×

Stochastic models for ion channels: Introduction and bibliography. (English) Zbl 0767.92007

Summary: This paper provides an introduction to and overview of the use of stochastic models and statistical analysis in the study of ion channels in cell membranes. An extensive bibliography is included.

MSC:

92C30 Physiology (general)
92-00 General reference works (handbooks, dictionaries, bibliographies, etc.) pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ball, F. G.; Sanson, M. S.P., Temporal clustering of ion channel openings incorporating time interval omission, IMA J. Math. Appl. Med. Biol., 4, 333-361 (1987) · Zbl 0642.92001
[2] Ball, F. G.; Kerry, C. J.; Ramsey, R. L.; Sanson, M. S.P.; Usherwood, P. N.R., The use of dwell time cross-correlation functions to study single ion channel gating kinetics, Biophys. J., 54, 309-320 (1988)
[3] Ball, F. G.; McGee, R.; Sanson, M. S.P., Analysis of post-perturbation gating kinetics of single ion channels, Proc. Roy. Soc. Lond. B, 236, 29-52 (1989)
[4] Ball, F. G.; Rice, J. A., A note on single-channel autocorrelation functions, Math. Biosci., 97, 17-26 (1989) · Zbl 0679.92009
[5] Barti, M.; Petracchi, D., Coupled and uncoupled Markov systems: a possible way to distinguish between them, Eur. Biophys. J., 20, 345-353 (1992)
[6] Bauer, R. J.; Bowman, B. F.; Kenyon, J. L., Theory of the kinetic analysis of patch-clamp data, Biophys. J., 52, 961-978 (1987)
[7] Colquhoun, D.; Hawkes, A. G., Relaxation and fluctuations of membrane currents that flow through drug operated channels, Proc. Roy. Soc. Lond. B, 199, 231-262 (1977)
[8] Colquhoun, D.; Hawkes, A. G., On the stochastic properties of single ion channels, Proc. Roy. Soc. Lond. B, 211, 205-235 (1981)
[9] Colquhoun, D.; Hawkes, A. G., On the stochastic properties of single ion channel openings and of clusters of bursts, Phil. Trans. Roy. Soc. Lond. B, 300, 1-59 (1982)
[10] Colquhoun, D.; Hawkes, A. G., A note on correlations in single channel records, Proc. Roy. Soc. Lond. B, 230, 15-52 (1987)
[11] Fitzhugh, R., Statistical properties of the asymmetric random telegraph signal, with applications to single-channel analysis, Math. Biosci., 64, 75-89 (1983) · Zbl 0521.92008
[12] Fredkin, D. R.; Montal, M.; Rice, J. A., Identification of aggregated Markovian models: application to the nicotinic acetylcholine receptor, (LeCam, L. M.; Olshen, R. A., Proceedings of the Berkeley Conference in Honor of J. Neyman and J. Kiefer, Vol. 1 (1985), Wadsworth: Wadsworth Monterey, Calif), 269-289 · Zbl 1372.92028
[13] Fredkin, D. R.; Rice, J. A., On aggregated Markov processes, J. Appl. Probab., 23, 208-214 (1986) · Zbl 0589.60058
[14] Fredkin, D. R.; Rice, J. A., Correlation functions of a function of a finite-state Markov process with application to channel kinetics, Math. Biosci., 87, 161-172 (1987) · Zbl 0632.92003
[15] Kienker, P., Equivalence of aggregated Markov models of ion channel gating, Proc. Roy. Soc. Lond. B, 236, 269-309 (1989)
[16] Kijima, S.; Kijima, H., Statistical analysis of channel current from a membrane patch. I. Some stochastic properties of ion channels or molecular systems in equilibrium, J. Theor. Biol., 128, 423-434 (1987)
[17] Kirber, M. T.; Singer, J. J.; Walsh, J. V.; Fuller, M. S.; Peura, R. A., Possible forms for dwell-time histograms from single-channel current records, J. Theor. Biol., 116, 111-126 (1985)
[18] Liebovitch, L. S.; Fischbarg, J., Membrane pores: a computer simulation of interacting pores analyzed by g1(τ) and g2(τ) correlation functions, J. Theor. Biol., 119, 287-297 (1986)
[19] Liebovitch, L. S.; Fischbarg, J.; Koniarek, J. P., Optical correlation functions applied to the random telegraph signal: how to analyze patch clamp data without measuring the open and closed times, Math. Biosci., 78, 203-215 (1986)
[20] Milne, R. K.; Edeson, R. O.; Madsen, B. W., Stochastic modeling of a single ion channel: interdependece of burst length and number of openings per burst, Proc. Roy. Soc. Lond. B, 227, 83-102 (1986)
[21] Petracchi, D.; Barbi, M.; Pellegrini, M.; Pellegrini, M.; Simoni, A., Use of conditional distributions in the analysis of ion channel recordings, Eur. Biophys. J., 20, 31-39 (1991)
[22] Sigworth, F. J., Covariance of nonstationary sodium current fluctuations at the node of Ravier, Biophys. J., 34, 111-133 (1981)
[23] Steinberg, I. Z., On the time reversal of noise signals, Biophys. J., 50, 171-179 (1986)
[24] Steinberg, I. Z., Relationship between statistical properties of single ionic channel recordings and the thermodynamic state of the channels, J. Theor. Biol., 124, 71-87 (1987)
[25] Steinberg, I. Z., Frequencies of paired open-closed durations of ion channels. Method of evaluation from single channel-recordings, Biophys. J., 52, 47-55 (1987)
[26] Condat, C. A., Defect diffusion and closed-time distributions for ionic channels in cell membranes, Phys. Rev. A, 39, 2112-2125 (1989)
[27] Condat, C. A.; Jackle, J., Closed-time distribution of ionic channels. Analytical solution to a one-dimensional detect-diffusion model, Biophys. J., 55, 915-925 (1989)
[28] Croxton, T. L., A model of the gating of ion channels, Biochim. Biophys. Acta, 946, 19-24 (1988)
[29] Doster, W.; Schirmacher, W.; Settles, M., Percolation model of ionic channel dynamics, Biophys. J., 57, 681-684 (1990)
[30] French, A. S.; Stockbridge, L. L., Fractal and Markov behaviour in ion channel kinetics, Can. J. Physiol. Pharmacol., 66, 967-970 (1988)
[31] Korn, S. J.; Horn, R., Statistical discrimination of fractal and Markov models of single-channel gating, Biophys. J., 54, 871-877 (1988)
[32] Lam, H. S.; Lampard, D. G., Modelling of drug receptor interaction with birth and death processes, J. Math. Biol., 12, 153-172 (1981) · Zbl 0472.92003
[33] Läuger, P., Internal motions of proteins and gating kinetics of ionic channels, Biophys. J., 53, 877-884 (1988)
[34] Levitt, D. G., Continuum model of voltage-dependent gating: macroscopic conductance, gating current, and single-channel behaviour, Biophys. J., 55, 489-498 (1989)
[35] Liebovitch, L. S., Testing fractal and Markov models of ion channel kinetics, Biophys. J., 55, 373-377 (1989)
[36] Liebovitch, L. S., Analysis of fractal ion channel gating kinetics: kinetic rates, energy levels, and activation energies, Math. Biosci., 93, 97-115 (1989) · Zbl 0661.92004
[37] Liebovitch, L. S.; Fischbarg, J.; Koniarek, J. P., Ion channel kinetics: a model based on fractal scaling rather than multistate Markov processes, Math. Biosci., 84, 37-68 (1987) · Zbl 0614.92007
[38] Liebovitch, L. S.; Fischbarg, J.; Koniarek, J. P.; Todorova, I.; Wang, M., Fractal models of ion-channel kinetics, Biochem. Biophys. Acta, 896, 173-180 (1987)
[39] Liebovitch, L. S.; Sullivan, J. M., Fractal analysis of a voltage dependent potassium channel from cultured mouse hippocampal neurons, Biophys. J., 52, 979-988 (1987)
[40] Liebovitch, L. S.; Toth, T. I., Distributions of activation energy barriers that produce streched exponential probability distributions for the time spent in each state of the two st ate reaction A ⇌ B (1989)
[41] Liebovitch, L. S.; Toth, T. I., The Akaike information criterion (AIC) is not a sufficient condition to determine the number of ion channel states from single channel recordings, Synapse, 5, 134-138 (1990)
[42] Liebovitch, L. S.; Toth, T. I., A model of ion channel kinetics using deterministic chaotic rather than stochastic processes, J. Theor. Biol., 148, 243-267 (1991)
[43] McManus, O. B.; Spivak, C. E.; Blatz, A. L.; Weiss, D. S.; Magleby, K. L., Fractal models, Markov models and channel kinetics, Biophys. J., 55, 383-385 (1989)
[44] McManus, O. B.; Weiss, D. S.; Spivak, C. E.; Blatz, A. L.; Magleby, K. L., Fractal models are inadequate for the kinetics of four different ion channels, Biophys. J., 54, 859-870 (1988)
[45] Millhauser, G. L., Reptation theory of ion channel gating, Biophys. J., 57, 857-864 (1990)
[46] Millhauser, G. L.; Oswald, R. E., A reevaluation of the mathematical models for simulating single-channel and whole-cell ionic currents, Synapse, 2, 97-103 (1988)
[47] Millhauser, G. L.; Salpeter, E. E.; Oswald, R. E., Diffusion models of ion-channel gating and the origin of power-law distributions from single-channel recordings, Proc. Natl. Acad. Sci. USA, 85, 1503-1507 (1988)
[48] Millhauser, G. L.; Salpeter, E. E.; Oswald, R. E., Rate-amplitude correlation from single-channel records: a hidden structure in ion channel gating kinetics?, Biophys. J., 54, 1165-1168 (1988)
[49] Oswald, R. E.; Millhauser, G. L.; Carter, A. A., Diffusion model in ion channel gating: extension to agonist-activated channels, Biophys. J., 59, 1136-1142 (1991)
[50] Robinson, K. A., Steady state kinetics of solitary bachtrachotoxin-treated sodium channels—kinetics on a bounded continuum of polymer conformations, Biophys. J., 61, 463-479 (1992)
[51] Sansom, M. S.P.; Ball, F. G.; Kerry, C. J.; McGee, R.; Ramsey, R. L.; Usherwood, P. N.R., Markov, fractal, diffusion and related models of ion channel gating: a comparison with experimental data from two ion channels, Biophys. J., 56, 1229-1243 (1989)
[52] Tuckwell, H. C., Diffusion approximation to channel noise, J. Theor. Biol., 127, 427-438 (1987)
[53] Ball, F. G., Aggregated Markov processes with negative exponential time interval omission, Adv. Appl. Probab., 22, 802-830 (1990) · Zbl 0726.60070
[54] Ball, F. G.; Milne, R. K.; Yeo, G. F., Aggregated semi-Markov processes incorporating time interval omission, Adv. Appl. Probab., 23, 727-797 (1991) · Zbl 0748.60088
[55] Ball, F. G.; Milne, R. K.; Yeo, G. F., On the exact distribution of observed open times in single channel ion models, J. Appl. Probab., 30 (1993), to appear · Zbl 0781.60076
[56] Ball, F. G.; Yeo, G. F.; Milne, R. K.; Edeson, R. O.; Madsen, B. W.; Sansom, M. S.P., Single ion channel models incorporating aggregation and time interval omission, Biophys. J. (1992), to appear
[57] Ball, F. G.; Yeo, G. F., Numerical evaluation of observed sojourn time distributions for a single ion channel incorporating time interval omission (1992), manuscript
[58] Ball, F. G.; Sansom, M. S.P., Aggregated Markov processes incorporating time interval omission, Adv. Appl. Probab., 20, 546-572 (1988) · Zbl 0654.60077
[59] Ball, F. G.; Sansom, M. S.P., Single channel autocorrelation functions—the effects of time interval omission, Biophys. J., 53, 819-832 (1988)
[60] Blatz, A. L.; Magleby, K. L., Correcting single channel data for missed events, Biophys. J., 49, 967-980 (1986)
[61] Crouzy, S. C.; Sigworth, F. J., A practical solution to the dwell time omission problem, J. Gen. Physiol., 96, 395-437 (1990)
[62] Crouzy, S. C.; Sigworth, F. J., Yet another approach to the dwell-time omission problem of single-channel analysis, Biophys. J., 58, 731-743 (1990)
[63] Dabrowski, A. R.; McDonald, D., Consistent estimation in the presence of bandwidth limitation, J. Roy. Statist. Soc. B., 55 (1993), to appear · Zbl 0780.92010
[65] Hawkes, A. G.; Jalali, A.; Colquhoun, D., The distribution of the apparent open times and shut times in a single channel record when brief events cannot be detected, Phil. Trans. Roy. Soc. Lond. A, 332, 511-538 (1990) · Zbl 0724.92003
[66] Hawkes, A. G.; Jalali, A.; Colquhoun, D., Asymptotic distributions of apparent open times and shut times in a single channel record allowing for the omission of brief events, Phil. Trans. Roy. Soc. Lond. B (1992), to appear · Zbl 0724.92003
[67] Jalali, A.; Hawkes, A. G., The distribution of apparent occupancy times in a two-state Markov process in which brief events cannot be detected, Adv. Appl. Probab., 24, 288-301 (1992) · Zbl 0755.60060
[68] Jalali, A.; Hawkes, A. G., Generalised eigenproblems arising in aggregated Markov processes allowing for time interval omission, Adv. Appl. Probab., 24, 302-321 (1992) · Zbl 0754.60095
[69] Milne, R. K.; Yeo, G. F.; Adenson, R. O.; Madsen, B. W., Stochastic modeling of a single ion channel: an alternating renewal approach with application to limited time resolution, Proc. Roy. Soc. Lond. B, 233, 247-292 (1988)
[70] Roux, B.; Sauvé, R., A general solution to the time interval omission problem applied to single channel analysis, Biophys. J., 48, 149-158 (1985)
[71] Wilson, D. L.; Brown, A. M., Effect of limited interval resolution on single channel measurements with application to Ca channels, IEEE Trans. Biomed. Eng., BME-32, 786-797 (1985)
[72] Aldrich, R. W.; Corey, D. P.; Stevans, C. F., A reinterpretation of mammalian gating based on single channel recording, Nature, 306, 436-441 (1983)
[73] Ball, F. G.; Davies, S. S., Statistical inference for a two state Markov model of a single ion channel, incorporating time interval omission (1992), manuscript · Zbl 0809.62076
[74] Ball, F. G.; Chen, A.; Sansom, M. S.P., Poisson based inference for single ion channel data with time interval omission (1992), manuscript
[75] Ball, F. G.; Davies, S. S.; Sansom, M. S.P., Single-channel data and missed events: analysis of a two-state Markov model, Proc. Roy. Soc. Lond. B Biol. Sci., 242, 61-67 (1990)
[76] Ball, F. G.; Sansom, M. S.P., Ion-channel gating mechanisms: model identification and parameter estimation from single channel recordings, Proc. Roy. Soc. Lond. B, 236, 385-416 (1989)
[77] Bates, S. E.; Sansom, M. S.P.; Ball, F. G.; Ramsey, R. L.; Usherwood, P. N.R., Glutamate receptor-channel gating: maximum likelihood analysis of gigohm seal recordings from locust muscle, Biophys. J., 58, 219-229 (1990)
[78] Blatz, A. L.; Magleby, K. L., Quantitative description of three modes of activity of fast chloride channels from rat skeletal muscle, J. Physiol., 378, 141-174 (1986)
[79] Blatz, A. L.; Magleby, K. L., Adjacent interval analysis distinguishes among gating mechanisms for the fast chloride channel from rat skeletal muscle, J. Physiol. (Lond.), 410, 561-585 (1989)
[80] Chay, T. R., Kinetic modeling for the channel gating process from single channel patch clamp data, J. Theor. Biol., 132, 449-468 (1988)
[81] Chung, S. H.; Moore, J. B.; Xia, L.; Premkumar, L. S.; Gage, P. W., Characterization of single channel currents using digital signal processing techniques based on hidden Markov model, Phil. Trans. Roy. Soc. Lond. B, 329, 265-285 (1990)
[82] Chung, S. H.; Krishnamurthy, V.; Moore, J. B., Adaptive processing techniques based on hidden Markov models for characterizing very small channel currents buried in noise and deterministic influen ces, Phil. Trans. Roy. Soc. Lond. B, 334, 357-384 (1991)
[83] Clarke, B. R.; Milne, R. K.; Yeo, G. F., Local asymptotic theory for multiple solutions of likelihood equations, with application to a single ion channel model, Scand. J. Statist. (1992), to appear
[84] Colquhoun, D.; Sakmann, B., Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate, J. Physiol., 369, 501-557 (1985)
[85] Colquhoun, D.; Ogden, D. C., Activation of ion channels in the frog end-plate by high concentrations of acetylcholine, J. Physiol., 395, 131-159 (1988)
[86] Edeson, R. O.; Ball, F. G.; Yeo, G. F.; Milne, R. K.; Davies, S. S., Identifying single channel kinetic properties from sojourn time data (1992), manuscript
[87] Edeson, R. O.; Milne, R. K.; Yeo, G. F.; Madsen, B. W., On the use of time constants as estimates of mean lifetimes in single channel data analysis, Eur. Biophys. J., 18, 235-238 (1990) · Zbl 0734.92010
[88] Feigin, P. D.; Tweedie, R. L.; Belaya, C., Weighted area techniques for explicit parameter estimation, Aust. J. Stat., 25, 1-16 (1983) · Zbl 0514.62113
[89] Fredkin, D. R.; Rice, J. A., Bayesian restoration of single channel patch clamp recordings, Biometrics, 48, 427-448 (1992)
[90] Fredkin, D. R.; Rice, J. A., maximum likelihood estimation and identification directly from single channel recordings, Proc. Roy. Soc. Lond. B, 249, 125-132 (1992)
[91] Glasbey, C. A.; Martin, R. J., Exploratory and confirmatory plots of single-channel records, J. Neurosci. Methods, 16, 239-249 (1986)
[92] Horn, R., Statistical methods for model discrimination. Applications to gating kinetics and permeation of the acetylcholine receptor channel, Biophys. J., 51, 255-263 (1987)
[93] Horn, R.; Vandenberg, C. A.; Lange, K., Statistical analysis of single sodium channels. Effects of \(N\)-bromoacetamide, Biophys. J., 45, 323-335 (1984)
[94] Horn, R.; Korn, S. J., Model selection: reliability and bias, Biophys. J., 55, 379-381 (1989)
[95] Horn, R.; Lange, K., Estimating kinetic constants from single channel data, Biophys. J., 43, 207-223 (1983)
[96] Horn, R.; Vandenburg, C. A., Statistical properties of single channel sodium channels, J. Gen. Physiol., 84, 505-534 (1984)
[97] Jackson, M. B.; Wong, B. S.; Morris, C. E.; Lecar, H., Successive openings of the same acetylcholine receptor channel and correlated in open time, Biophys. J., 42, 109-114 (1983)
[98] Keiser, J.; Maki, L. W., Conditional probability analysis for a domain model of \(Ca^{2+}\)-inactivation of \(Ca^{2+}\) channels, Biophys. J., 63, 291-295 (1992)
[99] Kerry, C. J.; Kits, K. S.; Ramsey, R. L.; Sansom, M. S.P.; Usherwood, P. N.R., Single channel kinetics of a glutamate receptor, Biophys. J., 51, 137-144 (1987)
[100] Kerry, C. J.; Ramsey, R. L.; Sansom, M. S.P.; Usherwood, P. N.R., Glutamate receptor-channel kinetics: the effect of glutamate concentration, Biophys. J., 53, 39-52 (1988)
[101] Korn, S. J.; Horn, R., Discrimination of kinetic models of ion channel gating, Methods. Neurosci., 4, 428-456 (1991)
[102] Labarca, P.; Rice, J. A.; Fredkin, D. R.; Montal, M., Kinetic analysis of channel gating: application to the cholinergic receptor channel and the chloride channel from Torpedo california, Biophys. J., 47, 469-478 (1985)
[103] McManus, O. B.; Blatz, A. L.; Magleby, K. L., Inverse relationship of the durations of adjacent open and shut intervals for Cl and K channels, Nature (Lond.), 317, 625-627 (1985)
[104] McManus, O. B.; Blatz, A. L.; Magleby, K. L., Sampling, log binning, fitting, and plotting durations of open and shut intervals from single channels and the effects of noise, Pflugers Arch., 410, 520-553 (1987)
[105] McManus, O. B.; Magleby, K. L., Kinetic time constants independent of previous single channel activity suggest Markov gating for a large conductance Ca-activated K channel, J. Gen. Physiol., 94, 1037-1070 (1989)
[106] Magleby, K. L.; Weiss, D. S., Identifying kinetic gating mechanisms for ion channels by using two-dimensional distributions of simulated dwell times, Proc. Roy. Soc. Lond. B, 241, 220-228 (1990)
[107] Magleby, K. L.; Weiss, D. S., Estimating kinetic parameters for single channels with simulation: a general method that resolves the missed events problem and accounts for noise, Biophys. J., 58, 1411-1426 (1990)
[108] Milne, R. K.; Yeo, G. F.; Madsen, B. W.; Edeson, R. O., Estimation of single channel kinetic parameters from data subject to limited time resolution, Biophys. J., 55, 673-676 (1989)
[109] Nagy, K., Evidence for multiple open states of sodium channels in neuroblastoma cells, J. Membrane Biol., 96, 251-262 (1987)
[110] Ogden, D. C.; Colquhoun, D.; Marshall, C. G., Activation of nicotinic ion channels by acetylcholine analogues, (Dowdall, M. J.; Hawthorne, J. N., Cellular and Molecular Basis of Cholinergic Function (1987), Ellis Horwood: Ellis Horwood Chichester), 133-151
[111] Patlak, J., Molecular kinetics of voltage-dependent \(Na^+\) channels, Physiol. Rev., 71, 1047-1080 (1991)
[112] Ramanan, S. V.; Brink, P. R., Alternate methods of representing single channel data, Biophys. J., 57, 893-901 (1990)
[113] Sachs, F.; Neil, J.; Barkakati, N., The automated analysis of data from single ionic channels, Pflugers Arch., 395, 331-340 (1982)
[114] Vandenberg, C. A.; Benzanilla, F., A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon, Biophys. J., 60, 1511-1533 (1991)
[115] Weiss, D. S.; Magleby, K. L., Voltage dependence and stability of the gating kinetics of the fast chloride channel from rat skeletal muscle, J. Physiol., 426, 145-176 (1990)
[116] Yang, G. L.; Swenberg, C. E., Estimation of open dwell time and problems of identifiability in sodium channel experiments, J. Stat. Plan. Inf. (1992), to appear · Zbl 0753.92011
[117] Yeo, G. F.; Milne, R. K.; Edeson, R. O.; Madsen, B. W., Statistical inference from single channel records: two-state Markov model with limited time resolution, Proc. Roy. Soc. Lond. B, 235, 63-94 (1988)
[118] Ball, F. G.; Milne, R. K.; Yeo, G. F., Continuous time Markov chains in a random environment with applications to ion channel modeling (1992), manuscript
[119] Colquhoun, D.; Hawkes, A. G., Stochastic properties of ion channel opennings and bursts in a membrane patch that contains two channels: evidence concerning the number of channels present when a record containing only single openings is observed, Proc. Roy. Soc. Lond. B, 240, 453-477 (1990)
[120] Dabrowski, A. R.; McDonald, D., Statistical analysis of multiple ion channel data, Ann. Stat. (1992), to appear · Zbl 0781.62173
[121] Dabrowski, A. R.; McDonald, D.; Rosler, U., Renewal theory properties of ion channels, Ann. Stat., 18, 1091-1115 (1990) · Zbl 0707.60083
[122] Fredkin, D. R.; Rice, J. A., On the superposition of currents from ion channels, Phil. Trans. Roy. Soc. Lond. B, 334, 357-384 (1991)
[123] Glasbey, C. A.; Martin, J. A., The distribution of numbers of open channels in multi-channel patches, J. Neurosci. Methods, 24, 283-287 (1988)
[124] Horn, R., Estimating the number of channels in patch recordings, Biophys. J., 60, 433-439 (1991)
[125] Jackson, M. B., Stochastic behavior of a many-channel membrane system, Biophys. J., 47, 129-137 (1985)
[126] Kijima, S.; Kijima, H., Statistical analysis of current from a membrane patch, II. A stochastic theory of a multi-channel system in the steady-state, J. Theor. Biol., 128, 435-455 (1987)
[127] Manivnnan, K.; Ramanan, S. V.; Mathias, R. T.; Brink, P. R., Multichannel recordings from membranes which contain gap junctions, Biophys. J., 61, 216-227 (1992)
[128] Ramanan, S. V.; Fan, S. F.; Brink, P. R., Model invariant methods for extracting single-channel mean open and closed times from heterogeneous multichannel records, J. Neurosci. Methods, 24, 283-287 (1992)
[129] Yeo, G. F.; Edeson, R. O.; Milne, R. K.; Madsen, B. W., Superposition properties of independent ion channels, Proc. Roy. Soc. Lond. B, 238, 155-170 (1989)
[130] Yaramian, E.; Trautman, A.; Claverie, P., Acetylcholine receptors are not functionally independent, Biophys. J., 50, 253-263 (1986)
[131] Basawa, J. V., Maximum likelihood estimation of parameters in renewal and Markov-renewal processes, Austral. J. Statist., 16, 33-43 (1974) · Zbl 0317.62057
[132] Baum, L. E.; Petrie, T.; Soules, G.; Weiss, N., A maximization technique occuring in the statistical analysis of probabilistic functions of Markov chains, Ann. Math. Stat., 41, 164-171 (1970) · Zbl 0188.49603
[133] Ball, F. G.; Yeo, G. F., Lumpability and marginalisability for continuous time Markov chains, J. Appl. Probab., 30 (1993), to appear · Zbl 0781.60057
[134] Blackwell, D.; Koopmans, L., On the identifiability problem for functions of finite markov chains, Ann. Math. Stat., 28, 1011-1015 (1957) · Zbl 0080.34901
[135] Edeson, R. O.; Yeo, G. F.; Milne, R. K.; Madsen, B. W., Graphs, random sums, and sojourn time distributions, with application to ion-channel modelling, Math. Biosci., 102, 75-104 (1990) · Zbl 0734.92010
[136] Erickson, R. V., Functions of Markov chains, Ann. Math. Stat., 41, 843-850 (1970) · Zbl 0201.19902
[137] Gilbert, E. J., On the identifiability problem for functions of finite Markov chains, Ann. Math. Stat., 30, 688-697 (1959) · Zbl 0089.34503
[138] Petrie, T., Probabilistic functions of finite state Markov chains, Ann. Math. Stat., 40, 97-115 (1969) · Zbl 0181.21201
[139] Rabiner, L. R.; Juang, B. H., An introduction to hidden Markov models, IEEE ASSP Mag., 3, 4-16 (1986), (Jan.)
[140] Sakmann, B.; Neher, E., Single-Channel Recording (1983), Plenum: Plenum New York
[141] Hille, B., Ionic Channels of Excitable Membranes (1992), Sinauer: Sinauer Sunderland, Mass
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.