Yang, Yue; Meng, Fanwei A kind of stricter Hyers-Ulam stability of second order linear differential equations of Carathéodory type. (English) Zbl 07317515 Appl. Math. Lett. 115, Article ID 106946, 8 p. (2021). MSC: 65 35 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{F. Meng}, Appl. Math. Lett. 115, Article ID 106946, 8 p. (2021; Zbl 07317515) Full Text: DOI
Anderson, Douglas R.; Onitsuka, Masakazu Best constant for Hyers-Ulam stability of two step sizes linear difference equations. (English) Zbl 07316425 J. Math. Anal. Appl. 496, No. 2, Article ID 124807, 18 p. (2021). MSC: 39 65 PDF BibTeX XML Cite \textit{D. R. Anderson} and \textit{M. Onitsuka}, J. Math. Anal. Appl. 496, No. 2, Article ID 124807, 18 p. (2021; Zbl 07316425) Full Text: DOI
Guan, Yi; Fečkan, Michal; Wang, Jinrong Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. (English) Zbl 07314905 Discrete Contin. Dyn. Syst. 41, No. 3, 1157-1176 (2021). MSC: 34C25 PDF BibTeX XML Cite \textit{Y. Guan} et al., Discrete Contin. Dyn. Syst. 41, No. 3, 1157--1176 (2021; Zbl 07314905) Full Text: DOI
Choi, Yemon; Ghandehari, Mahya; Pham, Hung Le Stability of characters and filters for weighted semilattices. (English) Zbl 07310708 Semigroup Forum 102, No. 1, 86-103 (2021). MSC: 20M PDF BibTeX XML Cite \textit{Y. Choi} et al., Semigroup Forum 102, No. 1, 86--103 (2021; Zbl 07310708) Full Text: DOI
Murugan, Veerapazham; Palanivel, Rajendran Iterative roots of continuous functions and Hyers-Ulam stability. (English) Zbl 07310556 Aequationes Math. 95, No. 1, 107-124 (2021). MSC: 39B12 39A30 26A18 26A48 65H04 PDF BibTeX XML Cite \textit{V. Murugan} and \textit{R. Palanivel}, Aequationes Math. 95, No. 1, 107--124 (2021; Zbl 07310556) Full Text: DOI
Zhou, Yu; Zhang, Zihou; Liu, Chunyan Hyers-Ulam stability of bijective \(\varepsilon\)-isometries between Hausdorff metric spaces of compact convex subsets. (English) Zbl 07310550 Aequationes Math. 95, No. 1, 1-12 (2021). MSC: 46B04 41A65 46B20 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Aequationes Math. 95, No. 1, 1--12 (2021; Zbl 07310550) Full Text: DOI
Peppo, Catherine Asymptotic Hyers-Ulam stability or superstability by unilateral perturbations on the concavity side for generalized linear equations. (English) Zbl 07297366 J. Convex Anal. 28, No. 1, 143-156 (2021). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 39B62 26A51 PDF BibTeX XML Cite \textit{C. Peppo}, J. Convex Anal. 28, No. 1, 143--156 (2021; Zbl 07297366) Full Text: Link
Liu, Li; Dong, Qixiang; Li, Gang Exact solutions and Hyers-Ulam stability for fractional oscillation equations with pure delay. (English) Zbl 07281283 Appl. Math. Lett. 112, Article ID 106666, 7 p. (2021). MSC: 34K37 34K06 34K27 PDF BibTeX XML Cite \textit{L. Liu} et al., Appl. Math. Lett. 112, Article ID 106666, 7 p. (2021; Zbl 07281283) Full Text: DOI
Tomar, Shalini; Hooda, Navneet On stability of \(\alpha\)-radical reciprocal functional equation. (English) Zbl 07246096 Electron. J. Math. Analysis Appl. 9, No. 1, 293-301 (2021). MSC: 39B82 39B52 46H25 PDF BibTeX XML Cite \textit{S. Tomar} and \textit{N. Hooda}, Electron. J. Math. Analysis Appl. 9, No. 1, 293--301 (2021; Zbl 07246096) Full Text: Link
Buşe, Constantin; Lupulescu, Vasile; O’Regan, Donal Hyers-Ulam stability for equations with differences and differential equations with time-dependent and periodic coefficients. (English) Zbl 07316330 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2175-2188 (2020). MSC: 12H20 34D09 39B82 PDF BibTeX XML Cite \textit{C. Buşe} et al., Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2175--2188 (2020; Zbl 07316330) Full Text: DOI
Khan, Hasib; Tunc, Cemil; Khan, Aziz Stability results and existence theorems for nonlinear delay-fractional differential equations with \(\varphi_p^*\)-operator. (English) Zbl 07315111 J. Appl. Anal. Comput. 10, No. 2, 584-597 (2020). MSC: 34K37 34K10 34K27 47N20 PDF BibTeX XML Cite \textit{H. Khan} et al., J. Appl. Anal. Comput. 10, No. 2, 584--597 (2020; Zbl 07315111) Full Text: DOI
Maghsoudi, Mohammad; Bodaghi, Abasalt On the stability of multi \(m\)-Jensen mappings. (English) Zbl 07314442 Casp. J. Math. Sci. 9, No. 2, 199-209 (2020). MSC: 39B52 39B72 39B82 46B03 PDF BibTeX XML Cite \textit{M. Maghsoudi} and \textit{A. Bodaghi}, Casp. J. Math. Sci. 9, No. 2, 199--209 (2020; Zbl 07314442) Full Text: DOI
Anderson, Douglas R.; Jennissen, Andrew J.; Montplaisir, Cole J. Hyers-Ulam stability for a continuous atime scale with discrete uniform jumps. (English) Zbl 07312913 Int. J. Difference Equ. 15, No. 2, 259-279 (2020). MSC: 34N05 34A30 34D20 39A06 39A30 39A45 PDF BibTeX XML Cite \textit{D. R. Anderson} et al., Int. J. Difference Equ. 15, No. 2, 259--279 (2020; Zbl 07312913) Full Text: Link
Reinfelds, Andrejs; Christian, Shraddha Hyers-Ulam stability of Volterra type integral equations on time scales. (English) Zbl 07312891 Adv. Dyn. Syst. Appl. 15, No. 1, 39-48 (2020). MSC: 45D05 45G10 34N05 PDF BibTeX XML Cite \textit{A. Reinfelds} and \textit{S. Christian}, Adv. Dyn. Syst. Appl. 15, No. 1, 39--48 (2020; Zbl 07312891) Full Text: Link
Govindan, Vediyappan; Lee, Jung-Rye; Pinelas, Sandra; Noorsaba, Abdul Rahim; Balasubramanian, Ganapathy Solution and stability of an \(n\)-variable additive functional equation. (English) Zbl 07312270 Korean J. Math. 28, No. 3, 613-621 (2020). MSC: 39B52 46H25 PDF BibTeX XML Cite \textit{V. Govindan} et al., Korean J. Math. 28, No. 3, 613--621 (2020; Zbl 07312270) Full Text: DOI
Aruldass, Antony Raj; Pachaiyappan, Divyakumari; Lee, Jung-Rye Duotrigintic functional equation and its stability in Banach spaces. (English) Zbl 07312264 Korean J. Math. 28, No. 3, 525-537 (2020). MSC: 39B52 PDF BibTeX XML Cite \textit{A. R. Aruldass} et al., Korean J. Math. 28, No. 3, 525--537 (2020; Zbl 07312264) Full Text: DOI
Kheiryan, Alireza; Rezapour, Shahram On Hyers-Ulam stability of two singular fractional integro-differential equations. (English) Zbl 07303977 J. Adv. Math. Stud. 13, No. 3, 339-349 (2020). MSC: 45 PDF BibTeX XML Cite \textit{A. Kheiryan} and \textit{S. Rezapour}, J. Adv. Math. Stud. 13, No. 3, 339--349 (2020; Zbl 07303977) Full Text: Link
Villa-Morales, José Hyers-Ulam stability of a nonautonomous semilinear equation with fractional diffusion. (English) Zbl 07299079 Demonstr. Math. 53, 269-276 (2020). MSC: 35R11 35K58 35B20 35B35 45H05 47H10 PDF BibTeX XML Cite \textit{J. Villa-Morales}, Demonstr. Math. 53, 269--276 (2020; Zbl 07299079) Full Text: DOI
Wang, Chun; Xu, Tianzhou Hyers-Ulam-Rassias stability of a mixed type cubic-quartic functional equation in 2-Banach spaces. (Chinese. English summary) Zbl 07294865 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 352-368 (2020). MSC: 39B82 39B72 39B52 PDF BibTeX XML Cite \textit{C. Wang} and \textit{T. Xu}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 352--368 (2020; Zbl 07294865)
Govindan, Vediyappan; Park, Choonkil; Pinelas, Sandra; Rassias, Themistocles M. Hyers-Ulam stability of an additive-quadratic functional equation. (English) Zbl 07289316 Cubo 22, No. 2, 233-255 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{V. Govindan} et al., Cubo 22, No. 2, 233--255 (2020; Zbl 07289316) Full Text: DOI
Park, Choonkil; Jin, Yuanfeng; Shin, Dong Yun; Zhang, Xiaohong; Govindan, Vediyappan Permuting triderivations and permuting trihomomorphisms in Banach algebras. (English) Zbl 1452.39006 Rocky Mt. J. Math. 50, No. 5, 1793-1806 (2020). MSC: 39B52 39B62 39B82 46L57 47B47 17A40 PDF BibTeX XML Cite \textit{C. Park} et al., Rocky Mt. J. Math. 50, No. 5, 1793--1806 (2020; Zbl 1452.39006) Full Text: DOI Euclid
Pinelas, Sandra; Govindan, V.; Tamilvanan, K.; Baskaran, S. Intuitionistic fuzzy stability of an finite dimensional cubic functional equation. (English) Zbl 1453.39023 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer. Springer Proc. Math. Stat. 333, 713-731 (2020). MSC: 39B82 54A40 PDF BibTeX XML Cite \textit{S. Pinelas} et al., Springer Proc. Math. Stat. 333, 713--731 (2020; Zbl 1453.39023) Full Text: DOI
Reinfelds, Andrejs; Christian, Shraddha Hyers-Ulam stability of a nonlinear Volterra integral equation on time scales. (English) Zbl 07271996 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer (ISBN 978-3-030-56322-6/hbk; 978-3-030-56323-3/ebook). Springer Proceedings in Mathematics & Statistics 333, 123-131 (2020). MSC: 45 39B82 PDF BibTeX XML Cite \textit{A. Reinfelds} and \textit{S. Christian}, in: Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1--5, 2019. Cham: Springer. 123--131 (2020; Zbl 07271996) Full Text: DOI
Zada, Akbar; Pervaiz, Bakhtawar; Alzabut, Jehad; Shah, Syed Omar Further results on Ulam stability for a system of first-order nonsingular delay differential equations. (English) Zbl 07271201 Demonstr. Math. 53, 225-235 (2020). MSC: 34K27 34K20 PDF BibTeX XML Cite \textit{A. Zada} et al., Demonstr. Math. 53, 225--235 (2020; Zbl 07271201) Full Text: DOI
Anderson, Douglas R.; Onitsuka, Masakazu Hyers-Ulam stability and best constant for Cayley \(h\)-difference equations. (English) Zbl 07270615 Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4207-4222 (2020). MSC: 39A30 39A13 39B82 PDF BibTeX XML Cite \textit{D. R. Anderson} and \textit{M. Onitsuka}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4207--4222 (2020; Zbl 07270615) Full Text: DOI
Falihi, S.; Bodaghi, A.; Shojaee, B. A characterization of multi-mixed additive-quadratic mappings and a fixed point application. (English) Zbl 1451.39025 J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 4, 235-247 (2020) and Izv. Nats. Akad. Nauk Armen., Mat. 55, No. 4, 31-46 (2020). MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{S. Falihi} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 4, 235--247 (2020; Zbl 1451.39025) Full Text: DOI
Yang, Yue; Meng, Fanwei Hyers-Ulam stability of linear differential equations. (Chinese. English summary) Zbl 07266977 J. Qufu Norm. Univ., Nat. Sci. 46, No. 2, 15-18 (2020). MSC: 34K20 34K06 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{F. Meng}, J. Qufu Norm. Univ., Nat. Sci. 46, No. 2, 15--18 (2020; Zbl 07266977) Full Text: DOI
Anderson, Douglas R.; Onitsuka, Masakazu; Rassias, John Michael Best constant for Ulam stability of first-order \(h\)-difference equations with periodic coefficient. (English) Zbl 1451.39014 J. Math. Anal. Appl. 491, No. 2, Article ID 124363, 14 p. (2020). MSC: 39A30 39B82 PDF BibTeX XML Cite \textit{D. R. Anderson} et al., J. Math. Anal. Appl. 491, No. 2, Article ID 124363, 14 p. (2020; Zbl 1451.39014) Full Text: DOI
Khan, Hasib; Tunc, Cemil; Khan, Aziz Green function’s properties and existence theorems for nonlinear singular-delay-fractional differential equations. (English) Zbl 07264123 Discrete Contin. Dyn. Syst., Ser. S 13, No. 9, 2475-2487 (2020). Reviewer: Rodica Luca (Iaşi) MSC: 34A08 34B10 34B16 34B18 PDF BibTeX XML Cite \textit{H. Khan} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 9, 2475--2487 (2020; Zbl 07264123) Full Text: DOI
Bodaghi, Abasalt; Pinelas, Sandra; Vediyappan, Govindan; Gunesekaran, Kokila An \(n\)-dimensional cubic functional equation and its Hyers-Ulam stability. (English) Zbl 1450.39011 J. Anal. 28, No. 3, 663-682 (2020). MSC: 39B52 39B72 39B82 54A40 PDF BibTeX XML Cite \textit{A. Bodaghi} et al., J. Anal. 28, No. 3, 663--682 (2020; Zbl 1450.39011) Full Text: DOI
Başcı, Yasemin; Öğrekçi, Süleyman; Mısır, Adil On Ulam’s type stability criteria for fractional integral equations including Hadamard type singular kernel. (English) Zbl 07259237 Turk. J. Math. 44, No. 4, 1498-1509 (2020). MSC: 45M10 34A08 26A33 PDF BibTeX XML Cite \textit{Y. Başcı} et al., Turk. J. Math. 44, No. 4, 1498--1509 (2020; Zbl 07259237) Full Text: DOI
Lee, Yang-Hi; Jung, Soon-Mo Generalized Hyers-Ulam stability of some cubic-quadratic-additive type functional equations. (English) Zbl 1450.39018 Kyungpook Math. J. 60, No. 1, 133-144 (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, Kyungpook Math. J. 60, No. 1, 133--144 (2020; Zbl 1450.39018) Full Text: DOI
Ramdoss, Murali; Pachaiyappan, Divyakumari; Dutta, Hemen Euler-Lagrange radical functional equations with solution and stability. (English) Zbl 07254904 Miskolc Math. Notes 21, No. 1, 351-365 (2020). MSC: 39B52 39B72 39B82 46B03 PDF BibTeX XML Cite \textit{M. Ramdoss} et al., Miskolc Math. Notes 21, No. 1, 351--365 (2020; Zbl 07254904) Full Text: DOI
Haddadi, M. Ternary quadratic Pompeiu on ternary Banach algebras. (English) Zbl 1452.39009 Math. Sci., Springer 14, No. 2, 121-128 (2020). MSC: 39B72 39B82 46H05 PDF BibTeX XML Cite \textit{M. Haddadi}, Math. Sci., Springer 14, No. 2, 121--128 (2020; Zbl 1452.39009) Full Text: DOI
Ramzanpour, Elahe; Bodaghi, Abasalt; Gilani, Alireza Stability and hyperstability of multi-additive-cubic mappings in intuitionistic fuzzy normed spaces. (English) Zbl 1448.39048 Honam Math. J. 42, No. 2, 391-409 (2020). MSC: 39B82 39B52 39B72 47H10 54A40 PDF BibTeX XML Cite \textit{E. Ramzanpour} et al., Honam Math. J. 42, No. 2, 391--409 (2020; Zbl 1448.39048) Full Text: DOI
Paokanta, Siriluk; Shin, Dong Yun Quadratic \((\rho_1,\rho_2)\)-functional equation in fuzzy Banach spaces. (English) Zbl 1450.39013 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 27, No. 1, 25-33 (2020). MSC: 39B52 46S40 47H10 39B62 26E50 47S40 PDF BibTeX XML Cite \textit{S. Paokanta} and \textit{D. Y. Shin}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 27, No. 1, 25--33 (2020; Zbl 1450.39013)
Benzarouala, Chaimaa; Oubbi, Lahbib Ulam-stability of a generalized linear functional equation, a fixed point approach. (English) Zbl 1448.39045 Aequationes Math. 94, No. 5, 989-1000 (2020). MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{C. Benzarouala} and \textit{L. Oubbi}, Aequationes Math. 94, No. 5, 989--1000 (2020; Zbl 1448.39045) Full Text: DOI
Lee, Yang-Hi; Jung, Soon-Mo Stability of some cubic-additive functional equations. (English) Zbl 1447.39021 Nonlinear Funct. Anal. Appl. 25, No. 1, 35-54 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, Nonlinear Funct. Anal. Appl. 25, No. 1, 35--54 (2020; Zbl 1447.39021) Full Text: Link
Wang, Zhihua Approximate quadratic functional inequality in \(\beta\)-homogeneous normed spaces. (English) Zbl 1449.39031 J. Math. Res. Appl. 40, No. 1, 26-32 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Z. Wang}, J. Math. Res. Appl. 40, No. 1, 26--32 (2020; Zbl 1449.39031) Full Text: DOI
Liu, Jianhua; Meng, Qing On the stability of \( (\alpha, \beta)\)-derivations in cone Banach spaces. (English) Zbl 1449.39029 Acta Sci. Nat. Univ. Nankaiensis 53, No. 1, 41-47 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{J. Liu} and \textit{Q. Meng}, Acta Sci. Nat. Univ. Nankaiensis 53, No. 1, 41--47 (2020; Zbl 1449.39029)
Sokolowski, Dariusz Stability of \(n\)-th order Flett’s and Sahoo-Riedel’s points. (English) Zbl 1445.39021 Real Anal. Exch. 45, No. 2, 401-410 (2020). MSC: 39B82 26A24 26A06 PDF BibTeX XML Cite \textit{D. Sokolowski}, Real Anal. Exch. 45, No. 2, 401--410 (2020; Zbl 1445.39021) Full Text: DOI Euclid
Noori, B.; Moghimi, M. B.; Khosravi, B.; Park, Choonkil Stability of some functional equations on bounded domains. (English) Zbl 1445.39020 J. Math. Inequal. 14, No. 2, 455-472 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{B. Noori} et al., J. Math. Inequal. 14, No. 2, 455--472 (2020; Zbl 1445.39020) Full Text: DOI
Hwang, Inho; Park, Choonkil Ulam stability of an additive-quadratic functional equation in Banach spaces. (English) Zbl 1445.39019 J. Math. Inequal. 14, No. 2, 421-436 (2020). MSC: 39B82 39B52 47H10 39B62 PDF BibTeX XML Cite \textit{I. Hwang} and \textit{C. Park}, J. Math. Inequal. 14, No. 2, 421--436 (2020; Zbl 1445.39019) Full Text: DOI
Vestfrid, Igor A. Non-surjective coarse version of the Banach-Stone theorem. (English) Zbl 07222416 Ann. Funct. Anal. 11, No. 3, 634-642 (2020). MSC: 46B04 46B25 46E15 41A65 PDF BibTeX XML Cite \textit{I. A. Vestfrid}, Ann. Funct. Anal. 11, No. 3, 634--642 (2020; Zbl 07222416) Full Text: DOI
Kaskasem, P.; Klin-eam, C. Approximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in \(C^*\)-ternary algebras. (English) Zbl 1442.39030 J. Linear Topol. Algebra 9, No. 1, 1-15 (2020). MSC: 39B52 39B82 47H10 PDF BibTeX XML Cite \textit{P. Kaskasem} and \textit{C. Klin-eam}, J. Linear Topol. Algebra 9, No. 1, 1--15 (2020; Zbl 1442.39030) Full Text: Link
Liu, Kui; Wang, JinRong; Zhou, Yong; O’Regan, Donal Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel. (English) Zbl 1434.34014 Chaos Solitons Fractals 132, Article ID 109534, 8 p. (2020). MSC: 34A08 34D20 34A12 PDF BibTeX XML Cite \textit{K. Liu} et al., Chaos Solitons Fractals 132, Article ID 109534, 8 p. (2020; Zbl 1434.34014) Full Text: DOI
Brzdęk, Janusz; El-hady, El-sayed; Schwaiger, Jens Investigations on the Hyers-Ulam stability of generalized radical functional equations. (English) Zbl 1441.39029 Aequationes Math. 94, No. 3, 575-593 (2020). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{J. Brzdęk} et al., Aequationes Math. 94, No. 3, 575--593 (2020; Zbl 1441.39029) Full Text: DOI
EL-Fassi, Iz-iddine; Kabbaj, Samir; Chahbi, Abdellatif Measure zero stability problem of a generalized quadratic functional equation. (English) Zbl 1440.39018 São Paulo J. Math. Sci. 14, No. 1, 301-311 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{I.-i. EL-Fassi} et al., São Paulo J. Math. Sci. 14, No. 1, 301--311 (2020; Zbl 1440.39018) Full Text: DOI
Kim, Hark-Mahn; Park, Jin-Seok; Shin, Hwan-Yong Approximation of quadratic Lie \(*\)-derivations on \(\rho\)-complete convex modular algebras. (English) Zbl 1434.17020 J. Math. Inequal. 14, No. 1, 121-134 (2020). MSC: 17B40 16W25 39B82 PDF BibTeX XML Cite \textit{H.-M. Kim} et al., J. Math. Inequal. 14, No. 1, 121--134 (2020; Zbl 1434.17020) Full Text: DOI
Saifia, O.; Boucenna, D.; Chidouh, A. Study of Mainardi’s fractional heat problem. (English) Zbl 1442.35522 J. Comput. Appl. Math. 378, Article ID 112943, 8 p. (2020). MSC: 35R11 80A19 44A10 PDF BibTeX XML Cite \textit{O. Saifia} et al., J. Comput. Appl. Math. 378, Article ID 112943, 8 p. (2020; Zbl 1442.35522) Full Text: DOI
Kim, Gwang Hui; Lee, Yang-Hi Stability of an additive-quadratic-quartic functional equation. (English) Zbl 1436.39021 Demonstr. Math. 53, 1-7 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{G. H. Kim} and \textit{Y.-H. Lee}, Demonstr. Math. 53, 1--7 (2020; Zbl 1436.39021) Full Text: DOI
Gupta, Anuradha; Rohilla, Manu On coupled best proximity points and Ulam-Hyers stability. (English) Zbl 1447.47045 J. Fixed Point Theory Appl. 22, No. 2, Paper No. 28, 21 p. (2020). Reviewer: Jarosław Górnicki (Rzeszów) MSC: 47H10 47H09 41A65 47J20 PDF BibTeX XML Cite \textit{A. Gupta} and \textit{M. Rohilla}, J. Fixed Point Theory Appl. 22, No. 2, Paper No. 28, 21 p. (2020; Zbl 1447.47045) Full Text: DOI
Park, Choonkil; Paokanta, Siriluk; Suparatulatorn, Raweerote Ulam stability of bihomomorphisms and biderivations in Banach algebras. (English) Zbl 1439.39013 J. Fixed Point Theory Appl. 22, No. 2, Paper No. 27, 18 p. (2020). Reviewer: Maryam Amyari (Mashhad) MSC: 39B52 39B82 39B62 46L05 47B47 47H10 46L57 PDF BibTeX XML Cite \textit{C. Park} et al., J. Fixed Point Theory Appl. 22, No. 2, Paper No. 27, 18 p. (2020; Zbl 1439.39013) Full Text: DOI
Jang, Sun Young; Saadati, Reza Approximation of an additive \(\left(\varrho_1, \varrho_2\right)\)-random operator inequality. (English) Zbl 1435.39005 J. Funct. Spaces 2020, Article ID 7540303, 5 p. (2020). Reviewer: Choonkil Park (Seoul) MSC: 39B62 39B52 39B82 47S50 PDF BibTeX XML Cite \textit{S. Y. Jang} and \textit{R. Saadati}, J. Funct. Spaces 2020, Article ID 7540303, 5 p. (2020; Zbl 1435.39005) Full Text: DOI
Sharma, Ajay K.; Sharma, Aakriti Boundedness, compactness and the Hyers-Ulam stability of a linear combination of differential operators. (English) Zbl 1441.47042 Complex Anal. Oper. Theory 14, No. 1, Paper No. 14, 12 p. (2020). Reviewer: Vagia Vlachou (Rio) MSC: 47B37 47E05 46E20 39B82 PDF BibTeX XML Cite \textit{A. K. Sharma} and \textit{A. Sharma}, Complex Anal. Oper. Theory 14, No. 1, Paper No. 14, 12 p. (2020; Zbl 1441.47042) Full Text: DOI
Choi, Chang-Kwon; Lee, Bogeun Stability of mixed additive-quadratic and additive-Drygas functional equations. (English) Zbl 1434.39024 Result. Math. 75, No. 1, Paper No. 38, 14 p. (2020). Reviewer: Maryam Amyari (Mashhad) MSC: 39B82 39B52 54E52 PDF BibTeX XML Cite \textit{C.-K. Choi} and \textit{B. Lee}, Result. Math. 75, No. 1, Paper No. 38, 14 p. (2020; Zbl 1434.39024) Full Text: DOI
Başcı, Yasemin; Mısır, Adil; Öğrekçi, Süleyman On the stability problem of differential equations in the sense of Ulam. (English) Zbl 1439.34061 Result. Math. 75, No. 1, Paper No. 6, 13 p. (2020). MSC: 34D10 47N20 PDF BibTeX XML Cite \textit{Y. Başcı} et al., Result. Math. 75, No. 1, Paper No. 6, 13 p. (2020; Zbl 1439.34061) Full Text: DOI
Salimi, Somaye; Bodaghi, Abasalt A fixed point application for the stability and hyperstability of multi-Jensen-quadratic mappings. (English) Zbl 1430.39012 J. Fixed Point Theory Appl. 22, No. 1, Paper No. 9, 15 p. (2020). Reviewer: Ghadir Sadeghi (Sabzevār) MSC: 39B82 39B52 39B72 PDF BibTeX XML Cite \textit{S. Salimi} and \textit{A. Bodaghi}, J. Fixed Point Theory Appl. 22, No. 1, Paper No. 9, 15 p. (2020; Zbl 1430.39012) Full Text: DOI
Hwang, Inho; Park, Choonkil Fixed points and partial multipliers in Banach algebras. (English) Zbl 1432.39018 J. Fixed Point Theory Appl. 22, No. 1, Paper No. 15, 23 p. (2020). MSC: 39B52 46L05 47H10 39B62 43A22 39B82 PDF BibTeX XML Cite \textit{I. Hwang} and \textit{C. Park}, J. Fixed Point Theory Appl. 22, No. 1, Paper No. 15, 23 p. (2020; Zbl 1432.39018) Full Text: DOI
Fukutaka, Ryuma; Onitsuka, Masakazu A necessary and sufficient condition for Hyers-Ulam stability of first-order periodic linear differential equations. (English) Zbl 1429.34024 Appl. Math. Lett. 100, Article ID 106040, 7 p. (2020). MSC: 34A30 37C60 34D10 PDF BibTeX XML Cite \textit{R. Fukutaka} and \textit{M. Onitsuka}, Appl. Math. Lett. 100, Article ID 106040, 7 p. (2020; Zbl 1429.34024) Full Text: DOI
Kalvandi, Vida; Eghbali, Nasrin; Rassias, John Michael Mittag-Leffler-Hyers-Ulam stability of linear differential equations of second order. (English) Zbl 07314081 J. Math. Ext. 13, No. 1, 29-43 (2019). MSC: 34A08 34D10 34A30 PDF BibTeX XML Cite \textit{V. Kalvandi} et al., J. Math. Ext. 13, No. 1, 29--43 (2019; Zbl 07314081) Full Text: Link
Khan, Hasib; Jarad, Fahd; Abdeljawad, Thabet; Khan, Aziz A singular ABC-fractional differential equation with \(p\)-Laplacian operator. (English) Zbl 1448.34047 Chaos Solitons Fractals 129, 56-61 (2019). MSC: 34B10 34A08 34K37 PDF BibTeX XML Cite \textit{H. Khan} et al., Chaos Solitons Fractals 129, 56--61 (2019; Zbl 1448.34047) Full Text: DOI
Palaniappan, Muniyappan; Subbarayan, Rajan Stability of a class of fractional integro-differential equation. (English) Zbl 07262290 Fixed Point Theory 20, No. 2, 591-600 (2019). MSC: 45J05 47H10 34K10 PDF BibTeX XML Cite \textit{M. Palaniappan} and \textit{R. Subbarayan}, Fixed Point Theory 20, No. 2, 591--600 (2019; Zbl 07262290) Full Text: Link
Park, Choonkil; Yun, Sungsik; Lee, Jung Rye; Shin, Dong Yun Set-valued additive functional equations. (English) Zbl 07251269 Constr. Math. Anal. 2, No. 2, 89-97 (2019). MSC: 47H10 54C60 39B52 47H04 PDF BibTeX XML Cite \textit{C. Park} et al., Constr. Math. Anal. 2, No. 2, 89--97 (2019; Zbl 07251269) Full Text: DOI
Anderson, Douglas R. Hyers-Ulam stability for a first-order linear proportional nabla difference operator. (English) Zbl 07245452 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer (ISBN 978-3-030-28949-2/hbk; 978-3-030-28950-8/ebook). 255-272 (2019). MSC: 39B82 39A70 39A30 PDF BibTeX XML Cite \textit{D. R. Anderson}, in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 255--272 (2019; Zbl 07245452) Full Text: DOI
Anderson, Douglas R.; Onitsuka, Masakazu Hyers-Ulam stability of a discrete diamond-alpha derivative equation. (English) Zbl 1448.39033 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 237-254 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39A70 39B82 39B22 39A30 PDF BibTeX XML Cite \textit{D. R. Anderson} and \textit{M. Onitsuka}, in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 237--254 (2019; Zbl 1448.39033) Full Text: DOI
Ramdoss, Murali; Arumugam, Ponmana Selvan Fourier transforms and Ulam stabilities of linear differential equations. (English) Zbl 1451.34075 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 195-217 (2019). MSC: 34D10 42A38 PDF BibTeX XML Cite \textit{M. Ramdoss} and \textit{P. S. Arumugam}, in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 195--217 (2019; Zbl 1451.34075) Full Text: DOI
Nuino, Ahmed; Almahalebi, Muaadh; Charifi, Ahmed Measure zero stability problem for Drygas functional equation with complex involution. (English) Zbl 07245448 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer (ISBN 978-3-030-28949-2/hbk; 978-3-030-28950-8/ebook). 183-193 (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{A. Nuino} et al., in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 183--193 (2019; Zbl 07245448) Full Text: DOI
Pinelas, Sandra; Govindan, V.; Tamilvanan, K. Stability of an \(n\)-dimensional functional equation in Banach space and fuzzy normed space. (English) Zbl 1452.39007 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 159-181 (2019). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B52 39B82 54A40 PDF BibTeX XML Cite \textit{S. Pinelas} et al., in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 159--181 (2019; Zbl 1452.39007) Full Text: DOI
Tamilvanan, S.; Thandapani, E.; Rassias, J. M. Hyers-Ulam stability of first order differential equation via integral inequality. (English) Zbl 07245446 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer (ISBN 978-3-030-28949-2/hbk; 978-3-030-28950-8/ebook). 153-158 (2019). MSC: 34D10 26D10 PDF BibTeX XML Cite \textit{S. Tamilvanan} et al., in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 153--158 (2019; Zbl 07245446) Full Text: DOI
Ramdoss, Murali; Aruldass, Antony Raj General solution and Hyers-Ulam stability of duotrigintic functional equation in multi-Banach spaces. (English) Zbl 07245444 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer (ISBN 978-3-030-28949-2/hbk; 978-3-030-28950-8/ebook). 125-141 (2019). Reviewer: Stefan Czerwik (Gliwice) MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{M. Ramdoss} and \textit{A. R. Aruldass}, in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 125--141 (2019; Zbl 07245444) Full Text: DOI
Shah, Kamal; Gul, Zamin; Li, Yongjin; Khan, Rahmat Ali Hyers-Ulam’s stability results to a three-point boundary value problem of nonlinear fractional order differential equations. (English) Zbl 1451.34015 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 45-71 (2019). MSC: 34A08 34B10 34D10 47N20 PDF BibTeX XML Cite \textit{K. Shah} et al., in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 45--71 (2019; Zbl 1451.34015) Full Text: DOI
Lee, Jung Rye; Park, Choonkil; Rassias, Themistocles M. Bi-additive s-functional inequalities and quasi-\(\ast\)-multipliers on Banach \(\ast\)-algebras. (English) Zbl 07245312 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer (ISBN 978-3-030-28971-3/hbk; 978-3-030-28972-0/ebook). 199-215 (2019). MSC: 39B62 39B52 39B55 PDF BibTeX XML Cite \textit{J. R. Lee} et al., in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 199--215 (2019; Zbl 07245312) Full Text: DOI
Belfakih, Keltouma; Elqorachi, Elhoucien; Rassias, Themistocles M. Solutions and stability of some functional equations on semigroups. (English) Zbl 1447.39017 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer. 167-198 (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{K. Belfakih} et al., in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 167--198 (2019; Zbl 1447.39017) Full Text: DOI
Găvruţa, Paşc; Manolescu, Laura Approximation by cubic mappings. (English) Zbl 1447.39015 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer. 153-165 (2019). Reviewer: Mohammad Sajid (Buraidah) MSC: 39B52 39B82 39B12 PDF BibTeX XML Cite \textit{P. Găvruţa} and \textit{L. Manolescu}, in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 153--165 (2019; Zbl 1447.39015) Full Text: DOI
Benzarouala, Chaimaa; Oubbi, Lahbib A purely fixed point approach to the Ulam-Hyers stability and hyperstability of a general functional equation. (English) Zbl 1448.39044 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer. 47-56 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 47H10 47H14 PDF BibTeX XML Cite \textit{C. Benzarouala} and \textit{L. Oubbi}, in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 47--56 (2019; Zbl 1448.39044) Full Text: DOI
Şahin, Aynur; Arısoy, Hakan; Kalkan, Zeynep On the stability of two functional equations arising in mathematical biology and theory of learning. (English) Zbl 07238289 Creat. Math. Inform. 28, No. 1, 91-95 (2019). MSC: 34K20 39B05 47H10 PDF BibTeX XML Cite \textit{A. Şahin} et al., Creat. Math. Inform. 28, No. 1, 91--95 (2019; Zbl 07238289)
Murali, R.; Selvan, A. Hyers-Ulam stability of \(n\)th order linear differential equation. (English) Zbl 1448.34114 Proyecciones 38, No. 3, 553-566 (2019). Reviewer: Olusola Akinyele (Bowie) MSC: 34D10 34B15 34A30 PDF BibTeX XML Cite \textit{R. Murali} and \textit{A. Selvan}, Proyecciones 38, No. 3, 553--566 (2019; Zbl 1448.34114) Full Text: DOI
Saha, P.; Samanta, T.; Mondal, P.; Choudhury, B. Stability of two variable pexiderized quadratic functional equation in intuitionistic fuzzy Banach spaces. (English) Zbl 1450.39019 Proyecciones 38, No. 3, 447-467 (2019). MSC: 39B82 39B52 46S40 PDF BibTeX XML Cite \textit{P. Saha} et al., Proyecciones 38, No. 3, 447--467 (2019; Zbl 1450.39019) Full Text: DOI
Kucche, K. D.; Shikhare, P. U. Ulam stabilities for nonlinear Volterra delay integro-differential equations. (English) Zbl 1443.45009 J. Contemp. Math. Anal., Armen. Acad. Sci. 54, No. 5, 276-287 (2019) and Izv. Nats. Akad. Nauk Armen., Mat. 2019, No. 5, 27-43 (2019). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 45J05 45M10 34K20 35A23 PDF BibTeX XML Cite \textit{K. D. Kucche} and \textit{P. U. Shikhare}, J. Contemp. Math. Anal., Armen. Acad. Sci. 54, No. 5, 276--287 (2019; Zbl 1443.45009) Full Text: DOI
Park, Won-Gil; Bae, Jae-Hyeong Hyers-Ulam stability of quadratic forms in 2-normed spaces. (English) Zbl 1436.39018 Demonstr. Math. 52, 496-502 (2019). MSC: 39B52 39B72 39B82 PDF BibTeX XML Cite \textit{W.-G. Park} and \textit{J.-H. Bae}, Demonstr. Math. 52, 496--502 (2019; Zbl 1436.39018) Full Text: DOI
Lee, Yang-Hi; Kim, Gwang Hui Generalized Hyers-Ulam stability of the additive functional equation. (English) Zbl 1432.39024 Axioms 8, No. 2, Paper No. 76, 11 p. (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{G. H. Kim}, Axioms 8, No. 2, Paper No. 76, 11 p. (2019; Zbl 1432.39024) Full Text: DOI
Kumar, B. V. Senthil; Rassias, J. M.; Sabarinathan, S. Stabilities of various multiplicative inverse functional equations. (English) Zbl 1437.39012 Tbil. Math. J. 12, No. 4, 15-28 (2019). Reviewer: Choonkil Park (Seoul) MSC: 39B82 39B52 39B72 PDF BibTeX XML Cite \textit{B. V. S. Kumar} et al., Tbil. Math. J. 12, No. 4, 15--28 (2019; Zbl 1437.39012) Full Text: DOI Euclid
Sun, Wenlong; Jin, Yuanfeng; Park, Choonkil; Lu, Gang 3-variable double \(\rho \)-functional inequalities of drygas. (English) Zbl 1434.39023 J. Math. Inequal. 13, No. 4, 1235-1244 (2019). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 39B62 39B72 39B52 46B25 PDF BibTeX XML Cite \textit{W. Sun} et al., J. Math. Inequal. 13, No. 4, 1235--1244 (2019; Zbl 1434.39023) Full Text: DOI
Paokanta, Siriluk; Lee, Jung Rye A fixed point approach to the stability of 3-Lie homomorphisms and 3-Lie derivations. (English) Zbl 1431.39012 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 4, 305-313 (2019). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 39B52 47H10 39B82 PDF BibTeX XML Cite \textit{S. Paokanta} and \textit{J. R. Lee}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 4, 305--313 (2019; Zbl 1431.39012) Full Text: DOI
Lee, Yang-Hi On the Hyers-Ulam-Rassias stability of an additive-cubic-quartic functional equation. (English) Zbl 1434.39025 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 4, 247-254 (2019). Reviewer: Ghadir Sadeghi (Sabzevār) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 4, 247--254 (2019; Zbl 1434.39025) Full Text: DOI
Wang, Zhihua Stability of a quintic functional equation in matrix paranormed spaces. (English) Zbl 1449.39030 J. Shanghai Norm. Univ., Nat. Sci. 48, No. 3, 231-241 (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Z. Wang}, J. Shanghai Norm. Univ., Nat. Sci. 48, No. 3, 231--241 (2019; Zbl 1449.39030) Full Text: DOI
Maghsoudi, Mohammad; Bodaghi, Abasalt; Motlagh, Abolfazl Niazi; Karami, Majid Almost additive-quadratic-cubic mappings in modular spaces. (English) Zbl 1428.39030 Rev. Unión Mat. Argent. 60, No. 2, 359-379 (2019). MSC: 39B52 39B72 39B82 47H09 PDF BibTeX XML Cite \textit{M. Maghsoudi} et al., Rev. Unión Mat. Argent. 60, No. 2, 359--379 (2019; Zbl 1428.39030)
Shah, Syed Omar; Zada, Akbar; Hamza, Alaa E. Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time scales. (English) Zbl 1432.34116 Qual. Theory Dyn. Syst. 18, No. 3, 825-840 (2019). MSC: 34N05 34K45 34K27 47N20 PDF BibTeX XML Cite \textit{S. O. Shah} et al., Qual. Theory Dyn. Syst. 18, No. 3, 825--840 (2019; Zbl 1432.34116) Full Text: DOI
Park, Choonkil Symmetric biderivations on Banach algebras. (English) Zbl 1428.39031 Indian J. Pure Appl. Math. 50, No. 2, 413-426 (2019). MSC: 39B52 39B82 46L57 PDF BibTeX XML Cite \textit{C. Park}, Indian J. Pure Appl. Math. 50, No. 2, 413--426 (2019; Zbl 1428.39031) Full Text: DOI
Kouachi, S.; Guezane-Lakoud, A. Existence theory and Hyers-Ulam stability for a couple system of fractional differential equations. (English) Zbl 1438.34039 Surv. Math. Appl. 14, 203-217 (2019). MSC: 34A08 34D10 47N20 PDF BibTeX XML Cite \textit{S. Kouachi} and \textit{A. Guezane-Lakoud}, Surv. Math. Appl. 14, 203--217 (2019; Zbl 1438.34039) Full Text: EMIS
Shah, Syed Omar; Zada, Akbar Existence, uniqueness and stability of solution to mixed integral dynamic systems with instantaneous and noninstantaneous impulses on time scales. (English) Zbl 1428.34141 Appl. Math. Comput. 359, 202-213 (2019). MSC: 34N05 34K05 39B82 45J05 PDF BibTeX XML Cite \textit{S. O. Shah} and \textit{A. Zada}, Appl. Math. Comput. 359, 202--213 (2019; Zbl 1428.34141) Full Text: DOI
Nam, Young Woo Hyers-Ulam stability of loxodromic Möbius difference equation. (English) Zbl 1429.39006 Appl. Math. Comput. 356, 119-136 (2019). MSC: 39A20 39A45 39B82 PDF BibTeX XML Cite \textit{Y. W. Nam}, Appl. Math. Comput. 356, 119--136 (2019; Zbl 1429.39006) Full Text: DOI
Zada, Akbar; Ali, Wajid; Park, Choonkil Ulam’s type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari’s type. (English) Zbl 1428.34087 Appl. Math. Comput. 350, 60-65 (2019). MSC: 34K05 39B82 34D10 PDF BibTeX XML Cite \textit{A. Zada} et al., Appl. Math. Comput. 350, 60--65 (2019; Zbl 1428.34087) Full Text: DOI
Anderson, Douglas R.; Onitsuka, Masakazu Hyers-Ulam stability for a discrete time scale with two step sizes. (English) Zbl 1428.34136 Appl. Math. Comput. 344-345, 128-140 (2019). MSC: 34N05 39A30 39B82 65Q10 PDF BibTeX XML Cite \textit{D. R. Anderson} and \textit{M. Onitsuka}, Appl. Math. Comput. 344--345, 128--140 (2019; Zbl 1428.34136) Full Text: DOI
El-hady, El-sayed On stability of the functional equation of \(p\)-Wright affine functions in \((2,\alpha)\)-Banach spaces. (English) Zbl 1425.39014 J. Egypt. Math. Soc. 27, Paper No. 21, 9 p. (2019). MSC: 39B52 39B82 47H10 PDF BibTeX XML Cite \textit{E.-s. El-hady}, J. Egypt. Math. Soc. 27, Paper No. 21, 9 p. (2019; Zbl 1425.39014) Full Text: DOI
Buşe, Constantin; O’Regan, Donal; Saierli, Olivia Hyers-Ulam stability for linear differences with time dependent and periodic coefficients. (English) Zbl 1425.39015 Symmetry 11, No. 4, Paper No. 512, 10 p. (2019). MSC: 39B82 PDF BibTeX XML Cite \textit{C. Buşe} et al., Symmetry 11, No. 4, Paper No. 512, 10 p. (2019; Zbl 1425.39015) Full Text: DOI
Park, Choonkil Additive \(s\)-functional inequalities and partial multipliers in Banach algebras. (English) Zbl 1426.39025 J. Math. Inequal. 13, No. 3, Article No. 13-60, 867-877 (2019). MSC: 39B52 46L05 39B62 43A22 39B82 PDF BibTeX XML Cite \textit{C. Park}, J. Math. Inequal. 13, No. 3, Article No. 13--60, 867--877 (2019; Zbl 1426.39025) Full Text: DOI
Omar, Ajebbar; Elhoucien, Elqorachi; Rassias, Themistocles M. The stability of a cosine-sine functional equation on abelian groups. (English) Zbl 1427.39017 Nonlinear Funct. Anal. Appl. 24, No. 3, 595-625 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B32 39B52 PDF BibTeX XML Cite \textit{A. Omar} et al., Nonlinear Funct. Anal. Appl. 24, No. 3, 595--625 (2019; Zbl 1427.39017) Full Text: Link arXiv
Kim, Hark-Mahn; Hong, Young Soon Additional stability results for quartic Lie \(\ast\)-derivations. (English) Zbl 1429.39018 Nonlinear Funct. Anal. Appl. 24, No. 3, 583-593 (2019). Reviewer: Maryam Amyari (Mashhad) MSC: 39B52 39B72 16W25 39B82 PDF BibTeX XML Cite \textit{H.-M. Kim} and \textit{Y. S. Hong}, Nonlinear Funct. Anal. Appl. 24, No. 3, 583--593 (2019; Zbl 1429.39018) Full Text: Link