Methods Appl. Sci. 42, No. 4, 1167-1193 (2019). Reviewer: Kai Diethelm (Schweinfurt) MSC: 92C50 26A33 PDF BibTeX XML Cite \textit{V. F. Morales-Delgado} et al., Math. Methods Appl. Sci. 42, No. 4, 1167--1193 (2019; Zbl 1419.92009) Full Text: DOI
Anjum, Naveed; He, Ji-Huan Laplace transform: making the variational iteration method easier. (English) Zbl 1414.34014 Appl. Math. Lett. 92, 134-138 (2019). MSC: 34A45 44A10 34C15 PDF BibTeX XML Cite \textit{N. Anjum} and \textit{J.-H. He}, Appl. Math. Lett. 92, 134--138 (2019; Zbl 1414.34014) Full Text: DOI
Gbadeyan, Jacob Abiodun; Ogunmiloro, Oluwatayo Michael; Fadugba, Sunday Emmanuel Dynamic response of an elastically connected double non-Mindlin plates with simply-supported end condition due to moving load. (English) Zbl 1412.74045 Khayyam J. Math. 5, No. 1, 40-59 (2019). MSC: 74K20 44A10 PDF BibTeX XML Cite \textit{J. A. Gbadeyan} et al., Khayyam J. Math. 5, No. 1, 40--59 (2019; Zbl 1412.74045) Full Text: DOI
Jin, J.; Huang, T.; Zheng, J. L.; Wen, P. H. Dimension reduction analysis with mapping and direct integration algorithm. (English) Zbl 07006023 Eng. Anal. Bound. Elem. 99, 122-130 (2019). MSC: 65 35 PDF BibTeX XML Cite \textit{J. Jin} et al., Eng. Anal. Bound. Elem. 99, 122--130 (2019; Zbl 07006023) Full Text: DOI
Martin, Olga Stability approach to the fractional variational iteration method used for the dynamic analysis of viscoelastic beams. (English) Zbl 1446.74152 J. Comput. Appl. Math. 346, 261-276 (2019). MSC: 74K10 74S40 74H55 47N50 47H10 PDF BibTeX XML Cite \textit{O. Martin}, J. Comput. Appl. Math. 346, 261--276 (2019; Zbl 1446.74152) Full Text: DOI
Kundu, Piyali; Banerjea, Sudeshna; Mandal, B. N. Cauchy Poisson problem for water with a porous bottom. (English) Zbl 07215447 Ghosh, Debdas (ed.) et al., Mathematics and computing. 4th international conference, ICMC 2018, Varanasi, India, January 9–11, 2018. Revised selected papers. Singapore: Springer (ISBN 978-981-13-0022-6/pbk; 978-981-13-0023-3/ebook). Communications in Computer and Information Science 834, 174-185 (2018). MSC: 65 68 PDF BibTeX XML Cite \textit{P. Kundu} et al., Commun. Comput. Inf. Sci. 834, 174--185 (2018; Zbl 07215447) Full Text: DOI
Jiang, Jun; Feng, Yuqiang; Li, Shougui Exact solutions to the fractional differential equations with mixed partial derivatives. (English) Zbl 1432.35222 Axioms 7, No. 1, Paper No. 10, 18 p. (2018). MSC: 35R11 PDF BibTeX XML Cite \textit{J. Jiang} et al., Axioms 7, No. 1, Paper No. 10, 18 p. (2018; Zbl 1432.35222) Full Text: DOI
Hamoud, A. A.; Ghadle, K. P. The approximate solutions of fractional Volterra-Fredholm integro-differential equations by using analytical techniques. (English) Zbl 07139986 Probl. Anal. Issues Anal. 7(25), No. 1, 41-58 (2018). MSC: 65 26A33 49M27 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{K. P. Ghadle}, Probl. Anal. Issues Anal. 7(25), No. 1, 41--58 (2018; Zbl 07139986) Full Text: DOI MNR
Bashir, Tariq; Kalim, Muhammad Solution of non-homogeneous differential equations using Faddeev-LeVerrier method together with Laplace transform. (English) Zbl 1430.34016 Adv. Differ. Equ. Control Process. 19, No. 4, 343-357 (2018). MSC: 34A30 34A05 34A25 PDF BibTeX XML Cite \textit{T. Bashir} and \textit{M. Kalim}, Adv. Differ. Equ. Control Process. 19, No. 4, 343--357 (2018; Zbl 1430.34016) Full Text: DOI
Bakodah, Huda O.; Ebaid, Abdelhalim Exact solution of Ambartsumian delay differential equation and comparison with Daftardar-Gejji and Jafari approximate method. (English) Zbl 1427.65141 Mathematics 6, No. 12, Paper No. 331, 10 p. (2018). MSC: 65L99 34A45 PDF BibTeX XML Cite \textit{H. O. Bakodah} and \textit{A. Ebaid}, Mathematics 6, No. 12, Paper No. 331, 10 p. (2018; Zbl 1427.65141) Full Text: DOI
Fu, Zhuo-Jia; Xi, Qiang; Chen, Wen; Cheng, Alexander H.-D. A boundary-type meshless solver for transient heat conduction analysis of slender functionally graded materials with exponential variations. (English) Zbl 1430.65009 Comput. Math. Appl. 76, No. 4, 760-773 (2018). MSC: 65N38 65N35 80A19 35K05 35Q79 44A10 65N55 65Y05 65N20 PDF BibTeX XML Cite \textit{Z.-J. Fu} et al., Comput. Math. Appl. 76, No. 4, 760--773 (2018; Zbl 1430.65009) Full Text: DOI
Morales-Delgado, V. F.; Gómez-Aguilar, J. F.; Taneco-Hernández, M. A.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H. Mathematical modeling of the smoking dynamics using fractional differential equations with local and nonlocal kernel. (English) Zbl 1438.92034 J. Nonlinear Sci. Appl. 11, No. 8, 994-1014 (2018). MSC: 92C50 26A33 44A10 65H20 PDF BibTeX XML Cite \textit{V. F. Morales-Delgado} et al., J. Nonlinear Sci. Appl. 11, No. 8, 994--1014 (2018; Zbl 1438.92034) Full Text: DOI
Yu, Xiangnan; Zhang, Yong; Sun, HongGuang; Zheng, Chunmiao Time fractional derivative model with Mittag-Leffler function kernel for describing anomalous diffusion: analytical solution in bounded-domain and model comparison. (English) Zbl 1416.35300 Chaos Solitons Fractals 115, 306-312 (2018). MSC: 35R11 35C10 60J60 PDF BibTeX XML Cite \textit{X. Yu} et al., Chaos Solitons Fractals 115, 306--312 (2018; Zbl 1416.35300) Full Text: DOI
Colbrook, Matthew J.; Flyer, Natasha; Fornberg, Bengt On the Fokas method for the solution of elliptic problems in both convex and non-convex polygonal domains. (English) Zbl 1416.65472 J. Comput. Phys. 374, 996-1016 (2018). MSC: 65N35 35J05 65-04 PDF BibTeX XML Cite \textit{M. J. Colbrook} et al., J. Comput. Phys. 374, 996--1016 (2018; Zbl 1416.65472) Full Text: DOI
Petryk, M.; Boyko, I.; Petryk, O.; Fraissard, J. Modelling of adsorption and desorption of hydrocarbons in nanoporous catalytic zelite media using nonlinear Langmuir isotherm. (English) Zbl 1424.76043 Bukovyn. Mat. Zh. 6, No. 3-4, 107-117 (2018). MSC: 76S05 PDF BibTeX XML Cite \textit{M. Petryk} et al., Bukovyn. Mat. Zh. 6, No. 3--4, 107--117 (2018; Zbl 1424.76043) Full Text: Link
Al-Saar, Fawziah M.; Ghadle, Kirtiwant P. Combined Laplace transform with analytical methods for solving Volterra integral equations with a convolution kernel. (English) Zbl 1411.44001 J. Korean Soc. Ind. Appl. Math. 22, No. 2, 125-136 (2018). MSC: 44A10 41A58 65H20 65R20 PDF BibTeX XML Cite \textit{F. M. Al-Saar} and \textit{K. P. Ghadle}, J. Korean Soc. Ind. Appl. Math. 22, No. 2, 125--136 (2018; Zbl 1411.44001) Full Text: Link
Aghili, Arman Operational methods for sub-ballistic and coupled fractional PDEs. (English) Zbl 1415.35271 Konuralp J. Math. 6, No. 1, 42-48 (2018). MSC: 35R11 44A10 PDF BibTeX XML Cite \textit{A. Aghili}, Konuralp J. Math. 6, No. 1, 42--48 (2018; Zbl 1415.35271) Full Text: Link
Craig, Walter A course on partial differential equations. (English) Zbl 1415.35002 Graduate Studies in Mathematics 197. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4292-7/hbk; 978-1-4704-5057-1/ebook). ix, 205 p. (2018). Reviewer: Cristian Chifu (Cluj-Napoca) MSC: 35-01 35K05 35L05 35J05 42A16 35L60 35Q41 35B50 PDF BibTeX XML Cite \textit{W. Craig}, A course on partial differential equations. Providence, RI: American Mathematical Society (AMS) (2018; Zbl 1415.35002) Full Text: DOI
Hamoud, Ahmed A.; Ghadle, Kirtiwant P. Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations. (English) Zbl 1413.65482 J. Math. Model. 6, No. 1, 91-104 (2018). MSC: 65R20 45J05 26A33 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{K. P. Ghadle}, J. Math. Model. 6, No. 1, 91--104 (2018; Zbl 1413.65482) Full Text: DOI
Kamran; Uddin, Marjan; Ali, Amjad On the approximation of time-fractional telegraph equations using localized kernel-based method. (English) Zbl 1448.65183 Adv. Difference Equ. 2018, Paper No. 305, 14 p. (2018). MSC: 65M70 35R11 26A33 44A10 PDF BibTeX XML Cite \textit{Kamran} et al., Adv. Difference Equ. 2018, Paper No. 305, 14 p. (2018; Zbl 1448.65183) Full Text: DOI
Singh, Jagdev; Kumar, Devendra; Baleanu, Dumitru On the analysis of fractional diabetes model with exponential law. (English) Zbl 1446.34018 Adv. Difference Equ. 2018, Paper No. 231, 15 p. (2018). MSC: 34A08 26A33 92C50 34A25 34A45 34A34 PDF BibTeX XML Cite \textit{J. Singh} et al., Adv. Difference Equ. 2018, Paper No. 231, 15 p. (2018; Zbl 1446.34018) Full Text: DOI
Hosseinpour, Soleiman; Nazemi, Alireza; Tohidi, Emran A new approach for solving a class of delay fractional partial differential equations. (English) Zbl 1407.65214 Mediterr. J. Math. 15, No. 6, Paper No. 218, 20 p. (2018). MSC: 65M70 35R11 44A10 42C10 65D32 33C45 PDF BibTeX XML Cite \textit{S. Hosseinpour} et al., Mediterr. J. Math. 15, No. 6, Paper No. 218, 20 p. (2018; Zbl 1407.65214) Full Text: DOI
Sawangtong, Panumart; Trachoo, Kamonchat; Sawangtong, Wannika; Wiwattanapataphee, Benchawan The analytical solution for the Black-Scholes equation with two assets in the Liouville-Caputo fractional derivative sense. (English) Zbl 1418.91536 Mathematics 6, No. 8, Paper No. 129, 14 p. (2018). MSC: 91G20 26A33 44A10 PDF BibTeX XML Cite \textit{P. Sawangtong} et al., Mathematics 6, No. 8, Paper No. 129, 14 p. (2018; Zbl 1418.91536) Full Text: DOI
Sabermahani, S.; Ordokhani, Y.; Yousefi, S. A. Numerical approach based on fractional-order Lagrange polynomials for solving a class of fractional differential equations. (English) Zbl 1404.65078 Comput. Appl. Math. 37, No. 3, 3846-3868 (2018). MSC: 65L80 34A08 65L05 65L60 44A10 PDF BibTeX XML Cite \textit{S. Sabermahani} et al., Comput. Appl. Math. 37, No. 3, 3846--3868 (2018; Zbl 1404.65078) Full Text: DOI
Herrera-Hernández, E. C.; Aguilar-Madera, C. G.; Hernández, D.; Luis, D. P.; Camacho-Velázquez, R. G. Semi-numerical solution to a fractal telegraphic dual-porosity fluid flow model. (English) Zbl 1404.65091 Comput. Appl. Math. 37, No. 4, 4342-4356 (2018). MSC: 65M06 65N06 44A10 76S05 28A80 44A20 65F05 PDF BibTeX XML Cite \textit{E. C. Herrera-Hernández} et al., Comput. Appl. Math. 37, No. 4, 4342--4356 (2018; Zbl 1404.65091) Full Text: DOI
Yanchevskii, I. V. Nonstationary vibrations of electroelastic cylindrical shell in acoustic layer. (English. Russian original) Zbl 1398.74221 Int. Appl. Mech. 54, No. 4, 431-442 (2018); translation from Prikl. Mekh., Kiev 54, No. 4, 70-82 (2018). MSC: 74K25 74H45 74F15 PDF BibTeX XML Cite \textit{I. V. Yanchevskii}, Int. Appl. Mech. 54, No. 4, 431--442 (2018; Zbl 1398.74221); translation from Prikl. Mekh., Kiev 54, No. 4, 70--82 (2018) Full Text: DOI
Karaa, Samir; Pani, Amiya K. Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data. (English) Zbl 1404.65114 ESAIM, Math. Model. Numer. Anal. 52, No. 2, 773-801 (2018). MSC: 65M08 65M60 65M12 65M15 65M06 35R11 26A33 65D32 44A10 PDF BibTeX XML Cite \textit{S. Karaa} and \textit{A. K. Pani}, ESAIM, Math. Model. Numer. Anal. 52, No. 2, 773--801 (2018; Zbl 1404.65114) Full Text: DOI
Kim, Yun-Ho A global bifurcation for nonlinear elliptic equations involving nonhomogeneous operators of \(p(x)\)-Laplace type. (English) Zbl 1413.35061 Adv. Stud. Contemp. Math., Kyungshang 28, No. 1, 27-39 (2018). MSC: 35B32 35D30 35J60 35P30 37K50 47J10 PDF BibTeX XML Cite \textit{Y.-H. Kim}, Adv. Stud. Contemp. Math., Kyungshang 28, No. 1, 27--39 (2018; Zbl 1413.35061) Full Text: DOI
Kumar, Ananth; Rangarajan, R. A new combined homotopy-Laplace decomposition method for solving DDEs of order (1, 2). (English) Zbl 1413.34212 Adv. Stud. Contemp. Math., Kyungshang 28, No. 1, 13-25 (2018). MSC: 34K07 44A10 PDF BibTeX XML Cite \textit{A. Kumar} and \textit{R. Rangarajan}, Adv. Stud. Contemp. Math., Kyungshang 28, No. 1, 13--25 (2018; Zbl 1413.34212) Full Text: DOI
Gergidis, Leonidas N.; Kourounis, Drosos; Mavratzas, Stylianos; Charalambopoulos, Antonios Numerical investigation of the acoustic scattering problem from penetrable prolate spheroidal structures using the Vekua transformation and arbitrary precision arithmetic. (English) Zbl 1398.35167 Math. Methods Appl. Sci. 41, No. 13, 5124-5139 (2018). MSC: 35Q35 35A22 65N12 65N20 65N35 65N80 76Q05 35J05 35P25 33C10 PDF BibTeX XML Cite \textit{L. N. Gergidis} et al., Math. Methods Appl. Sci. 41, No. 13, 5124--5139 (2018; Zbl 1398.35167) Full Text: DOI