×

High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. (English) Zbl 1308.65215

Summary: In this paper, we consider tomographic reconstruction for axially symmetric objects from a single radiograph formed by fan-beam X-rays. All contemporary methods are based on the assumption that the density is piecewise constant or linear. From a practical viewpoint, this is quite a restrictive approximation. The method we propose is based on high-order total variation regularization. Its main advantage is to reduce the staircase effect while keeping sharp edges and enable the recovery of smoothly varying regions. The optimization problem is solved using the augmented Lagrangian method which has been recently applied in image processing. Furthermore, we use a one-dimensional (1D) technique for fan-beam X-rays to approximate 2D tomographic reconstruction for cone-beam X-rays. For the 2D problem, we treat the cone beam as fan beam located at parallel planes perpendicular to the symmetric axis. Then the density of the whole object is recovered layer by layer. Numerical results in 1D show that the proposed method has improved the preservation of edge location and the accuracy of the density level when compared with several other contemporary methods. The 2D numerical tests show that cylindrical symmetric objects can be recovered rather accurately by our high-order regularization model.

MSC:

65R10 Numerical methods for integral transforms
65R32 Numerical methods for inverse problems for integral equations
44A12 Radon transform
92C55 Biomedical imaging and signal processing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. Abraham, A penalization approach for tomographic reconstruction of binary axially symmetric objects,, Applied Mathematics and Optimization, 58, 345 (2008) · Zbl 1166.49032 · doi:10.1007/s00245-008-9039-8
[2] T. J. Asaki, Quantitative Abel tomography robust to noisy, corrupted and missing data,, Optimization and Engineering, 11, 381 (2010) · Zbl 1273.94127 · doi:10.1007/s11081-009-9097-z
[3] T. J. Asaki, Abel inversion using total variation regularization,, Inverse Problem, 21, 1895 (2005) · Zbl 1094.65129 · doi:10.1088/0266-5611/21/6/006
[4] T. Asaki, Abel inversion using total variation regularization: Applications,, Inverse Problem in Science and Engineering, 14, 873 (2006) · Zbl 1200.65115 · doi:10.1080/17415970600882549
[5] R. H. T. Bates, Overview of computerized tomography with emphasis on future developments,, Proc. IEEE, 71, 356 (1983) · doi:10.1109/PROC.1983.12594
[6] M. Benning, High-order TV methods - Enhancement via Bregman iteration,, J. Sci. Comp., 54, 269 (2013) · Zbl 1308.94012 · doi:10.1007/s10915-012-9650-3
[7] K. Bredies, Total generalized variation,, SIAM Journal on Image Sciences, 3, 492 (2010) · Zbl 1195.49025 · doi:10.1137/090769521
[8] K. Bredies, <em>Inverse Problems with Second-order Total Generalized Variation Constraints</em>,, Proceedings of SampTA 2011 - 9th International Conference on Sampling Theory and Applications (2011)
[9] K. Bredies, <em>Properties of L1-TGV2: The One-Dimensional Case</em>,, SFB-Report 2011-006, 2011 (2011)
[10] A. Chambolle, An algorithm for total variation minimization and applications,, Journal of Mathematical Imaging and Vision, 20, 89 (2004) · Zbl 1366.94048 · doi:10.1023/B:JMIV.0000011321.19549.88
[11] T. F. Chan, High-order total variation-based image restoration,, SIAM J. Sci. Comput., 22, 503 (2000) · Zbl 0968.68175 · doi:10.1137/S1064827598344169
[12] T. Chen, Space variant median filters for the restoration of impulse noise corrupted images,, IEEE Trans. Circuits Syst. II, 48, 784 (2001) · Zbl 1012.94505
[13] P. L. Combettes, Signal recovery by proximal forward-backward splitting,, Multiscale Model. and Simul., 4, 1168 (2005) · Zbl 1179.94031 · doi:10.1137/050626090
[14] D. Donoho, De-noising by soft-thresholding,, IEEE Transactions on Information Theory, 41, 613 (1995) · Zbl 0820.62002 · doi:10.1109/18.382009
[15] I. Ekeland, <em>Convex Analysis and Variational Problems</em>,, 1999. · Zbl 0939.49002
[16] H. L. Eng, Noise adaptive soft-switching median filter,, IEEE Trans. Image Process., 10, 242 (2001) · Zbl 1039.68783
[17] R. Glowinski, Sur l’approximation,, Rev. Francćaise Automat. Informat. Recherche Opérationnelle RAIRO Analyse Numérique, 9, 41 (1975) · Zbl 0368.65053
[18] T. Goldstein, The split Bregman method for L1 regularized problems,, SIAM Journal on Imaging Sciences, 2, 323 (2009) · Zbl 1177.65088 · doi:10.1137/080725891
[19] K. M. Hanson, <em>A Bayesian Approach to Nonlinear Inversion: Abel Inversion from X-ray Attenuation Data, Maximum Entropy and Bayesian Methods in Applied Statistics</em>,, edited by J. H. Justice (1986)
[20] J.-B. Hiriart-Urruty, <em>Convex Analysis and Minimization Algorithms I,</em>, Springer-Verlag Berlin (1993) · Zbl 0795.49002 · doi:10.1007/978-3-662-02796-7
[21] H. Hwang, Adaptive median filters: New algorithms and results,, IEEE Trans. Image Process., 4, 499 (1995) · doi:10.1109/83.370679
[22] F. Knoll, Second order total generalized variation (TGV) for MRI,, Magnetic Resonance in Medicine, 65, 480 (2011) · doi:10.1002/mrm.22595
[23] S. Kontogiorgis, A variable-penalty alternating directions method for convex optimizations,, Mathematical Programming, 83, 29 (1998) · Zbl 0920.90118 · doi:10.1007/BF02680549
[24] M. Lysaker, Noise removal using fourth-order partial partial differential equation with applications to medical magnetic resonance images in space and time,, IEEE Trans. Image Process., 12, 1579 (2003) · Zbl 1286.94020 · doi:10.1109/TIP.2003.819229
[25] M. Lysaker, Iterative image restoration combining total variation minimization and a second-order functional,, International Journal of Computer Vision, 66, 5 (2006) · Zbl 1286.94021 · doi:10.1007/s11263-005-3219-7
[26] M. Nikolova, Local strong homogeneity of a regularized estimator,, SIAM J. Appl. Math., 61, 633 (2000) · Zbl 0991.94015 · doi:10.1137/S0036139997327794
[27] P. E. Ng, A switching median filter with boundary discriminative noise detection for extremely corrupted images,, IEEE Trans. Image Process., 15, 1506 (2006)
[28] R. Rockafellar, Monotone operators and the proximal point algorithm,, SIAM Journal of Control and Optimization, 14, 877 (1976) · Zbl 0358.90053 · doi:10.1137/0314056
[29] L. Rudin, Nonlinear total variation based noise removal algorithms,, Physica D., 60, 259 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[30] A. N. Tikhonov, <em>Solution of Ill-posed Problems</em>,, New York: Wiley (1977)
[31] C. L. Wu, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models,, SIAM J. Imaging Science, 3, 300 (2010) · Zbl 1206.90245 · doi:10.1137/090767558
[32] C. L. Wu, Augmented Lagrangian method for total variation restoration with non-quadratic fidelity,, Inverse Problems and Imaging, 5, 237 (2010) · Zbl 1225.80013 · doi:10.3934/ipi.2011.5.237
[33] X. C. Tai, Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model, Scale Space and Variational Methods in Computer Vision, Second International Conference,, SSVM 2009, 5567, 1 (2009) · Zbl 1233.68026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.