×

Improved seasonal Mann-Kendall tests for trend analysis in water resources time series. (English) Zbl 1368.62305

Li, Wai Keung (ed.) et al., Advances in time series methods and applications. The A. Ian McLeod festschrift, University of Ontario, ON, Canada, June 2–3, 2014. Toronto: The Fields Institute for Research in the Mathematical Sciences; New York, NY: Springer (ISBN 978-1-4939-6567-0/hbk; 978-1-4939-6568-7/ebook). Fields Institute Communications 78, 215-229 (2016).
Summary: Nonparametric statistical procedures are commonly used in analyzing for trend in water resources time series [K. W. Hipel and A. I. McLeod, Time series modelling of water resources and environmental systems. New York: Elsevier (2015)]. One popular procedure is the seasonal Mann-Kendall tau test for detecting monotonic trend in seasonal time series data with serial dependence [R. M. Hirsch and J. R. Slack, “A nonparametric trend test for seasonal data with serial dependence”, Water Resour. Res. 20, No. 6, 727–732 (1984; doi:10.1029/wr020i006p00727)]. However there is little rigorous discussion in the literature about its validity and alternatives. In this paper, the asymptotic normality of a seasonal Mann-Kendall test is determined for a large family of absolutely regular processes, a bootstrap sampling version of this test is proposed and its performance is studied through simulation. These simulations compare the performance of the traditional test, the bootstrapped version referred to above, as well as a bootstrapped version of Spearman’s rho partial correlation. The simulation results indicate that both bootstrap tests perform comparably to the traditional test when the seasonal effect is deterministic, but the traditional test can fail to converge to the nominal levels when the seasonal effect is stochastic. Both bootstrapped tests perform similarly to each other in terms of accuracy and power.
For the entire collection see [Zbl 1362.62010].

MSC:

62P12 Applications of statistics to environmental and related topics
62G10 Nonparametric hypothesis testing
62H20 Measures of association (correlation, canonical correlation, etc.)
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)

Software:

TSA; rkt; Kendall; R
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bradley, R. C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. Probability Surveys, 2, 107–144. · Zbl 1189.60077 · doi:10.1214/154957805100000104
[2] Bühlmann, P. (2002). Bootstraps for time series. Statistical Science, 17, 52–72. · Zbl 1013.62048 · doi:10.1214/ss/1023798998
[3] Cabilio, P., Zhang, Y., & Chen, X. (2013). Bootstrap rank test for trend in time series. Environmentrics, 24(8), 537–549. · doi:10.1002/env.2250
[4] Choi, E., & Hall, P. (2000). Bootstrap confidence regions computed from autoregressions of arbitrary order. Journal Royal Statistical Society Series B, 62, 461–477. · Zbl 0966.62027 · doi:10.1111/1467-9868.00244
[5] Cryer, J. D., & Chan, K. S. (2008). Time series analysis: With applications in R (2nd ed.). New York: Springer. · Zbl 1137.62366 · doi:10.1007/978-0-387-75959-3
[6] Dehling, H., & Wendler, M. (2010). Central limit theorem and the bootstrap for U-statistics of strongly mixing data. Journal of Multivariate Analysis, 101, 126–137. · Zbl 1177.62056 · doi:10.1016/j.jmva.2009.06.002
[7] Dietz, E. J., & Killeen, T. J. (1981). A nonparametric multivariate test for monotone trend with pharmaceutical applications. Journal of the American Statistical Association, 76(373), 169–174. · Zbl 0452.62039
[8] El-Shaarawi, A. H., & Niculescu, S. (1992). On Kendall’s tau as a test of trend in time series data. Environmetrics, 3, 385–411. · doi:10.1002/env.3170030403
[9] Environment Canada. (2011). Water survey of Canada archived hydrometric data. http://wateroffice.ec.gc.ca/
[10] Hipel, K. W., & McLeod, A. I. (2005). Time series modelling of water resources and environmental systems. New York: Elsevier.
[11] Hirsch, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1), 107–121. · doi:10.1029/WR018i001p00107
[12] Hirsch, R. M., & Slack, J. R. (1984). A Nonparametric trend test for seasonal data with serial dependence. Water Resources Research, 20(6), 727–732. · doi:10.1029/WR020i006p00727
[13] Jonckheere, A. R. (1954). A test of significance for the relation between m rankings and k ranked categories. British Journal of Statistical Psychology, 7, 93–100. · doi:10.1111/j.2044-8317.1954.tb00148.x
[14] Kreiss, J. K., Paparoditis, E., & Politis, D. N. (2011). On the range of validity of the autoregressive sieve bootstrap. The Annals of Statistics, 39, 2103–2130. · Zbl 1227.62067 · doi:10.1214/11-AOS900
[15] Lyubchich, V., Gel, Y. R., & El-Shaarawi, A. (2013). On detecting non-monotonic trends in environmental time series: A fusion of local regression and bootstrap. Environmetrics, 24, 209–226. · doi:10.1002/env.2212
[16] Marchetto, A. (2015). rkt: Mann–Kendall test, seasonal and regional Kendall tests. R package version 1.4. http://CRAN.R-project.org/package=rkt
[17] McLeod, A. I., Hipel, K. W., & Bodo, B. A. (1991). Trend analysis methodology for water quality time series. Environmetrics, 2(2), 169–200. · doi:10.1002/env.3770020205
[18] McLeod, A. I. (2011). Kendall: Kendall rank correlation and Mann–Kendall trend test. R package version 2.2. http://CRAN.R-project.org/package=Kendall
[19] Mokkadem, A. (1988). Mixing properties of ARMA processes. Stochastic Processes and their Applications, 29, 309–315. · Zbl 0647.60042 · doi:10.1016/0304-4149(88)90045-2
[20] Politis, D. N. (2003). The impact of bootstrap methods on time series analysis. Statistical Science, 18, 219–230. · Zbl 1332.62340 · doi:10.1214/ss/1063994977
[21] Poskitt, D. S. (2008). Properties of the Sieve bootstrap for fractionally integrated and non-invertible processes. Journal of Time Series Analysis, 29, 224–250. · Zbl 1164.62053 · doi:10.1111/j.1467-9892.2007.00554.x
[22] R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
[23] Schindler, D. W., & Donahue, W. F. (2006). An impending water crisis in Canada’s western prairie provinces. Proceedings of the National Academy of Sciences of the United States of America, 103(19), 7210–7216. · doi:10.1073/pnas.0601568103
[24] Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379–1389. · Zbl 0167.47202 · doi:10.1080/01621459.1968.10480934
[25] Tjøstheim, D., & Paulsen, J. (1983). Bias of some commonly-used time series estimators. Biometrika, 70, 389–400. · Zbl 0525.62085 · doi:10.1093/biomet/70.2.389
[26] Yoshihara, K. (1976). Limiting behavior of U-statistics for stationary absolutely regular processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 35, 237–252. · Zbl 0314.60028 · doi:10.1007/BF00532676
[27] Yue, S., Pilon, P., Phinney, B., & Cavadias, G. (2002). The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes, 16, 1807–1829. · doi:10.1002/hyp.1095
[28] Zhang, Y., & Cabilio, P. (2013). A generalized Jonckheere test against ordered alternatives for repeated measures in randomized blocks. Statistics in Medicine, 32, 1635–1645. · doi:10.1002/sim.5606
[29] Zhang, Y., & McLeod, A. I. (2006). Computer algebra derivation of the bias of linear estimators of autoregressive models. Journal of Time Series Analysis, 27, 157–165. · Zbl 1115.62093 · doi:10.1111/j.1467-9892.2005.00459.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.