×

zbMATH — the first resource for mathematics

Isogeometric shape design sensitivity analysis using transformed basis functions for Kronecker delta property. (English) Zbl 1297.74096
Summary: The isogeometric shape design sensitivity analysis (DSA) includes the desirable features; easy design parameterization and accurate shape sensitivity embedding the higher-order geometric information of curvature and normal vector. Due to the non-interpolatory property of NURBS basis, however, the imposition of essential boundary condition is not so straightforward in the isogeometric method. Taking advantages of geometrically exact property, an isogeometric DSA method is developed applying a mixed transformation to handle the boundary condition. A set of control point and NURBS basis function is added using the \( h\)-refinement and Newton iterations to precisely locate the control point to impose the boundary condition. In spite of additional transformation, its computation cost is comparable to the original one with penalty approach since the obtained Kronecker delta property enables to reduce the size of system matrix. Through demonstrative numerical examples, the effectiveness, accuracy, and computing cost of the developed DSA method are discussed.

MSC:
74P15 Topological methods for optimization problems in solid mechanics
65D17 Computer-aided design (modeling of curves and surfaces)
49Q12 Sensitivity analysis for optimization problems on manifolds
PDF BibTeX Cite
Full Text: DOI
References:
[1] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 229-263, (2010) · Zbl 1227.74123
[2] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms and computations, Compu. Mech., 43, 3-37, (2008) · Zbl 1169.74015
[3] Bazilevs, Y.; Michler, C.; Calo, V. M.; Hughes, T. J.R., Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes, Comput. Methods Appl. Mech. Engrg., 199, 780-790, (2010) · Zbl 1406.76023
[4] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., Isogeometric shell analysis: the Reissner-Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 276-289, (2010) · Zbl 1227.74107
[5] Chen, J. S.; Wang, H. P., New boundary condition treatments in meshless computation of contact problems, Comput. Methods Appl. Mech. Engrg., 187, 441-468, (2000) · Zbl 0980.74077
[6] Cho, S.; Ha, S. H., Isogeometric shape design optimization: exact geometry and enhanced sensitivity, Struct. Multidiscip. Optim., 38, 1, 53-70, (2009) · Zbl 1274.74221
[7] Choi, K. K.; Kim, N. H., Structural sensitivity analysis and optimization 1: linear systems, (2004), Springer New York
[8] Cottrell, J. A.; Hughes, T. J.R.; Reali, A., Studies of refinement and continuity in isogeometric structural analysis, Comput. Methods Appl. Mech. Engrg., 196, 4160-4183, (2007) · Zbl 1173.74407
[9] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257-5296, (2006) · Zbl 1119.74024
[10] Farin, G., Curves and surfaces for CAGD: A practical guide, (2002), Academic Press
[11] Fernandez-Mendez, S.; Huerta, A., Imposing essential boundary conditions in mesh-free methods, Comput. Methods Appl. Mech. Engrg., 193, 1257-1275, (2004) · Zbl 1060.74665
[12] Ha, S. H.; Cho, S., Numerical method for shape optimization using T-spline based isogeometric method, Struct. Multidiscip. Optim., 42, 3, 417-428, (2010) · Zbl 1274.74270
[13] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195, (2005) · Zbl 1151.74419
[14] Manh, N. D.; Evgrafov, A.; Gersborg, A. R.; Gravesen, J., Isogeometric shape optimization of vibrating membranes, Comput. Methods Appl. Mech. Engrg., 200, 1343-1353, (2011) · Zbl 1228.74062
[15] Piegl, L.; Tiller, W., The NURBS book (monographs in visual communication), (1997), Springer-Verlag New York
[16] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical recipes: the art of scientific computing, (2007), Cambridge University Press New York · Zbl 1132.65001
[17] Qian, X., Full analytical sensitivities in NURBS based isogeometric shape optimization, Comput. Methods Appl. Mech. Engrg., 199, 2059-2071, (2010) · Zbl 1231.74352
[18] Rogers, D. F., An introduction to NURBS with historical perspective, (2001), Academic Press San Diego, CA
[19] Wall, W. A.; Frenzel, M. A.; Cyron, C., Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Engrg., 197, 2976-2988, (2008) · Zbl 1194.74263
[20] Wang, D.; Xuan, J., An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions, Comput. Methods Appl. Mech. Engrg., 199, 2425-2436, (2010) · Zbl 1231.74498
[21] Xenophontos, C.; Christodoulou, Georgiou., The singular function boundary integral method for Laplacian problems with boundary singularities in two and three-dimensions, Procedia Comput. Sci., 1, 2583-2591, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.