Janjgava, Roman Solution of the Kirsch problem for a binary mixture in the case of approximation \(N = 1\) of Vekua’s theory. (English) Zbl 07254339 Math. Mech. Solids 24, No. 7, 2017-2029 (2019). MSC: 74-XX PDF BibTeX XML Cite \textit{R. Janjgava}, Math. Mech. Solids 24, No. 7, 2017--2029 (2019; Zbl 07254339) Full Text: DOI OpenURL
Janjgava, Roman Solution of the Kirsch problem for a binary mixture in the case of approximation \(N=1\) of Vekua’s theory. (English) Zbl 1425.74128 Math. Mech. Solids 24, No. 7, 2017-2029 (2019). MSC: 74E30 74B05 74S70 PDF BibTeX XML Cite \textit{R. Janjgava}, Math. Mech. Solids 24, No. 7, 2017--2029 (2019; Zbl 1425.74128) Full Text: DOI OpenURL
Li, Jianliang; Sun, Guanying; Zhang, Bo The Kirsch-Kress method for inverse scattering by infinite locally rough interfaces. (English) Zbl 1364.35223 Appl. Anal. 96, No. 1, 85-107 (2017). MSC: 35P25 35R30 45Q05 65R32 78A46 PDF BibTeX XML Cite \textit{J. Li} et al., Appl. Anal. 96, No. 1, 85--107 (2017; Zbl 1364.35223) Full Text: DOI OpenURL
Wang, Zewen; Li, Xiaoxia; Xia, Yun Hybrid Newton-type methods for reconstructing sound-soft obstacles from a single far field. (English) Zbl 1333.65126 J. Inverse Ill-Posed Probl. 24, No. 1, 13-28 (2016). MSC: 65N21 35J05 78A46 65N20 35R25 35R30 65Y20 PDF BibTeX XML Cite \textit{Z. Wang} et al., J. Inverse Ill-Posed Probl. 24, No. 1, 13--28 (2016; Zbl 1333.65126) Full Text: DOI OpenURL
Grekov, M. A.; Morozov, N. F. Solution of the Kirsch problem in view of surface stresses. (English) Zbl 1231.30015 Mem. Differ. Equ. Math. Phys. 52, 123-129 (2011); corrections ibid. 53, 163-164 (2012). MSC: 30E20 30E25 74A50 PDF BibTeX XML Cite \textit{M. A. Grekov} and \textit{N. F. Morozov}, Mem. Differ. Equ. Math. Phys. 52, 123--129 (2011; Zbl 1231.30015) OpenURL
Vynnyts’ka, L. Application of hierarchical basis for triangular in solving elasticity theory problems. (Ukrainian. English summary) Zbl 1164.74353 Visn. L’viv. Univ., Ser. Prykl. Mat. Inform. 2007, No. 13, 72-77 (2007). MSC: 74B05 74S05 PDF BibTeX XML Cite \textit{L. Vynnyts'ka}, Visn. L'viv. Univ., Ser. Prykl. Mat. Inform. 2007, No. 13, 72--77 (2007; Zbl 1164.74353) OpenURL
Tsiporin, Viktor Characterisation of a region by spectral data of a Dirichlet problem for the Stokes equation. (Charakterisierung eine Gebietes durch Spektraldaten eines Dirichletproblems zur Stokesgleichung.) (German) Zbl 1073.65123 Göttingen: Univ. Göttingen, Mathematisch-Naturwissenschaftliche Fakultäten (Diss.). 55 p. (2003). MSC: 65N21 35Q30 65N35 PDF BibTeX XML Cite \textit{V. Tsiporin}, Charakterisierung eine Gebietes durch Spektraldaten eines Dirichletproblems zur Stokesgleichung. Göttingen: Univ. Göttingen, Mathematisch-Naturwissenschaftliche Fakultäten (Diss.) (2003; Zbl 1073.65123) Full Text: Link OpenURL
Sharafutdinov, G. Z. Solution of the three-dimensional Kirsch problem. (English. Russian original) Zbl 1051.74514 Mosc. Univ. Mech. Bull. 56, No. 6, 1-6 (2001); translation from Vestn. Mosk. Univ., Ser. I 2001, No. 6, 20-25 (2001). Reviewer: Ju. V. Kokhanenko (Kyïv) MSC: 74A10 74G70 PDF BibTeX XML Cite \textit{G. Z. Sharafutdinov}, Mosc. Univ. Mech. Bull. 56, No. 6, 1--6 (2001; Zbl 1051.74514); translation from Vestn. Mosk. Univ., Ser. I 2001, No. 6, 20--25 (2001) OpenURL
Neumann, S.; Herrmann, K. P.; Müller, W. H. Fourier transforms – an alternative to finite elements for elastic-plastic stress-strain analyses of heterogeneous materials. (English) Zbl 1056.74060 Acta Mech. 149, No. 1-4, 149-160 (2001). MSC: 74S25 74C05 74E05 PDF BibTeX XML Cite \textit{S. Neumann} et al., Acta Mech. 149, No. 1--4, 149--160 (2001; Zbl 1056.74060) Full Text: DOI OpenURL
Kothnur, Vasanth S.; Mukherjee, Subrata; Mukherjee, Yu Xie Two-dimensional linear elasticity by the boundary node method. (English) Zbl 0937.74074 Int. J. Solids Struct. 36, No. 8, 1129-1147 (1999). MSC: 74S15 74B05 PDF BibTeX XML Cite \textit{V. S. Kothnur} et al., Int. J. Solids Struct. 36, No. 8, 1129--1147 (1999; Zbl 0937.74074) Full Text: DOI OpenURL
Kȩdzierawski, Andrzej W. The determination of the surface impedance of an obstacle. (English) Zbl 0791.35152 Proc. Edinb. Math. Soc., II. Ser. 36, No. 1, 1-15 (1993). Reviewer: A.W.Kȩdzierawski (Dover/DE) MSC: 35R30 35P25 35J05 76Q05 PDF BibTeX XML Cite \textit{A. W. Kȩdzierawski}, Proc. Edinb. Math. Soc., II. Ser. 36, No. 1, 1--15 (1993; Zbl 0791.35152) Full Text: DOI OpenURL
Zhuk, M. G. Solution of the Kirsch problem in the dynamical statement. (Russian) Zbl 0719.73023 Mat. Issled. 108, 3-9 (1989). Reviewer: O.Titow (Berlin) MSC: 74K20 74R99 74G70 PDF BibTeX XML Full Text: EuDML OpenURL
Duan, Z. P.; Kienzler, R.; Herrmann, G. An integral equation method and its application to defect mechanics. (English) Zbl 0601.73011 J. Mech. Phys. Solids 34, 539-561 (1986). MSC: 74E05 74A60 74M25 45E05 45B05 74G70 PDF BibTeX XML Cite \textit{Z. P. Duan} et al., J. Mech. Phys. Solids 34, 539--561 (1986; Zbl 0601.73011) Full Text: DOI OpenURL
Shaldyrvan, V. A. Three-dimensional Kirsch problem for a transtropic plate. (English. Russian original) Zbl 0498.73012 J. Appl. Math. Mech. 44, 760-763 (1981); translation from Prikl. Mat. Mekh. 44, 1066-1070 (1980). MSC: 74G70 74K20 PDF BibTeX XML Cite \textit{V. A. Shaldyrvan}, J. Appl. Math. Mech. 44, 760--763 (1980; Zbl 0498.73012); translation from Prikl. Mat. Mekh. 44, 1066--1070 (1980) Full Text: DOI OpenURL