×

zbMATH — the first resource for mathematics

Chaos in classical string dynamics in \(\Hat{\gamma}\) deformed \(\mathrm{AdS}_5 \times T^{1,1}\). (English) Zbl 1368.81131
Summary: We consider a circular string in \(\Hat{\gamma}\) deformed \(\mathrm{AdS}_5 \times T^{1, 1}\) which is localized in the center of \(\mathrm{AdS}_5\) and winds around the two circles of deformed \(T^{1, 1}\). We observe chaos in the phase space of the circular string implying non-integrability of string dynamics. The chaotic behaviour in phase space is controlled by energy as well as the deforming parameter \(\Hat{\gamma}\). We further show that the point like object exhibits non-chaotic behaviour. Finally we calculate the Lyapunov exponent for both extended and point like object in support of our first result.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
34D08 Characteristic and Lyapunov exponents of ordinary differential equations
70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
34D45 Attractors of solutions to ordinary differential equations
70H08 Nearly integrable Hamiltonian systems, KAM theory
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
83E30 String and superstring theories in gravitational theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Maldacena, J. M.; Maldacena, J. M., The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., Int. J. Theor. Phys., 38, 1113, (1999) · Zbl 0969.81047
[2] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253, (1998) · Zbl 0914.53048
[3] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Gauge theory correlators from non-critical string theory, Phys. Lett. B, 428, 105, (1998) · Zbl 1355.81126
[4] Beisert, N., Review of AdS/CFT integrability: an overview, Lett. Math. Phys., 99, 3, (2012)
[5] Berenstein, D. E.; Maldacena, J. M.; Nastase, H. S., Strings in flat space and pp waves from N=4 super Yang-Mills, J. High Energy Phys., 0204, (2002)
[6] Frolov, S.; Tseytlin, A. A., Semiclassical quantisation of rotating superstring in AdS(5) x S**5, J. High Energy Phys., 0206, (2002)
[7] Bena, I.; Polchinski, J.; Roiban, R., Hidden symmetries of the AdS(5) x S**5 superstring, Phys. Rev. D, 69, (2004)
[8] Larsen, A. L., Chaotic string capture by black hole, Class. Quantum Gravity, 11, 1201, (1994)
[9] Frolov, A. V.; Larsen, A. L., Chaotic scattering and capture of strings by black hole, Class. Quantum Gravity, 16, 3717, (1999) · Zbl 0939.83057
[10] Pando Zayas, L. A.; Terrero-Escalante, C. A., Chaos in the gauge/gravity correspondence, J. High Energy Phys., 1009, (2010) · Zbl 1291.81343
[11] Boucher, D.; Weil, J. A., About the non-integrability in the Friedmann-Robertson-Walker cosmological model, Braz. J. Phys., 37, 398, (2007)
[12] Basu, P.; Pando Zayas, L. A., Chaos rules out integrability of strings in \(\operatorname{AdS}_5 \times T^{1, 1}\), Phys. Lett. B, 700, 243, (2011)
[13] Asano, Y.; Kawai, D.; Kyono, H.; Yoshida, K., Chaotic strings in a near Penrose limit of \(\operatorname{AdS}_5 \times \operatorname{T}^{1, 1}\), J. High Energy Phys., 1508, (2015)
[14] Basu, P.; Pando Zayas, L. A., Analytic non-integrability in string theory, Phys. Rev. D, 84, (2011)
[15] Giataganas, D.; Sfetsos, K., Non-integrability in non-relativistic theories, J. High Energy Phys., 1406, (2014)
[16] Bai, X.; Lee, B. H.; Moon, T.; Chen, J., Chaos in Lifshitz spacetimes, J. Korean Phys. Soc., 68, 5, 639, (2016)
[17] Basu, P.; Das, D.; Ghosh, A.; Pando Zayas, L. A., Chaos around holographic Regge trajectories, J. High Energy Phys., 1205, (2012) · Zbl 1348.83022
[18] Stepanchuk, A.; Tseytlin, A. A.; Chervonyi, Y.; Lunin, O., (non)-integrability of geodesics in D-brane backgrounds, J. Phys. A, J. High Energy Phys., 1402, 125401, (2014)
[19] Basu, P.; Das, D.; Ghosh, A., Integrability lost, Phys. Lett. B, 699, 388, (2011)
[20] Giataganas, D.; Pando Zayas, L. A.; Zoubos, K., On marginal deformations and non-integrability, J. High Energy Phys., 1401, (2014)
[21] Asano, Y.; Kawai, D.; Yoshida, K., Chaos in the BMN matrix model, J. High Energy Phys., 1506, (2015) · Zbl 1388.81196
[22] Basu, P.; Ghosh, A., Confining backgrounds and quantum chaos in holography, Phys. Lett. B, 729, 50, (2014) · Zbl 1331.81124
[23] Pando Zayas, L. A.; Reichmann, D., A string theory explanation for quantum chaos in the hadronic spectrum, JHEP, 1304, (2013) · Zbl 1342.83438
[24] Hashimoto, K.; Murata, K.; Yoshida, K., Chaos of chiral condensate
[25] Lunin, O.; Maldacena, J. M., Deforming field theories with U(1) x U(1) global symmetry and their gravity duals, J. High Energy Phys., 0505, (2005)
[26] Catal-Ozer, A., Lunin-Maldacena deformations with three parameters, J. High Energy Phys., 0602, (2006)
[27] Crichigno, P. M.; Matsumoto, T.; Yoshida, K., Deformations of \(T^{1, 1}\) as Yang-Baxter sigma models, J. High Energy Phys., 1412, (2014)
[28] Strogatz, S. H., Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, (1994), Westview Press
[29] Ott, E., Chaos in dynamical systems, (2002), Cambridge University Press · Zbl 1006.37001
[30] Hilborn, R., Chaos and nonlinear dynamics: an introduction for scientists and engineers, (2000), Oxford University Press · Zbl 1015.37001
[31] Sprott, J. C., Chaos and time-series analysis, (2003), Oxford University Press · Zbl 1012.37001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.