Prakash, Gyan CS-PALT combined with different censoring techniques on Gompertz distribution: some inferences. (English. French summary) Zbl 07288701 Afr. Stat. 15, No. 2, 2295-2323 (2020). MSC: 62N05 62N01 62-08 PDF BibTeX XML Cite \textit{G. Prakash}, Afr. Stat. 15, No. 2, 2295--2323 (2020; Zbl 07288701) Full Text: DOI Euclid
Hwang, Leng-Cheng A robust two-stage procedure for the Poisson process under the linear exponential loss function. (English) Zbl 1450.62096 Stat. Probab. Lett. 163, Article ID 108773, 6 p. (2020). MSC: 62L12 62F35 60G55 PDF BibTeX XML Cite \textit{L.-C. Hwang}, Stat. Probab. Lett. 163, Article ID 108773, 6 p. (2020; Zbl 1450.62096) Full Text: DOI
Arshad, Mohd; Abdalghani, Omer On estimating the location parameter of the selected exponential population under the LINEX loss function. (English) Zbl 1440.62082 Braz. J. Probab. Stat. 34, No. 1, 167-182 (2020). Reviewer: Fraser Daly (Edinburgh) MSC: 62F10 62F07 62F15 PDF BibTeX XML Cite \textit{M. Arshad} and \textit{O. Abdalghani}, Braz. J. Probab. Stat. 34, No. 1, 167--182 (2020; Zbl 1440.62082) Full Text: DOI Euclid
Arashi, M.; Nadarajah, S. A paradoxical argument about domination. (English) Zbl 1435.62036 J. Comput. Appl. Math. 370, Article ID 112664, 11 p. (2020). Reviewer: Rózsa Horváth-Bokor (Budakalász) MSC: 62C12 62H12 PDF BibTeX XML Cite \textit{M. Arashi} and \textit{S. Nadarajah}, J. Comput. Appl. Math. 370, Article ID 112664, 11 p. (2020; Zbl 1435.62036) Full Text: DOI
Prakash, Gyan Bayes estimation in step-stress PALT on type-I progressive hybrid Rayleigh data. (English. French summary) Zbl 1436.62096 Afr. Stat. 14, No. 4, 2165-2178 (2019). MSC: 62F15 65C05 62N01 PDF BibTeX XML Cite \textit{G. Prakash}, Afr. Stat. 14, No. 4, 2165--2178 (2019; Zbl 1436.62096) Full Text: DOI Euclid
Mukhopadhyay, Nitis; Banerjee, Soumik Sequential minimum risk point estimation (MRPE) methodology for a normal mean under linex loss plus sampling cost: first-order and second-order asymptotics. (English) Zbl 1430.62181 Sequential Anal. 38, No. 4, 461-479 (2019). MSC: 62L12 62L10 62L05 PDF BibTeX XML Cite \textit{N. Mukhopadhyay} and \textit{S. Banerjee}, Sequential Anal. 38, No. 4, 461--479 (2019; Zbl 1430.62181) Full Text: DOI
Chaturvedi, Ajit; Bapat, Sudeep R.; Joshi, Neeraj Multi-stage procedures for the minimum risk and bounded risk point estimation of the location of negative exponential distribution under the modified LINEX loss function. (English) Zbl 1422.62270 Sequential Anal. 38, No. 2, 135-162 (2019). MSC: 62L05 62L12 62F10 62P20 PDF BibTeX XML Cite \textit{A. Chaturvedi} et al., Sequential Anal. 38, No. 2, 135--162 (2019; Zbl 1422.62270) Full Text: DOI
Karamikabir, Hamid; Afshari, Mahmoud Wavelet shrinkage generalized Bayes estimation for elliptical distribution parameter’s under LINEX loss. (English) Zbl 07066071 Int. J. Wavelets Multiresolut. Inf. Process. 17, No. 3, Article ID 1950009, 16 p. (2019). MSC: 65T60 62J07 62F15 PDF BibTeX XML Cite \textit{H. Karamikabir} and \textit{M. Afshari}, Int. J. Wavelets Multiresolut. Inf. Process. 17, No. 3, Article ID 1950009, 16 p. (2019; Zbl 07066071) Full Text: DOI
Mukhopadhyay, Nitis; Zacks, Shelemyahu Modified Linex two-stage and purely sequential estimation of the variance in a normal distribution with illustrations using horticultural data. (English) Zbl 1425.62120 J. Stat. Theory Pract. 12, No. 1, 111-135 (2018). MSC: 62L12 62L05 62G20 62P10 60G40 62P20 PDF BibTeX XML Cite \textit{N. Mukhopadhyay} and \textit{S. Zacks}, J. Stat. Theory Pract. 12, No. 1, 111--135 (2018; Zbl 1425.62120) Full Text: DOI
Mukhopadhyay, Nitis; Zhang, Chen EDA on the asymptotic normality of the standardized sequential stopping times. I: Parametric models. (English) Zbl 1421.62114 Sequential Anal. 37, No. 3, 342-374 (2018). Reviewer: Alex V. Kolnogorov (Novgorod) MSC: 62L12 62L10 62E17 62L15 62F12 62P10 62F25 PDF BibTeX XML Cite \textit{N. Mukhopadhyay} and \textit{C. Zhang}, Sequential Anal. 37, No. 3, 342--374 (2018; Zbl 1421.62114) Full Text: DOI
Vaidyanathan, V. S.; Chandrasekhar, P. Parametric estimation of an \(M| Er| 1\) queue. (English) Zbl 06995741 Opsearch 55, No. 3-4, 628-641 (2018). MSC: 90B PDF BibTeX XML Cite \textit{V. S. Vaidyanathan} and \textit{P. Chandrasekhar}, Opsearch 55, No. 3--4, 628--641 (2018; Zbl 06995741) Full Text: DOI
Wang, Chengyuan; Huang, Xianjiu Comparison of Bayesian estimation of the scale parameter for log gamma distribution under Linex loss function and compound Linex loss function. (Chinese. English summary) Zbl 1413.62032 Math. Appl. 31, No. 2, 384-391 (2018). MSC: 62F15 62E15 PDF BibTeX XML Cite \textit{C. Wang} and \textit{X. Huang}, Math. Appl. 31, No. 2, 384--391 (2018; Zbl 1413.62032)
Mukhopadhyay, Nitis; Bapat, Sudeep R. Purely sequential bounded-risk point estimation of the negative binomial mean under various loss functions: one-sample problem. (English) Zbl 1406.62089 Ann. Inst. Stat. Math. 70, No. 5, 1049-1075 (2018). Reviewer: Krzysztof J. Szajowski (Wrocław) MSC: 62L12 62L10 62P12 PDF BibTeX XML Cite \textit{N. Mukhopadhyay} and \textit{S. R. Bapat}, Ann. Inst. Stat. Math. 70, No. 5, 1049--1075 (2018; Zbl 1406.62089) Full Text: DOI
Hwang, Leng-Cheng Second order optimal approximation in a particular exponential family under asymmetric LINEX loss. (English) Zbl 1392.62242 Stat. Probab. Lett. 137, 283-291 (2018). MSC: 62L12 62C10 PDF BibTeX XML Cite \textit{L.-C. Hwang}, Stat. Probab. Lett. 137, 283--291 (2018; Zbl 1392.62242) Full Text: DOI
Barranco-Chamorro, I.; Luque-Calvo, P. L.; Jiménez-Gamero, M. D.; Alba-Fernández, M. V. A study of risks of Bayes estimators in the generalized half-logistic distribution for progressively type-II censored samples. (English) Zbl 07313819 Math. Comput. Simul. 137, 130-147 (2017). MSC: 62 68 PDF BibTeX XML Cite \textit{I. Barranco-Chamorro} et al., Math. Comput. Simul. 137, 130--147 (2017; Zbl 07313819) Full Text: DOI
Roy, Soumya; Gijo, E. V.; Pradhan, Biswabrata Inference based on progressive type I interval censored data from log-normal distribution. (English) Zbl 06865589 Commun. Stat., Simulation Comput. 46, No. 8, 6495-6512 (2017). MSC: 62N05 PDF BibTeX XML Cite \textit{S. Roy} et al., Commun. Stat., Simulation Comput. 46, No. 8, 6495--6512 (2017; Zbl 06865589) Full Text: DOI
Dixit, U. J.; Nooghabi, M. Jabbari Bayesian inference for the Pareto lifetime model in the presence of outliers under progressive censoring with binomial removals. (English) Zbl 1387.62034 Hacet. J. Math. Stat. 46, No. 5, 887-906 (2017). MSC: 62F15 62N01 62N05 PDF BibTeX XML Cite \textit{U. J. Dixit} and \textit{M. J. Nooghabi}, Hacet. J. Math. Stat. 46, No. 5, 887--906 (2017; Zbl 1387.62034) Full Text: DOI
Mukhopadhyay, Nitis; Bapat, Sudeep R. Purely sequential bounded-risk point estimation of the negative binomial means under various loss functions: multi-sample problems. (English) Zbl 06840589 Sequential Anal. 36, No. 4, 490-512 (2017). MSC: 62L12 62L05 92D40 62P12 PDF BibTeX XML Cite \textit{N. Mukhopadhyay} and \textit{S. R. Bapat}, Sequential Anal. 36, No. 4, 490--512 (2017; Zbl 06840589) Full Text: DOI
Wang, Ru; Zhou, Juling The Bayesian estimation of the parameter for Kumaraswamy distribution under compound Linex symmetric loss function. (Chinese. English summary) Zbl 1389.62049 Math. Pract. Theory 47, No. 10, 250-254 (2017). MSC: 62F15 62C12 PDF BibTeX XML Cite \textit{R. Wang} and \textit{J. Zhou}, Math. Pract. Theory 47, No. 10, 250--254 (2017; Zbl 1389.62049)
Kayal, Suchandan; Kumar, Somesh Estimating Renyi entropy of several exponential distributions under an asymmetric loss function. (English) Zbl 1377.62079 REVSTAT 15, No. 4, 501-522 (2017). MSC: 62F10 62C15 PDF BibTeX XML Cite \textit{S. Kayal} and \textit{S. Kumar}, REVSTAT 15, No. 4, 501--522 (2017; Zbl 1377.62079) Full Text: Link
Nematollahi, N.; Pagheh, A. Estimation of the location parameter and the average worth of the selected subset of two parameter exponential populations under LINEX loss function. (English) Zbl 1368.62047 Commun. Stat., Theory Methods 46, No. 8, 3901-3914 (2017). MSC: 62F07 62F10 62C20 PDF BibTeX XML Cite \textit{N. Nematollahi} and \textit{A. Pagheh}, Commun. Stat., Theory Methods 46, No. 8, 3901--3914 (2017; Zbl 1368.62047) Full Text: DOI
Yousefzadeh, F. E-Bayesian and hierarchical Bayesian estimations for the system reliability parameter based on asymmetric loss function. (English) Zbl 1360.62035 Commun. Stat., Theory Methods 46, No. 1, 1-8 (2017). MSC: 62C12 PDF BibTeX XML Cite \textit{F. Yousefzadeh}, Commun. Stat., Theory Methods 46, No. 1, 1--8 (2017; Zbl 1360.62035) Full Text: DOI
Kleyn, J.; Arashi, M.; Bekker, A.; Millard, S. Preliminary testing of the Cobb-Douglas production function and related inferential issues. (English) Zbl 1357.62251 Commun. Stat., Simulation Comput. 46, No. 1, 469-488 (2017). MSC: 62J07 62H12 62F10 PDF BibTeX XML Cite \textit{J. Kleyn} et al., Commun. Stat., Simulation Comput. 46, No. 1, 469--488 (2017; Zbl 1357.62251) Full Text: DOI
Najafabadi, Amir T. Payandeh; Najafabadi, Maryam Omidi On the Bayesian estimation for Cronbach’s alpha. (English) Zbl 07281625 J. Appl. Stat. 43, No. 13, 2416-2441 (2016). MSC: 62F10 62F15 62E17 PDF BibTeX XML Cite \textit{A. T. P. Najafabadi} and \textit{M. O. Najafabadi}, J. Appl. Stat. 43, No. 13, 2416--2441 (2016; Zbl 07281625) Full Text: DOI
Mukhopadhyay, Nitis; Bapat, Sudeep R. Multistage estimation of the difference of locations of two negative exponential populations under a modified Linex loss function: real data illustrations from cancer studies and reliability analysis. (English) Zbl 1351.62184 Sequential Anal. 35, No. 3, 387-412 (2016). MSC: 62P10 62L12 62L05 62G20 62F10 PDF BibTeX XML Cite \textit{N. Mukhopadhyay} and \textit{S. R. Bapat}, Sequential Anal. 35, No. 3, 387--412 (2016; Zbl 1351.62184) Full Text: DOI
Murat, Małgorzata Bayesian estimation for non zero inflated modified power series distribution under linex and generalized entropy loss functions. (English) Zbl 1346.60009 Commun. Stat., Theory Methods 45, No. 13, 3952-3969 (2016). MSC: 60E05 62H12 62F10 62F15 PDF BibTeX XML Cite \textit{M. Murat}, Commun. Stat., Theory Methods 45, No. 13, 3952--3969 (2016; Zbl 1346.60009) Full Text: DOI
Mukhopadhyay, Nitis; Bapat, Sudeep R. Multistage point estimation methodologies for a negative exponential location under a modified linex loss function: illustrations with infant mortality and bone marrow data. (English) Zbl 1345.62114 Sequential Anal. 35, No. 2, 175-206 (2016). MSC: 62L12 62L05 62G20 62F10 62P10 62P30 PDF BibTeX XML Cite \textit{N. Mukhopadhyay} and \textit{S. R. Bapat}, Sequential Anal. 35, No. 2, 175--206 (2016; Zbl 1345.62114) Full Text: DOI
Qin, Huaizhen; Ouyang, Weiwei Asymmetric risk of the Stein variance estimator under a misspecified linear regression model. (English) Zbl 1384.62243 Stat. Probab. Lett. 116, 94-100 (2016). MSC: 62J05 62G15 PDF BibTeX XML Cite \textit{H. Qin} and \textit{W. Ouyang}, Stat. Probab. Lett. 116, 94--100 (2016; Zbl 1384.62243) Full Text: DOI
Guure, Chris Bambey; Ibrahim, Noor Akma; Dwomoh, Duah; Bosomprah, Samuel Bayesian statistical inference of the loglogistic model with interval-censored lifetime data. (English) Zbl 07183151 J. Stat. Comput. Simulation 85, No. 8, 1567-1583 (2015). MSC: 62N01 62N02 62F15 PDF BibTeX XML Cite \textit{C. B. Guure} et al., J. Stat. Comput. Simulation 85, No. 8, 1567--1583 (2015; Zbl 07183151) Full Text: DOI
Nakale, S. N.; Kleyn, J.; Arashi, M.; Bekker, A. The performance of serial correlation preliminary test estimators under asymmetry loss functions. (English) Zbl 1397.62204 S. Afr. Stat. J. 49, No. 1, 121-138 (2015). MSC: 62H15 62M10 PDF BibTeX XML Cite \textit{S. N. Nakale} et al., S. Afr. Stat. J. 49, No. 1, 121--138 (2015; Zbl 1397.62204) Full Text: Link
You, You; Zhou, Ling The empirical Bayes estimation of the location parameter in double-exponential family under the Linex loss function. (Chinese. English summary) Zbl 1340.62024 Chin. J. Appl. Probab. Stat. 31, No. 3, 254-266 (2015). MSC: 62F15 62C12 PDF BibTeX XML Cite \textit{Y. You} and \textit{L. Zhou}, Chin. J. Appl. Probab. Stat. 31, No. 3, 254--266 (2015; Zbl 1340.62024) Full Text: DOI
Yang, Chia-Chen; Hwang, Leng-Cheng Optimal, nearly optimal and robust procedures for the exponential distribution with relative linear exponential loss. (English) Zbl 1396.62186 Statistics 49, No. 3, 549-563 (2015). MSC: 62L12 62C10 62L15 PDF BibTeX XML Cite \textit{C.-C. Yang} and \textit{L.-C. Hwang}, Statistics 49, No. 3, 549--563 (2015; Zbl 1396.62186) Full Text: DOI
Sadek, A.; Sultan, K. S.; Balakrishnan, N. Bayesian estimation based on ranked set sampling using asymmetric loss function. (English) Zbl 1309.62055 Bull. Malays. Math. Sci. Soc. (2) 38, No. 2, 707-718 (2015). MSC: 62F15 62F40 PDF BibTeX XML Cite \textit{A. Sadek} et al., Bull. Malays. Math. Sci. Soc. (2) 38, No. 2, 707--718 (2015; Zbl 1309.62055) Full Text: DOI
Hwang, Leng-Cheng; Yang, Chia-Chen A robust two-stage procedure in Bayes sequential estimation of a particular exponential family. (English) Zbl 1333.62193 Metrika 78, No. 2, 145-159 (2015). MSC: 62L12 62F15 62F35 62L15 PDF BibTeX XML Cite \textit{L.-C. Hwang} and \textit{C.-C. Yang}, Metrika 78, No. 2, 145--159 (2015; Zbl 1333.62193) Full Text: DOI
Sultan, K. S.; Alsadat, N. H.; Kundu, Debasis Bayesian and maximum likelihood estimations of the inverse Weibull parameters under progressive type-II censoring. (English) Zbl 1453.62699 J. Stat. Comput. Simulation 84, No. 10, 2248-2265 (2014). MSC: 62N05 62F10 62F15 PDF BibTeX XML Cite \textit{K. S. Sultan} et al., J. Stat. Comput. Simulation 84, No. 10, 2248--2265 (2014; Zbl 1453.62699) Full Text: DOI
Chaturvedi, Anoop; Pati, Manaswini; Tomer, Sanjeev K. Robust Bayesian analysis of Weibull failure model. (English) Zbl 1308.62044 Metron 72, No. 1, 77-95 (2014). MSC: 62F15 62N05 62G35 PDF BibTeX XML Cite \textit{A. Chaturvedi} et al., Metron 72, No. 1, 77--95 (2014; Zbl 1308.62044) Full Text: DOI
Kayal, Suchandan Estimating scale parameter of an exponential population under linex loss function based on records. (English) Zbl 1303.62019 Int. J. Math. Stat. 15, No. 1, 89-95 (2014). MSC: 62C15 62F15 PDF BibTeX XML Cite \textit{S. Kayal}, Int. J. Math. Stat. 15, No. 1, 89--95 (2014; Zbl 1303.62019) Full Text: Link
Coetsee, J.; Bekker, A.; Millard, S. Preliminary test and Bayes estimation of a location parameter under BLINEX loss. (English) Zbl 1302.62059 Commun. Stat., Theory Methods 43, No. 17, 3641-3660 (2014). MSC: 62F15 62F10 PDF BibTeX XML Cite \textit{J. Coetsee} et al., Commun. Stat., Theory Methods 43, No. 17, 3641--3660 (2014; Zbl 1302.62059) Full Text: DOI
Hwang, Leng-Cheng Asymptotic non-deficiency of some procedures for a particular exponential family under relative LINEX loss. (English) Zbl 1319.62180 Sequential Anal. 33, No. 3, 345-359 (2014). MSC: 62L12 62F15 62C10 PDF BibTeX XML Cite \textit{L.-C. Hwang}, Sequential Anal. 33, No. 3, 345--359 (2014; Zbl 1319.62180) Full Text: DOI
Farahani, Zahra Sadat Meshkani; Khorram, Esmaile Bayesian statistical inference for weighted exponential distribution. (English) Zbl 1333.62081 Commun. Stat., Simulation Comput. 43, No. 6, 1362-1384 (2014). MSC: 62F15 PDF BibTeX XML Cite \textit{Z. S. M. Farahani} and \textit{E. Khorram}, Commun. Stat., Simulation Comput. 43, No. 6, 1362--1384 (2014; Zbl 1333.62081) Full Text: DOI
Angali, Kambiz Ahmadi; Latifi, S. Mahmoud; Hanagal, David D. Bayesian estimation of bivariate exponential distributions based on linex and quadratic loss functions: a survival approach with censored samples. (English) Zbl 1333.62236 Commun. Stat., Simulation Comput. 43, No. 1, 31-44 (2014). MSC: 62N02 PDF BibTeX XML Cite \textit{K. A. Angali} et al., Commun. Stat., Simulation Comput. 43, No. 1, 31--44 (2014; Zbl 1333.62236) Full Text: DOI
Torehzadeh, S.; Arashi, M. A note on shrinkage wavelet estimation in Bayesian analysis. (English) Zbl 1400.62060 Stat. Probab. Lett. 84, 231-234 (2014). MSC: 62F15 62C15 62G05 62J07 PDF BibTeX XML Cite \textit{S. Torehzadeh} and \textit{M. Arashi}, Stat. Probab. Lett. 84, 231--234 (2014; Zbl 1400.62060) Full Text: DOI
Doostparast, Mahdi; Deepak, Sanjel; Zangoie, Amin Estimation with the lognormal distribution on the basis of records. (English) Zbl 1453.62393 J. Stat. Comput. Simulation 83, No. 12, 2339-2351 (2013). MSC: 62F10 62F15 62G32 62N05 PDF BibTeX XML Cite \textit{M. Doostparast} et al., J. Stat. Comput. Simulation 83, No. 12, 2339--2351 (2013; Zbl 1453.62393) Full Text: DOI
Longford, Nicholas T. Assessment of precision with aversity to overstatement. (English) Zbl 1397.62098 S. Afr. Stat. J. 47, No. 1, 49-59 (2013). MSC: 62F10 62J02 PDF BibTeX XML Cite \textit{N. T. Longford}, S. Afr. Stat. J. 47, No. 1, 49--59 (2013; Zbl 1397.62098) Full Text: Link
Maswadah, M. Empirical Bayes inference for the Weibull model. (English) Zbl 1306.65100 Comput. Stat. 28, No. 6, 2849-2859 (2013). MSC: 65C60 PDF BibTeX XML Cite \textit{M. Maswadah}, Comput. Stat. 28, No. 6, 2849--2859 (2013; Zbl 1306.65100) Full Text: DOI
Barot, D. R.; Patel, M. N. Empirical Bayesian inference for Rayleigh model under progressive type II censored samples. (English) Zbl 06303097 J. Appl. Probab. Stat. 8, No. 2, 71-100 (2013). MSC: 62 PDF BibTeX XML Cite \textit{D. R. Barot} and \textit{M. N. Patel}, J. Appl. Probab. Stat. 8, No. 2, 71--100 (2013; Zbl 06303097)
Lu, Xiaomin; Sun, Anqi; Wu, Samuel S. On estimating the mean of the selected normal population in two-stage adaptive designs. (English) Zbl 1279.62056 J. Stat. Plann. Inference 143, No. 7, 1215-1220 (2013). MSC: 62F10 62C15 62C20 62F07 62P10 PDF BibTeX XML Cite \textit{X. Lu} et al., J. Stat. Plann. Inference 143, No. 7, 1215--1220 (2013; Zbl 1279.62056) Full Text: DOI
Hwang, Leng-Cheng; Lee, Cheng-Hung Bayes sequential estimation for a Poisson process under a LINEX loss function. (English) Zbl 1440.62310 Statistics 47, No. 4, 672-687 (2013). MSC: 62L12 62F15 62F12 62M05 PDF BibTeX XML Cite \textit{L.-C. Hwang} and \textit{C.-H. Lee}, Statistics 47, No. 4, 672--687 (2013; Zbl 1440.62310) Full Text: DOI
Ma, Tiefeng; Liu, Shuangzhe Estimation of order-restricted means of two normal populations under the LINEX loss function. (English) Zbl 1416.62171 Metrika 76, No. 3, 409-425 (2013). MSC: 62F30 PDF BibTeX XML Cite \textit{T. Ma} and \textit{S. Liu}, Metrika 76, No. 3, 409--425 (2013; Zbl 1416.62171) Full Text: DOI
Ohyauchi, N. Comparison of risks of estimators under the LINEX loss for a family of truncated distributions. (English) Zbl 1327.62110 Statistics 47, No. 3, 590-604 (2013). MSC: 62F10 62F12 62F15 PDF BibTeX XML Cite \textit{N. Ohyauchi}, Statistics 47, No. 3, 590--604 (2013; Zbl 1327.62110) Full Text: DOI
Murat, Małgorzata Bayesian estimation for deformed modified power series distribution. (English) Zbl 1298.62015 Commun. Stat., Theory Methods 42, No. 2, 365-384 (2013). MSC: 62C10 62F15 62F10 PDF BibTeX XML Cite \textit{M. Murat}, Commun. Stat., Theory Methods 42, No. 2, 365--384 (2013; Zbl 1298.62015) Full Text: DOI
Doostparast, Mahdi; Ahmadi, Mohammad Vali; Ahmadi, Jafar Bayes estimation based on joint progressive type II censored data under LINEX loss function. (English) Zbl 1301.62101 Commun. Stat., Simulation Comput. 42, No. 8, 1865-1886 (2013). MSC: 62N05 62N02 62F15 PDF BibTeX XML Cite \textit{M. Doostparast} et al., Commun. Stat., Simulation Comput. 42, No. 8, 1865--1886 (2013; Zbl 1301.62101) Full Text: DOI
Nadar, Mustafa; Papadopoulos, Alexander; Kızılaslan, Fatih Statistical analysis for Kumaraswamy’s distribution based on record data. (English) Zbl 1364.62054 Stat. Pap. 54, No. 2, 355-369 (2013). MSC: 62F10 62F15 62G32 PDF BibTeX XML Cite \textit{M. Nadar} et al., Stat. Pap. 54, No. 2, 355--369 (2013; Zbl 1364.62054) Full Text: DOI
Bansal, Ashok K.; Aggarwa, Priyanka Bayes pre-test estimation for the change point of the changing one parameter exponential family. (English) Zbl 1316.62037 Metron 70, No. 1, 41-57 (2012). MSC: 62F15 62C10 62F10 PDF BibTeX XML Cite \textit{A. K. Bansal} and \textit{P. Aggarwa}, Metron 70, No. 1, 41--57 (2012; Zbl 1316.62037) Full Text: DOI
Christodoulakis, George A. Conditions for rational investment short-termism. (English) Zbl 1298.91182 Ann. Finance 8, No. 1, 15-29 (2012). MSC: 91G50 PDF BibTeX XML Cite \textit{G. A. Christodoulakis}, Ann. Finance 8, No. 1, 15--29 (2012; Zbl 1298.91182) Full Text: DOI
Tanaka, Hidekazu Admissibility under the LINEX loss function in non-regular case. (English) Zbl 1284.62090 Sci. Math. Jpn. 75, No. 3, 351-358 (2012). MSC: 62C15 62F10 62F15 PDF BibTeX XML Cite \textit{H. Tanaka}, Sci. Math. Jpn. 75, No. 3, 351--358 (2012; Zbl 1284.62090) Full Text: Link
Sengupta, Raghu Nandan; Srivastava, Sachin Estimation for the multiple regression setup using balanced loss function. (English) Zbl 1294.62008 Commun. Stat., Simulation Comput. 41, No. 5, 653-670 (2012). MSC: 62C10 62H12 62J05 65C60 PDF BibTeX XML Cite \textit{R. N. Sengupta} and \textit{S. Srivastava}, Commun. Stat., Simulation Comput. 41, No. 5, 653--670 (2012; Zbl 1294.62008) Full Text: DOI
Mahmoudi, Eisa Asymptotic non-deficiency of the Bayes sequential estimation in a family of transformed Chi-square distributions. (English) Zbl 1300.62057 Metrika 75, No. 4, 567-580 (2012). MSC: 62L12 62C10 62F12 PDF BibTeX XML Cite \textit{E. Mahmoudi}, Metrika 75, No. 4, 567--580 (2012; Zbl 1300.62057) Full Text: DOI
Shalabh; Garg, G.; Heumann, Chris Performance of double \(k\)-class estimators for coefficients in linear regression models with non-spherical disturbances under asymmetric losses. (English) Zbl 1274.62456 J. Multivariate Anal. 112, 35-47 (2012). MSC: 62J05 62H12 PDF BibTeX XML Cite \textit{Shalabh} et al., J. Multivariate Anal. 112, 35--47 (2012; Zbl 1274.62456) Full Text: DOI
Sanubhogue, Ashok; Jiheel, A. K. Bayes pre-test estimation of mean of exponential distribution under asymmetric loss function using progressive type II censored sample. (English) Zbl 1318.62090 Adv. Appl. Stat. 27, No. 2, 109-130 (2012). MSC: 62F15 62J07 62N01 PDF BibTeX XML Cite \textit{A. Sanubhogue} and \textit{A. K. Jiheel}, Adv. Appl. Stat. 27, No. 2, 109--130 (2012; Zbl 1318.62090) Full Text: Link
Islam, A. F. M. Saiful; Pettit, L. I. Bayesian sample size determination using linex loss and linear cost. (English) Zbl 1244.62006 Commun. Stat., Theory Methods 41, No. 2, 223-240 (2012). MSC: 62C10 62F15 62D05 PDF BibTeX XML Cite \textit{A. F. M. S. Islam} and \textit{L. I. Pettit}, Commun. Stat., Theory Methods 41, No. 2, 223--240 (2012; Zbl 1244.62006) Full Text: DOI
Tanaka, H. Sufficient conditions for the admissibility under the LINEX loss function in non-regular case. (English) Zbl 1283.62012 Statistics 45, No. 2, 199-208 (2011). MSC: 62C15 62F10 62F15 PDF BibTeX XML Cite \textit{H. Tanaka}, Statistics 45, No. 2, 199--208 (2011; Zbl 1283.62012) Full Text: DOI
Dey, Sanku Comparison of relative risk functions of the Rayleigh distribution under type-II censored samples: Bayesian approach. (English) Zbl 1279.62053 Jordan J. Math. Stat. 4, No. 1, 61-78 (2011). MSC: 62F10 62F15 62N05 62N01 PDF BibTeX XML Cite \textit{S. Dey}, Jordan J. Math. Stat. 4, No. 1, 61--78 (2011; Zbl 1279.62053) Full Text: Link
Li, Jun-hua Parameter estimation of geometric distribution under the compound LINEX symmetric loss function. (Chinese. English summary) Zbl 1266.93144 J. Yangtze Univ., Nat. Sci. 8, No. 4, 11-13 (2011). MSC: 93E10 62N05 PDF BibTeX XML Cite \textit{J.-h. Li}, J. Yangtze Univ., Nat. Sci. 8, No. 4, 11--13 (2011; Zbl 1266.93144)
Afshari, Mahmoud Bayesian estimation distribution and survival function of records and inter-record times and numerical computation for Weibull model. (English) Zbl 1258.62006 Thai J. Math. 9, No. 1, 75-81 (2011). MSC: 62C10 62N02 62G32 62F15 65C60 PDF BibTeX XML Cite \textit{M. Afshari}, Thai J. Math. 9, No. 1, 75--81 (2011; Zbl 1258.62006) Full Text: Link
Kim, Chansoo; Jung, Jinhyouk; Chung, Younshik Bayesian estimation for the exponentiated Weibull model under type II progressive censoring. (English) Zbl 1247.62090 Stat. Pap. 52, No. 1, 53-70 (2011). MSC: 62F15 62C10 62N01 62N05 65C05 PDF BibTeX XML Cite \textit{C. Kim} et al., Stat. Pap. 52, No. 1, 53--70 (2011; Zbl 1247.62090) Full Text: DOI
Panahi, Haniyeh; Asadi, Saeid Estimation of the Weibull distribution based on type-II censored samples. (English) Zbl 06073323 Appl. Math. Sci., Ruse 5, No. 49-52, 2549-2558 (2011). MSC: 62 PDF BibTeX XML Cite \textit{H. Panahi} and \textit{S. Asadi}, Appl. Math. Sci., Ruse 5, No. 49--52, 2549--2558 (2011; Zbl 06073323) Full Text: Link
Lee, Cheng-Hung; Hwang, Leng-Cheng Asymptotic optimal estimation of Poisson mean under LINEX loss function. (English) Zbl 1239.62094 Commun. Stat., Theory Methods 40, No. 22-24, 4308-4321 (2011). MSC: 62L12 62C10 65C60 PDF BibTeX XML Cite \textit{C.-H. Lee} and \textit{L.-C. Hwang}, Commun. Stat., Theory Methods 40, No. 22--24, 4308--4321 (2011; Zbl 1239.62094) Full Text: DOI
Klakattawi, Hadeel S.; Baharith, Lamya A.; Al-Dayian, Gannat R. Bayesian and non Bayesian estimations on the exponentiated modified Weibull distribution for progressive censored sample. (English) Zbl 1227.62012 Commun. Stat., Simulation Comput. 40, No. 9, 1291-1309 (2011). MSC: 62F10 62N01 62F15 65C05 PDF BibTeX XML Cite \textit{H. S. Klakattawi} et al., Commun. Stat., Simulation Comput. 40, No. 9, 1291--1309 (2011; Zbl 1227.62012) Full Text: DOI
Ma, Tiefeng; Ye, Rendao; Jia, Lijie Finite-sample properties of the Graybill-Deal estimator. (English) Zbl 1219.62043 J. Stat. Plann. Inference 141, No. 11, 3675-3680 (2011). MSC: 62F10 PDF BibTeX XML Cite \textit{T. Ma} et al., J. Stat. Plann. Inference 141, No. 11, 3675--3680 (2011; Zbl 1219.62043) Full Text: DOI
Pazira, Hassan; Shadrokh, Ali Comparison of LINEX and precautionary Bayes estimators on the gamma distribution using censored data. (English) Zbl 1217.62034 J. Stat. Manag. Syst. 14, No. 3, 617-638 (2011). MSC: 62F15 62F10 62N01 65C05 PDF BibTeX XML Cite \textit{H. Pazira} and \textit{A. Shadrokh}, J. Stat. Manag. Syst. 14, No. 3, 617--638 (2011; Zbl 1217.62034) Full Text: DOI Link
Jain, N. R.; Shanubhogue, Ashok Non-Bayesian and Bayesian estimations for Weibull distribution based on progressively type II censored data with binomial removals. (English) Zbl 1220.62121 Far East J. Theor. Stat. 34, No. 2, 109-122 (2011). MSC: 62N02 62N01 62F15 62N05 62F10 PDF BibTeX XML Cite \textit{N. R. Jain} and \textit{A. Shanubhogue}, Far East J. Theor. Stat. 34, No. 2, 109--122 (2011; Zbl 1220.62121) Full Text: Link
Baran, Jerzy; Magiera, Ryszard Optimal sequential estimation procedures of a function of a probability of success under LINEX loss. (English) Zbl 1247.62209 Stat. Pap. 51, No. 3, 511-529 (2010). MSC: 62L12 62L15 PDF BibTeX XML Cite \textit{J. Baran} and \textit{R. Magiera}, Stat. Pap. 51, No. 3, 511--529 (2010; Zbl 1247.62209) Full Text: DOI
Nasiri, Parviz; Pazira, Hassan Bayesian approach on the generalized exponential distribution in the presence of outliers. (English) Zbl 05902627 J. Stat. Theory Pract. 4, No. 3, 453-475 (2010). MSC: 62 PDF BibTeX XML Cite \textit{P. Nasiri} and \textit{H. Pazira}, J. Stat. Theory Pract. 4, No. 3, 453--475 (2010; Zbl 05902627) Full Text: DOI
Arashi, M. Idea of constructing an image of Bayes action. (English) Zbl 1232.62018 Stat. Methodol. 7, No. 1, 22-29 (2010). MSC: 62C10 62H12 62F15 PDF BibTeX XML Cite \textit{M. Arashi}, Stat. Methodol. 7, No. 1, 22--29 (2010; Zbl 1232.62018) Full Text: DOI
Afify, W. M. On estimation of the exponentiated Pareto distribution under different sample schemes. (English) Zbl 1230.62006 Stat. Methodol. 7, No. 2, 77-83 (2010). MSC: 62C10 62F10 62N01 62F15 65C60 PDF BibTeX XML Cite \textit{W. M. Afify}, Stat. Methodol. 7, No. 2, 77--83 (2010; Zbl 1230.62006) Full Text: DOI
Yarmohammadi, Masoud; Pazira, Hassan Classical and Bayesian estimations on the generalized exponential distribution using censored data. (English) Zbl 1366.62186 Int. J. Math. Anal., Ruse 4, No. 29-32, 1417-1431 (2010). MSC: 62N01 62E15 PDF BibTeX XML Cite \textit{M. Yarmohammadi} and \textit{H. Pazira}, Int. J. Math. Anal., Ruse 4, No. 29--32, 1417--1431 (2010; Zbl 1366.62186) Full Text: Link
Ahmadi, Jafar; Doostparast, Mahdi; Parsian, Ahmad Bayes estimation based on random censored data for some life time models under symmetric and asymmetric loss functions. (English) Zbl 1201.62106 Commun. Stat., Theory Methods 39, No. 17, 3058-3071 (2010). MSC: 62N01 62N02 62F15 62C15 65C05 PDF BibTeX XML Cite \textit{J. Ahmadi} et al., Commun. Stat., Theory Methods 39, No. 17, 3058--3071 (2010; Zbl 1201.62106) Full Text: DOI
Tanaka, Hidekazu; Tatsukawa, Masashi On the admissibility of linear estimators in a multivariate normal distribution under LINEX loss function. (English) Zbl 1201.62070 Commun. Stat., Theory Methods 39, No. 17, 3011-3020 (2010). MSC: 62H12 62C15 62F15 62F10 PDF BibTeX XML Cite \textit{H. Tanaka} and \textit{M. Tatsukawa}, Commun. Stat., Theory Methods 39, No. 17, 3011--3020 (2010; Zbl 1201.62070) Full Text: DOI
Tabrizi, N. Jafari; Nematollahi, N. Minimax estimation of the bounded parameter of some discrete distributions under LINEX loss function. (English) Zbl 1201.62017 Commun. Stat., Theory Methods 39, No. 15, 2701-2710 (2010). MSC: 62C20 62F30 62C10 62F10 65C60 62F15 PDF BibTeX XML Cite \textit{N. J. Tabrizi} and \textit{N. Nematollahi}, Commun. Stat., Theory Methods 39, No. 15, 2701--2710 (2010; Zbl 1201.62017) Full Text: DOI
Tanaka, Hidekazu Sufficient conditions for the admissibility under LINEX loss function in regular case. (English) Zbl 1318.62024 Commun. Stat., Theory Methods 39, No. 8-9, 1477-1489 (2010). MSC: 62C15 62F10 62F15 PDF BibTeX XML Cite \textit{H. Tanaka}, Commun. Stat., Theory Methods 39, No. 8--9, 1477--1489 (2010; Zbl 1318.62024) Full Text: DOI
Afify, W. M. On estimation of the exponentiated Pareto distribution under different sample schemes. (English) Zbl 1189.62037 Appl. Math. Sci., Ruse 4, No. 5-8, 393-402 (2010). MSC: 62F10 62F15 65C60 PDF BibTeX XML Cite \textit{W. M. Afify}, Appl. Math. Sci., Ruse 4, No. 5--8, 393--402 (2010; Zbl 1189.62037) Full Text: Link
Arashi, M.; Tabatabaey, S. M. M. Estimation of the location parameter under LINEX loss function: Multivariate case. (English) Zbl 1189.62093 Metrika 72, No. 1, 51-57 (2010). MSC: 62H12 62F15 62F30 62C12 PDF BibTeX XML Cite \textit{M. Arashi} and \textit{S. M. M. Tabatabaey}, Metrika 72, No. 1, 51--57 (2010; Zbl 1189.62093) Full Text: DOI
Namba, Akio; Ohtani, Kazuhiro Risk performance of a pre-test ridge regression estimator under the LINEX loss function when each individual regression coefficient is estimated. (English) Zbl 1187.62127 J. Stat. Comput. Simulation 80, No. 3, 255-262 (2010). MSC: 62J07 65C60 62J05 PDF BibTeX XML Cite \textit{A. Namba} and \textit{K. Ohtani}, J. Stat. Comput. Simulation 80, No. 3, 255--262 (2010; Zbl 1187.62127) Full Text: DOI
Nayak, Tapan K.; Qin, Min The concept of risk unbiasedness in statistical prediction. (English) Zbl 1184.62007 J. Stat. Plann. Inference 140, No. 7, 1923-1938 (2010). MSC: 62C99 62F99 62F10 PDF BibTeX XML Cite \textit{T. K. Nayak} and \textit{M. Qin}, J. Stat. Plann. Inference 140, No. 7, 1923--1938 (2010; Zbl 1184.62007) Full Text: DOI
Singh, B. K. Estimation of variance and its functions in exponential and normal distributions using modified functions. (English) Zbl 05688436 Far East J. Theor. Stat. 30, No. 2, 153-172 (2010). MSC: 62-XX PDF BibTeX XML Cite \textit{B. K. Singh}, Far East J. Theor. Stat. 30, No. 2, 153--172 (2010; Zbl 05688436) Full Text: Link
Ahmadi, Jafar; Jafari Jozani, Mohammad; Marchand, Éric; Parsian, Ahmad Prediction of \(k\)-records from a general class of distributions under balanced type loss functions. (English) Zbl 1433.62024 Metrika 70, No. 1, 19-33 (2009). MSC: 62C10 62F10 PDF BibTeX XML Cite \textit{J. Ahmadi} et al., Metrika 70, No. 1, 19--33 (2009; Zbl 1433.62024) Full Text: DOI
Doostparast, Mahdi A note on estimation based on record data. (English) Zbl 1433.62123 Metrika 69, No. 1, 69-80 (2009). MSC: 62G30 60E05 60G70 PDF BibTeX XML Cite \textit{M. Doostparast}, Metrika 69, No. 1, 69--80 (2009; Zbl 1433.62123) Full Text: DOI
Prakash, Gyan; Singh, D. C. A Bayesian shrinkage approach in Weibull type-II censored data using prior point information. (English) Zbl 1297.62016 REVSTAT 7, No. 2, 171-187 (2009). MSC: 62C10 62J07 62C20 PDF BibTeX XML Cite \textit{G. Prakash} and \textit{D. C. Singh}, REVSTAT 7, No. 2, 171--187 (2009; Zbl 1297.62016) Full Text: Link
Hoque, Zahirul; Khan, Shahjahan; Wesolowski, Jacek Performance of preliminary test estimator under linex loss function. (English) Zbl 1292.62055 Commun. Stat., Theory Methods 38, No. 2, 252-261 (2009). MSC: 62G05 62J05 62F10 62C15 PDF BibTeX XML Cite \textit{Z. Hoque} et al., Commun. Stat., Theory Methods 38, No. 2, 252--261 (2009; Zbl 1292.62055) Full Text: DOI
Zou, Guohua; Zeng, Jie; Wan, Alan T. K.; Guan, Zhong Stein-type improved estimation of standard error under asymmetric LINEX loss function. (English) Zbl 1282.62019 Statistics 43, No. 2, 121-129 (2009). MSC: 62C15 62F10 PDF BibTeX XML Cite \textit{G. Zou} et al., Statistics 43, No. 2, 121--129 (2009; Zbl 1282.62019) Full Text: DOI
Xia, Ya-Feng; Pang, Guo-Ying Bayes method of multiple fuzzy assumptive test of unilateral truncation distribution model under linex loss. (English) Zbl 1211.62013 Cao, Bing-yuan (ed.) et al., Fuzzy information and engineering. Vol. 1. Proceedings of the third annual conference on fuzzy information and engineering (ACFIE 2008), Haikou, China, December 5–10, 2008. Berlin: Springer (ISBN 978-3-540-88913-7/pbk; 978-3-540-88914-4/ebook). Advances in Soft Computing 54, 540-546 (2009). MSC: 62C10 62C86 PDF BibTeX XML Cite \textit{Y.-F. Xia} and \textit{G.-Y. Pang}, Adv. Soft Comput. 54, 540--546 (2009; Zbl 1211.62013) Full Text: DOI
Xia, Ya-Feng; Pang, Guo-Ying Fuzzy Bayes estimate of linex loss function. (English) Zbl 05859604 Cao, Bing-yuan (ed.) et al., Fuzzy information and engineering. Vol. 1. Proceedings of the third annual conference on fuzzy information and engineering (ACFIE 2008), Haikou, China, December 5–10, 2008. Berlin: Springer (ISBN 978-3-540-88913-7/pbk; 978-3-540-88914-4/ebook). Advances in Soft Computing 54, 380-385 (2009). MSC: 62C12 62F15 62C86 PDF BibTeX XML Cite \textit{Y.-F. Xia} and \textit{G.-Y. Pang}, Adv. Soft Comput. 54, 380--385 (2009; Zbl 05859604) Full Text: DOI
Hashemi, Reza; Rezaei, Sadegh; Amiri, Leila Nonparametric density estimation with respect to the Linex loss function. (English) Zbl 1180.62045 Int. J. Res. Rev. Appl. Sci. 1, No. 2, 185-196 (2009). MSC: 62G07 PDF BibTeX XML Cite \textit{R. Hashemi} et al., Int. J. Res. Rev. Appl. Sci. 1, No. 2, 185--196 (2009; Zbl 1180.62045)
Zacks, Shelemyahu; Mukhopadhyay, Nitis On exact and asymptotic properties of two-stage and sequential estimation of the normal mean under LINEX loss. (English) Zbl 1175.62086 Commun. Stat., Theory Methods 38, No. 16-17, 2992-3014 (2009). MSC: 62L12 62F12 62E15 62L15 PDF BibTeX XML Cite \textit{S. Zacks} and \textit{N. Mukhopadhyay}, Commun. Stat., Theory Methods 38, No. 16--17, 2992--3014 (2009; Zbl 1175.62086) Full Text: DOI
Jeevanand, E. S.; Abdul-Sathar, E. I. Estimation of residual entropy function for exponential distribution from censored samples. (English) Zbl 1175.62004 ProbStat Forum 2, Article No. 07, 68-77 (2009). MSC: 62B10 62F15 62N01 65C60 62F10 PDF BibTeX XML Cite \textit{E. S. Jeevanand} and \textit{E. I. Abdul-Sathar}, ProbStat Forum 2, Article No. 07, 68--77 (2009; Zbl 1175.62004) Full Text: Link
Xia, Yafeng; Sun, Hongyang The Bayes method of multiple fuzzy assumptive test of exponential distribution model under random censorship. (English) Zbl 1177.62008 Int. J. Pure Appl. Math. 55, No. 4, 481-490 (2009). MSC: 62C12 62F03 62N01 62F86 62C86 65C60 PDF BibTeX XML Cite \textit{Y. Xia} and \textit{H. Sun}, Int. J. Pure Appl. Math. 55, No. 4, 481--490 (2009; Zbl 1177.62008)
Xia, Yafeng; Sun, Hongyang Fuzzy Bayes estimate for the Pareto distribution under random censorship. (English) Zbl 1177.62007 Int. J. Pure Appl. Math. 55, No. 4, 467-479 (2009). MSC: 62C12 62N01 62F12 62C86 62F86 PDF BibTeX XML Cite \textit{Y. Xia} and \textit{H. Sun}, Int. J. Pure Appl. Math. 55, No. 4, 467--479 (2009; Zbl 1177.62007)
Ellah, A. H. Abd Parametric prediction limits for generalized exponential distribution using record observations. (English) Zbl 1168.62046 Appl. Math. Inf. Sci. 3, No. 2, 135-149 (2009). MSC: 62G32 62F10 62F15 62C12 65C60 PDF BibTeX XML Cite \textit{A. H. A. Ellah}, Appl. Math. Inf. Sci. 3, No. 2, 135--149 (2009; Zbl 1168.62046) Full Text: Link
Pandey, Himanshu; Rao, Arun Kumar Bayesian estimation of the shape parameter of a generalized Pareto distribution under asymmetric loss functions. (English) Zbl 1173.62011 Hacet. J. Math. Stat. 38, No. 1, 69-83 (2009). MSC: 62F15 62F10 65C60 PDF BibTeX XML Cite \textit{H. Pandey} and \textit{A. K. Rao}, Hacet. J. Math. Stat. 38, No. 1, 69--83 (2009; Zbl 1173.62011)