Zhang, Jun; Su, Juan Bifurcations in a predator-prey model of Leslie-type with simplified Holling type IV functional response. (English) Zbl 07331770 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 4, Article ID 2150054, 17 p. (2021). MSC: 92D25 37N25 37G10 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{J. Su}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 4, Article ID 2150054, 17 p. (2021; Zbl 07331770) Full Text: DOI
Shi, Qingyan; Shi, Junping; Wang, Hao Spatial movement with distributed memory. (English) Zbl 07331654 J. Math. Biol. 82, No. 4, Paper No. 33, 32 p. (2021). MSC: 35 92B05 35B32 35K57 PDF BibTeX XML Cite \textit{Q. Shi} et al., J. Math. Biol. 82, No. 4, Paper No. 33, 32 p. (2021; Zbl 07331654) Full Text: DOI
Jiang, Jifa; Liang, Fengli; Wu, Wenxi; Huang, Shuo On the first Lyapunov coefficient formula of 3D Lotka-Volterra equations with applications to multiplicity of limit cycles. (On the first Liapunov coefficient formula of 3D Lotka-Volterra equations with applications to multiplicity of limit cycles.) (English) Zbl 07330800 J. Differ. Equations 284, 183-218 (2021). MSC: 92D25 37G15 PDF BibTeX XML Cite \textit{J. Jiang} et al., J. Differ. Equations 284, 183--218 (2021; Zbl 07330800) Full Text: DOI
Xing, Chao; Pan, Jiaojiao; Luo, Hong Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. (English) Zbl 07327288 Commun. Pure Appl. Anal. 20, No. 1, 427-448 (2021). MSC: 35B32 35B35 35K52 35K57 37L10 35Q92 PDF BibTeX XML Cite \textit{C. Xing} et al., Commun. Pure Appl. Anal. 20, No. 1, 427--448 (2021; Zbl 07327288) Full Text: DOI
Wang, Yujia; Fan, Dejun; Wei, Junjie Stability and bifurcation analysis in a predator-prey model with age structure and two delays. (English) Zbl 07321558 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 2, Article ID 2150024, 20 p. (2021). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q92 92D25 35B32 35R07 PDF BibTeX XML Cite \textit{Y. Wang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 2, Article ID 2150024, 20 p. (2021; Zbl 07321558) Full Text: DOI
Broer, Henk; Hanßmann, Heinz; Wagener, Florian Normal resonances in a double Hopf bifurcation. (English) Zbl 07298846 Indag. Math., New Ser. 32, No. 1, 33-54 (2021). Reviewer: Hao Wu (Nanjing) MSC: 37G05 37G15 37G35 37J20 37J40 PDF BibTeX XML Cite \textit{H. Broer} et al., Indag. Math., New Ser. 32, No. 1, 33--54 (2021; Zbl 07298846) Full Text: DOI
Jin, Zhucheng; Yuan, Rong Hopf bifurcation in a reaction-diffusion-advection equation with nonlocal delay effect. (English) Zbl 07283592 J. Differ. Equations 271, 533-562 (2021). Reviewer: Alois Steindl (Wien) MSC: 35B32 35K57 37N25 92-10 PDF BibTeX XML Cite \textit{Z. Jin} and \textit{R. Yuan}, J. Differ. Equations 271, 533--562 (2021; Zbl 07283592) Full Text: DOI
Erhardt, André H.; Solem, Susanne On complex dynamics in a Purkinje and a ventricular cardiac cell model. (English) Zbl 1454.37089 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105511, 21 p. (2021). MSC: 37N25 37G15 35Q92 65P30 92B05 PDF BibTeX XML Cite \textit{A. H. Erhardt} and \textit{S. Solem}, Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105511, 21 p. (2021; Zbl 1454.37089) Full Text: DOI
Chen, Shyan-Shiou Traveling wave solutions of diffusive Hindmarsh-Rose-type equations with recurrent neural feedback. (English) Zbl 1450.35105 J. Math. Anal. Appl. 493, No. 1, Article ID 124513, 18 p. (2021). MSC: 35C07 35B32 92C20 PDF BibTeX XML Cite \textit{S.-S. Chen}, J. Math. Anal. Appl. 493, No. 1, Article ID 124513, 18 p. (2021; Zbl 1450.35105) Full Text: DOI
Dai, Binxiang; Sun, Guangxun Turing-Hopf bifurcation of a delayed diffusive predator-prey system with chemotaxis and fear effect. (English) Zbl 1450.35045 Appl. Math. Lett. 111, Article ID 106644, 8 p. (2021). MSC: 35B32 35K57 35K51 92C17 92D25 PDF BibTeX XML Cite \textit{B. Dai} and \textit{G. Sun}, Appl. Math. Lett. 111, Article ID 106644, 8 p. (2021; Zbl 1450.35045) Full Text: DOI
Yang, Ruizhi; Ding, Yuting Spatiotemporal dynamics in a predator-prey model with a functional response increasing in both predator and prey densities. (English) Zbl 07331971 J. Appl. Anal. Comput. 10, No. 5, 1962-1979 (2020). MSC: 92D25 34K18 35B32 PDF BibTeX XML Cite \textit{R. Yang} and \textit{Y. Ding}, J. Appl. Anal. Comput. 10, No. 5, 1962--1979 (2020; Zbl 07331971) Full Text: DOI
Girardin, Léo Two components is too simple: an example of oscillatory Fisher-KPP system with three components. (English) Zbl 07316373 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3097-3120 (2020). MSC: 35K40 35K57 37G10 92D25 PDF BibTeX XML Cite \textit{L. Girardin}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3097--3120 (2020; Zbl 07316373) Full Text: DOI
Zhuang, Kejun; You, Wenqian; Jia, Gao Spatiotemporal complexity of a diffusive planktonic system with prey-taxis and toxic effects. (English) Zbl 1455.92128 J. Appl. Anal. Comput. 10, No. 2, 686-712 (2020). MSC: 92D25 35B32 35K51 35K57 35Q92 PDF BibTeX XML Cite \textit{K. Zhuang} et al., J. Appl. Anal. Comput. 10, No. 2, 686--712 (2020; Zbl 1455.92128) Full Text: DOI
Zeng, Bing; Yu, Pei Analysis of zero-Hopf bifurcation in two Rössler systems using normal form theory. (English) Zbl 07306769 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2030050, 14 p. (2020). Reviewer: Vladimir P. Kostov (Nice) MSC: 37G05 37G15 37G10 37C27 34C29 PDF BibTeX XML Cite \textit{B. Zeng} and \textit{P. Yu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2030050, 14 p. (2020; Zbl 07306769) Full Text: DOI
Shi, Qiushuang; Liu, Ming; Xu, Xiaofeng Turing-Hopf bifurcation of a predator-prey model with diffusion and Michaelis-Menten functional response. (Chinese. English summary) Zbl 07295523 J. Nat. Sci. Heilongjiang Univ. 37, No. 1, 52-60 (2020). MSC: 35B32 35K57 92D25 PDF BibTeX XML Cite \textit{Q. Shi} et al., J. Nat. Sci. Heilongjiang Univ. 37, No. 1, 52--60 (2020; Zbl 07295523) Full Text: DOI
Zuo, C. Y.; Cao, H. J. Extinction or coexistence of a predator-prey model with constant-yield harvesting. (English) Zbl 1453.92283 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 6, 375-396 (2020). MSC: 92D25 34C23 PDF BibTeX XML Cite \textit{C. Y. Zuo} and \textit{H. J. Cao}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 6, 375--396 (2020; Zbl 1453.92283) Full Text: Link
Zhang, Xiangming; Liu, Zhihua Periodic oscillations in HIV transmission model with intracellular time delay and infection-age structure. (English) Zbl 1454.35402 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105463, 19 p. (2020). MSC: 35Q92 92C60 92D30 92B15 62P10 35B32 35R07 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{Z. Liu}, Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105463, 19 p. (2020; Zbl 1454.35402) Full Text: DOI
Llibre, Jaume; Martínez, Y. Paulina; Valls, Claudia Limit cycles bifurcating of Kolmogorov systems in \(\mathbb{R}^2\) and in \(\mathbb{R}^3\). (English) Zbl 07281787 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105401, 10 p. (2020). Reviewer: Jihua Yang (Guyuan) MSC: 37G15 34C29 34C05 PDF BibTeX XML Cite \textit{J. Llibre} et al., Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105401, 10 p. (2020; Zbl 07281787) Full Text: DOI
Zuo, Wei-Qin; Ma, Zhan-Ping; Cheng, Zhi-Bo Spatiotemporal dynamics induced by Michaelis-Menten type prey harvesting in a diffusive Leslie-Gower predator-prey model. (English) Zbl 1454.35403 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050204, 24 p. (2020). MSC: 35Q92 92D25 92C15 35B35 35B32 35A01 35B36 PDF BibTeX XML Cite \textit{W.-Q. Zuo} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050204, 24 p. (2020; Zbl 1454.35403) Full Text: DOI
Avitabile, Daniele; Desroches, Mathieu; Veltz, Romain; Wechselberger, Martin Local theory for spatio-temporal canards and delayed bifurcations. (English) Zbl 1453.35020 SIAM J. Math. Anal. 52, No. 6, 5703-5747 (2020). MSC: 35B32 35K57 35R10 37L10 PDF BibTeX XML Cite \textit{D. Avitabile} et al., SIAM J. Math. Anal. 52, No. 6, 5703--5747 (2020; Zbl 1453.35020) Full Text: DOI
Li, Yan; Zhang, Linyan; Li, Dagen; Shi, Hong-Bo Spatiotemporal dynamics of a diffusive Leslie-type predator-prey model with Beddington-DeAngelis functional response. (English) Zbl 1451.92261 J. Biol. Syst. 28, No. 3, 785-809 (2020). MSC: 92D25 34C23 35B32 PDF BibTeX XML Cite \textit{Y. Li} et al., J. Biol. Syst. 28, No. 3, 785--809 (2020; Zbl 1451.92261) Full Text: DOI
Ngwa, Gideon A.; Woldegerima, Woldegebriel A.; Teboh-Ewungkem, Miranda I. A mathematical study of the implicit role of innate and adaptive immune responses on within-human Plasmodium falciparum parasite levels. (English) Zbl 1451.92103 J. Biol. Syst. 28, No. 2, 377-429 (2020). MSC: 92C32 37G15 PDF BibTeX XML Cite \textit{G. A. Ngwa} et al., J. Biol. Syst. 28, No. 2, 377--429 (2020; Zbl 1451.92103) Full Text: DOI
Zhang, Conghui; Yang, Wenbin Dynamic behaviors of a predator-prey model with weak additive Allee effect on prey. (English) Zbl 07269758 Nonlinear Anal., Real World Appl. 55, Article ID 103137, 25 p. (2020). Reviewer: Thomas Giletti (Vandœuvre-lès-Nancy) MSC: 35K57 35B36 35B32 92D25 35K51 35B35 PDF BibTeX XML Cite \textit{C. Zhang} and \textit{W. Yang}, Nonlinear Anal., Real World Appl. 55, Article ID 103137, 25 p. (2020; Zbl 07269758) Full Text: DOI
Chen, Ping; Hu, Guangping The stability and Turing patterns of a diffusive predator-prey system with B-D functional response. (Chinese. English summary) Zbl 07266953 J. Northwest Norm. Univ., Nat. Sci. 56, No. 2, 15-20, 37 (2020). MSC: 35B35 35B32 92D25 PDF BibTeX XML Cite \textit{P. Chen} and \textit{G. Hu}, J. Northwest Norm. Univ., Nat. Sci. 56, No. 2, 15--20, 37 (2020; Zbl 07266953) Full Text: DOI
Liang, Yuqin; Jia, Yunfeng Stability and Hopf bifurcation of a tumor immune model with time delay. (Chinese. English summary) Zbl 07266363 Acta Sci. Nat. Univ. Sunyatseni 59, No. 2, 28-33 (2020). MSC: 35B35 35B32 35K57 PDF BibTeX XML Cite \textit{Y. Liang} and \textit{Y. Jia}, Acta Sci. Nat. Univ. Sunyatseni 59, No. 2, 28--33 (2020; Zbl 07266363) Full Text: DOI
Mao, Yiqiu; Chen, Zhimin; Kieu, Chanh; Wang, Quan On the stability and bifurcation of the non-rotating Boussinesq equation with the Kolmogorov forcing at a low Péclet number. (English) Zbl 1444.76058 Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105322, 16 p. (2020). MSC: 76E20 76E15 37L10 35B32 PDF BibTeX XML Cite \textit{Y. Mao} et al., Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105322, 16 p. (2020; Zbl 1444.76058) Full Text: DOI
Wu, Shuhao; Song, Yongli Spatiotemporal dynamics of a diffusive predator-prey model with nonlocal effect and delay. (English) Zbl 1450.35051 Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105310, 25 p. (2020). MSC: 35B32 35K57 35K51 35R10 37L10 92D25 PDF BibTeX XML Cite \textit{S. Wu} and \textit{Y. Song}, Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105310, 25 p. (2020; Zbl 1450.35051) Full Text: DOI
Ledesma-Durán, Aldo; Aragón, José Luis Spatio-temporal numerical solutions of the coupled real and complex Ginzburg-Landau amplitude equations for one-dimensional systems near the Turing-Hopf bifurcation. (English) Zbl 1450.35245 Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105145, 12 p. (2020). MSC: 35Q56 35B32 35B36 37L10 42A38 65T50 PDF BibTeX XML Cite \textit{A. Ledesma-Durán} and \textit{J. L. Aragón}, Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105145, 12 p. (2020; Zbl 1450.35245) Full Text: DOI
Kapitula, Todd; Parker, Ross; Sandstede, Björn A reformulated Krein matrix for star-even polynomial operators with applications. (English) Zbl 1450.35207 SIAM J. Math. Anal. 52, No. 5, 4705-4750 (2020). MSC: 35P30 47A55 47A56 70H14 PDF BibTeX XML Cite \textit{T. Kapitula} et al., SIAM J. Math. Anal. 52, No. 5, 4705--4750 (2020; Zbl 1450.35207) Full Text: DOI
Baldomá, Immaculada; Ibáñez, S.; Seara, T. M. Hopf-zero singularities truly unfold chaos. (English) Zbl 1452.37042 Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105162, 19 p. (2020). MSC: 37D45 37G15 37G35 PDF BibTeX XML Cite \textit{I. Baldomá} et al., Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105162, 19 p. (2020; Zbl 1452.37042) Full Text: DOI
Xu, Weijiao; Han, Maoan Hopf bifurcation of limit cycles in some piecewise smooth Liénard systems. (English) Zbl 1452.37057 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050249, 15 p. (2020). Reviewer: Jeidy Johana Jimenez (Goiânia) MSC: 37G15 37C10 34C23 34C05 34C07 PDF BibTeX XML Cite \textit{W. Xu} and \textit{M. Han}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050249, 15 p. (2020; Zbl 1452.37057) Full Text: DOI
Cheng, Xue; Luo, Jianfeng; Zhao, Yi Dynamic analysis of a population competition model with disease in one species and group defense in another species. (English) Zbl 1448.92183 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050181, 19 p. (2020). MSC: 92D25 92D30 92D40 34C23 35B32 PDF BibTeX XML Cite \textit{X. Cheng} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050181, 19 p. (2020; Zbl 1448.92183) Full Text: DOI
Liu, Yuying; Wei, Junjie Spatiotemporal dynamics of a modified Leslie-Gower model with weak Allee effect. (English) Zbl 1450.35050 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050169, 24 p. (2020). MSC: 35B32 35K57 35K51 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{J. Wei}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050169, 24 p. (2020; Zbl 1450.35050) Full Text: DOI
Ray, Arnob; Ghosh, Dibakar Another new chaotic system: bifurcation and chaos control. (English) Zbl 1452.37045 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 11, Article ID 2050161, 11 p. (2020). MSC: 37D45 37G35 34H10 PDF BibTeX XML Cite \textit{A. Ray} and \textit{D. Ghosh}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 11, Article ID 2050161, 11 p. (2020; Zbl 1452.37045) Full Text: DOI
Baek, Hunki Bifurcation analysis of a spatiotemporal parasite-host system. (English) Zbl 1450.35043 Kyungpook Math. J. 60, No. 2, 335-347 (2020). MSC: 35B32 35B36 35K51 35K57 35Q92 92D25 92D30 PDF BibTeX XML Cite \textit{H. Baek}, Kyungpook Math. J. 60, No. 2, 335--347 (2020; Zbl 1450.35043) Full Text: DOI
Wang, Huichao; Wang, Quan; Yan, Dongming On the stability and transition for the Navier-Stokes-alpha model. (English) Zbl 1447.35040 Math. Methods Appl. Sci. 43, No. 5, 2386-2402 (2020). MSC: 35B32 35G61 35Q35 PDF BibTeX XML Cite \textit{H. Wang} et al., Math. Methods Appl. Sci. 43, No. 5, 2386--2402 (2020; Zbl 1447.35040) Full Text: DOI
Djilali, Salih Pattern formation of a diffusive predator-prey model with herd behavior and nonlocal prey competition. (English) Zbl 1452.92033 Math. Methods Appl. Sci. 43, No. 5, 2233-2250 (2020). MSC: 92D25 35B32 PDF BibTeX XML Cite \textit{S. Djilali}, Math. Methods Appl. Sci. 43, No. 5, 2233--2250 (2020; Zbl 1452.92033) Full Text: DOI
Li, Shangzhi; Guo, Shangjiang Hopf bifurcation for semilinear FDEs in general Banach spaces. (English) Zbl 1447.35038 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2050130, 9 p. (2020). MSC: 35B32 35K90 35K20 35K57 35R10 47D06 PDF BibTeX XML Cite \textit{S. Li} and \textit{S. Guo}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2050130, 9 p. (2020; Zbl 1447.35038) Full Text: DOI
Boussaada, Islam; Niculescu, Silviu-Iulian A review on multiple purely imaginary spectral values of time-delay systems. (English) Zbl 1444.93019 Quadrat, Alban (ed.) et al., Algebraic and symbolic computation methods in dynamical systems. Based on articles written for the invited sessions of the 5th symposium on system structure and control, IFAC, Grenoble, France, February 4–6, 2013 and of the 21st international symposium on mathematical theory of networks and systems (MTNS 2014), Groningen, the Netherlands, July 7–11, 2014. Cham: Springer. Adv. Delays Dyn. 9, 239-258 (2020). MSC: 93C43 93C35 70Q05 93-02 PDF BibTeX XML Cite \textit{I. Boussaada} and \textit{S.-I. Niculescu}, Adv. Delays Dyn. 9, 239--258 (2020; Zbl 1444.93019) Full Text: DOI
González, Amaru; Castillo, Ernesto; Cruchaga, Marcela A. Numerical verification of a non-residual orthogonal term-by-term stabilized finite element formulation for incompressible convective flow problems. (English) Zbl 1447.65073 Comput. Math. Appl. 80, No. 5, 1009-1028 (2020). MSC: 65M60 65M06 76D05 76F65 35B32 76M10 76M20 PDF BibTeX XML Cite \textit{A. González} et al., Comput. Math. Appl. 80, No. 5, 1009--1028 (2020; Zbl 1447.65073) Full Text: DOI
An, Qi; Wang, Chuncheng; Wang, Hao Analysis of a spatial memory model with nonlocal maturation delay and hostile boundary condition. (English) Zbl 1447.35036 Discrete Contin. Dyn. Syst. 40, No. 10, 5845-5868 (2020). MSC: 35B32 35B36 35K58 35K20 35R09 92B05 PDF BibTeX XML Cite \textit{Q. An} et al., Discrete Contin. Dyn. Syst. 40, No. 10, 5845--5868 (2020; Zbl 1447.35036) Full Text: DOI
Liu, Yuying; Wei, Junjie Dynamical analysis in a diffusive predator-prey system with a delay and strong Allee effect. (English) Zbl 1448.37121 Math. Methods Appl. Sci. 43, No. 4, 1590-1607 (2020). MSC: 37N25 37G15 34K18 92D25 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{J. Wei}, Math. Methods Appl. Sci. 43, No. 4, 1590--1607 (2020; Zbl 1448.37121) Full Text: DOI
Ma, Zhan-Ping; Huo, Hai-Feng; Xiang, Hong Spatiotemporal patterns induced by delay and cross-fractional diffusion in a predator-prey model describing intraguild predation. (English) Zbl 1445.35049 Math. Methods Appl. Sci. 43, No. 8, 5179-5196 (2020). MSC: 35B36 35R11 35K57 35B32 92D25 35Q92 PDF BibTeX XML Cite \textit{Z.-P. Ma} et al., Math. Methods Appl. Sci. 43, No. 8, 5179--5196 (2020; Zbl 1445.35049) Full Text: DOI
Cai, Yuting; Wang, Chuncheng; Fan, Dejun Bifurcation analysis of a predator-prey model with age structure. (English) Zbl 1445.35034 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2050114, 30 p. (2020). MSC: 35B32 35R09 35L50 35L60 35Q92 92D25 PDF BibTeX XML Cite \textit{Y. Cai} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2050114, 30 p. (2020; Zbl 1445.35034) Full Text: DOI
Hu, Guangping; Feng, Zhaosheng Turing instability and pattern formation in a strongly coupled diffusive predator-prey system. (English) Zbl 1445.35036 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2030020, 15 p. (2020). MSC: 35B32 35B36 35K51 35K57 PDF BibTeX XML Cite \textit{G. Hu} and \textit{Z. Feng}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2030020, 15 p. (2020; Zbl 1445.35036) Full Text: DOI
Talla, Francois Calvin; Tchitnga, Robert; Fotso, P. H. Louodop; Kengne, Romanic; Nana, Bonaventure; Fomethe, Anaclet Unexpected behaviors in a single mesh Josephson junction based self-reproducing autonomous system. (English) Zbl 1448.37128 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 7, Article ID 2050097, 24 p. (2020). MSC: 37N35 37G10 37G15 94C05 PDF BibTeX XML Cite \textit{F. C. Talla} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 7, Article ID 2050097, 24 p. (2020; Zbl 1448.37128) Full Text: DOI
Cao, Xun; Jiang, Weihua Double zero singularity and spatiotemporal patterns in a diffusive predator-prey model with nonlocal prey competition. (English) Zbl 1445.35035 Discrete Contin. Dyn. Syst., Ser. B 25, No. 9, 3461-3489 (2020). MSC: 35B32 35B35 35B36 35K20 35K58 35R09 92D25 PDF BibTeX XML Cite \textit{X. Cao} and \textit{W. Jiang}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 9, 3461--3489 (2020; Zbl 1445.35035) Full Text: DOI
Ferreira, Jocirei D.; Rao, V. Sree Hari Current trends in the bifurcation methods of solutions of real world dynamical systems. (English) Zbl 1452.65157 Roy, Priti Kumar (ed.) et al., Mathematical analysis and applications in modeling. Selected papers presented at the international conference, ICMAAM 2018, Kolkata, India, January 9–12, 2018. Singapore: Springer. Springer Proc. Math. Stat. 302, 459-497 (2020). MSC: 65M06 35B32 34C23 92-08 92D25 92C15 PDF BibTeX XML Cite \textit{J. D. Ferreira} and \textit{V. S. H. Rao}, Springer Proc. Math. Stat. 302, 459--497 (2020; Zbl 1452.65157) Full Text: DOI
Gu, Lianchao; Gong, Peiliang; Wang, Hongqing Hopf bifurcation and Turing instability analysis for the Gierer-Meinhardt model of the depletion type. (English) Zbl 1443.35011 Discrete Dyn. Nat. Soc. 2020, Article ID 5293748, 10 p. (2020). MSC: 35B32 35B36 35K57 35K51 PDF BibTeX XML Cite \textit{L. Gu} et al., Discrete Dyn. Nat. Soc. 2020, Article ID 5293748, 10 p. (2020; Zbl 1443.35011) Full Text: DOI
Paquin-Lefebvre, Frédéric; Nagata, Wayne; Ward, Michael J. Weakly nonlinear theory for oscillatory dynamics in a one-dimensional PDE-ODE model of membrane dynamics coupled by a bulk diffusion field. (English) Zbl 1446.37071 SIAM J. Appl. Math. 80, No. 3, 1520-1545 (2020). MSC: 37M20 65P30 35B36 35B35 34C15 74K15 70K55 70K50 PDF BibTeX XML Cite \textit{F. Paquin-Lefebvre} et al., SIAM J. Appl. Math. 80, No. 3, 1520--1545 (2020; Zbl 1446.37071) Full Text: DOI
Marwan, Muhammad; Mehboob, Memoona; Ahmad, Salman; Aqeel, Muhammad Hopf bifurcation of forced Chen system and its stability via adaptive control with arbitrary parameters. (English) Zbl 1446.37098 Soft Comput. 24, No. 6, 4333-4341 (2020). MSC: 37N35 37D45 93C40 70K50 70K55 PDF BibTeX XML Cite \textit{M. Marwan} et al., Soft Comput. 24, No. 6, 4333--4341 (2020; Zbl 1446.37098) Full Text: DOI
Xu, Xiaofeng; Liu, Ming Global Hopf bifurcation of a general predator-prey system with diffusion and stage structures. (English) Zbl 1442.35026 J. Differ. Equations 269, No. 10, 8370-8386 (2020). MSC: 35B32 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{X. Xu} and \textit{M. Liu}, J. Differ. Equations 269, No. 10, 8370--8386 (2020; Zbl 1442.35026) Full Text: DOI
Selvaraj Surendar, Maruthai; Sambath, Muniyagounder; Balachandran, Krishnan Bifurcation on diffusive Holling-Tanner predator-prey model with stoichiometric density dependence. (English) Zbl 1442.35025 Nonlinear Anal., Model. Control 25, No. 2, 225-244 (2020). MSC: 35B32 35K57 35R60 92D25 PDF BibTeX XML Cite \textit{M. Selvaraj Surendar} et al., Nonlinear Anal., Model. Control 25, No. 2, 225--244 (2020; Zbl 1442.35025) Full Text: DOI
Gao, Jianping; Guo, Shangjiang Patterns in a modified Leslie-Gower model with Beddington-DeAngelis functional response and nonlocal prey competition. (English) Zbl 1446.35220 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 5, Article ID 2050074, 28 p. (2020). MSC: 35Q92 92D25 92C15 35B32 35B36 35D35 35A01 92-08 PDF BibTeX XML Cite \textit{J. Gao} and \textit{S. Guo}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 5, Article ID 2050074, 28 p. (2020; Zbl 1446.35220) Full Text: DOI
Mansouri, Djamel; Abdelmalek, Salem; Bendoukha, Samir Bifurcations and pattern formation in a generalized Lengyel-Epstein reaction-diffusion model. (English) Zbl 1434.35004 Chaos Solitons Fractals 132, Article ID 109579, 9 p. (2020). MSC: 35B35 35K57 37G10 PDF BibTeX XML Cite \textit{D. Mansouri} et al., Chaos Solitons Fractals 132, Article ID 109579, 9 p. (2020; Zbl 1434.35004) Full Text: DOI
Pankavich, Stephen; Neri, Nathan; Shutt, Deborah Bistable dynamics and Hopf bifurcation in a refined model of early stage HIV infection. (English) Zbl 1444.37080 Discrete Contin. Dyn. Syst., Ser. B 25, No. 8, 2867-2893 (2020). MSC: 37N25 92B05 34D20 34C23 37G15 PDF BibTeX XML Cite \textit{S. Pankavich} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 8, 2867--2893 (2020; Zbl 1444.37080) Full Text: DOI
Zenyuk, D. A.; Malinetskiĭ, G. G. Pattern formation in reaction-diffusion system with time-fractional derivatives. (Russian. English summary) Zbl 1439.35050 Mat. Model. 32, No. 6, 53-65 (2020). MSC: 35B36 35K57 35B32 35R11 PDF BibTeX XML Cite \textit{D. A. Zenyuk} and \textit{G. G. Malinetskiĭ}, Mat. Model. 32, No. 6, 53--65 (2020; Zbl 1439.35050) Full Text: DOI MNR
Ding, Yuting; Zheng, Liyuan; Yang, Ruizhi Time-delayed feedback control of improved friction-induced model: application to moving belt of particle supply device. (English) Zbl 1434.70053 Nonlinear Dyn. 100, No. 1, 423-434 (2020). MSC: 70K50 34F10 PDF BibTeX XML Cite \textit{Y. Ding} et al., Nonlinear Dyn. 100, No. 1, 423--434 (2020; Zbl 1434.70053) Full Text: DOI
Hu, Dongpo; Li, Yunyun; Liu, Ming; Bai, Yuzhen Stability and Hopf bifurcation for a delayed predator-prey model with stage structure for prey and Ivlev-type functional response. (English) Zbl 1434.37049 Nonlinear Dyn. 99, No. 4, 3323-3350 (2020). MSC: 37N25 92D25 34F10 37G10 34D20 PDF BibTeX XML Cite \textit{D. Hu} et al., Nonlinear Dyn. 99, No. 4, 3323--3350 (2020; Zbl 1434.37049) Full Text: DOI
Chen, Shanshan; Wei, Junjie; Zhang, Xue Bifurcation analysis for a delayed diffusive logistic population model in the advective heterogeneous environment. (English) Zbl 1439.35040 J. Dyn. Differ. Equations 32, No. 2, 823-847 (2020). MSC: 35B32 35K57 92D25 35K20 35R09 PDF BibTeX XML Cite \textit{S. Chen} et al., J. Dyn. Differ. Equations 32, No. 2, 823--847 (2020; Zbl 1439.35040) Full Text: DOI
Chen, Mengxin; Wu, Ranchao; Chen, Liping Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system. (English) Zbl 07200830 Appl. Math. Comput. 380, Article ID 125300, 14 p. (2020). MSC: 92D25 92C15 35B32 35Q92 PDF BibTeX XML Cite \textit{M. Chen} et al., Appl. Math. Comput. 380, Article ID 125300, 14 p. (2020; Zbl 07200830) Full Text: DOI
Kruff, Niclas; Walcher, Sebastian Coordinate-independent criteria for Hopf bifurcations. (English) Zbl 1443.34038 Discrete Contin. Dyn. Syst., Ser. S 13, No. 4, 1319-1340 (2020). Reviewer: Giuseppe Gaeta (Milano) MSC: 34C20 34C23 34C05 34D20 37G15 92C20 92D25 PDF BibTeX XML Cite \textit{N. Kruff} and \textit{S. Walcher}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 4, 1319--1340 (2020; Zbl 1443.34038) Full Text: DOI
Gandhi, Punit; Golubitsky, Martin; Postlethwaite, Claire; Stewart, Ian; Wang, Yangyang Bifurcations on fully inhomogeneous networks. (English) Zbl 1443.34039 SIAM J. Appl. Dyn. Syst. 19, No. 1, 366-411 (2020). MSC: 34C23 34C20 34C05 92B20 37G05 37G10 34D20 PDF BibTeX XML Cite \textit{P. Gandhi} et al., SIAM J. Appl. Dyn. Syst. 19, No. 1, 366--411 (2020; Zbl 1443.34039) Full Text: DOI
Wu, Daiyong; Zhao, Hongyong Spatiotemporal dynamics of a diffusive predator-prey system with allee effect and threshold hunting. (English) Zbl 1442.35482 J. Nonlinear Sci. 30, No. 3, 1015-1054 (2020). MSC: 35Q92 92D25 35B32 35B35 35K51 35K57 PDF BibTeX XML Cite \textit{D. Wu} and \textit{H. Zhao}, J. Nonlinear Sci. 30, No. 3, 1015--1054 (2020; Zbl 1442.35482) Full Text: DOI
Ma, Li; Xie, Xianhua Bifurcation analysis of coexistent state in a delayed two-species predator-prey model. (English) Zbl 1439.35041 Appl. Anal. 99, No. 7, 1195-1217 (2020). MSC: 35B32 35K51 35K57 35K58 92D25 PDF BibTeX XML Cite \textit{L. Ma} and \textit{X. Xie}, Appl. Anal. 99, No. 7, 1195--1217 (2020; Zbl 1439.35041) Full Text: DOI
Liu, Yujuan; Lu, Qiong Hopf bifurcations in 3D competitive system with mixing exponential and rational growth rates. (English) Zbl 07197743 Appl. Math. Comput. 378, Article ID 125209, 17 p. (2020). MSC: 37H20 37G10 37G15 70K05 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{Q. Lu}, Appl. Math. Comput. 378, Article ID 125209, 17 p. (2020; Zbl 07197743) Full Text: DOI
Yan, Dongxue; Fu, Xianlong Asymptotic analysis of an age-structured HIV infection model with logistic target-cell growth and two infecting routes. (English) Zbl 1442.35485 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 4, Article ID 2050059, 27 p. (2020). MSC: 35Q92 92C60 92D30 35B35 35B40 35B41 35B32 PDF BibTeX XML Cite \textit{D. Yan} and \textit{X. Fu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 4, Article ID 2050059, 27 p. (2020; Zbl 1442.35485) Full Text: DOI
Freire, E.; Ponce, E.; Ros, J.; Vela, E.; Amador, A. Hopf bifurcation at infinity in 3D symmetric piecewise linear systems. Application to a Bonhoeffer-van der Pol oscillator. (English) Zbl 1437.34024 Nonlinear Anal., Real World Appl. 54, Article ID 103112, 20 p. (2020). MSC: 34A36 34C23 34C05 92C20 34D20 PDF BibTeX XML Cite \textit{E. Freire} et al., Nonlinear Anal., Real World Appl. 54, Article ID 103112, 20 p. (2020; Zbl 1437.34024) Full Text: DOI
Pei, Lijun; Chen, Yameng; Wang, Shuo Complicated oscillations and non-resonant double Hopf bifurcation of multiple feedback delayed control system of the gut microbiota. (English) Zbl 1441.37100 Nonlinear Anal., Real World Appl. 54, Article ID 103091, 18 p. (2020). Reviewer: E. Ahmed (Mansoura) MSC: 37N25 37N35 37G15 70K50 93B52 92C50 92D25 PDF BibTeX XML Cite \textit{L. Pei} et al., Nonlinear Anal., Real World Appl. 54, Article ID 103091, 18 p. (2020; Zbl 1441.37100) Full Text: DOI
Qiu, Huanhuan; Guo, Shangjiang; Li, Shangzhi Stability and bifurcation in a predator-prey system with prey-taxis. (English) Zbl 1435.35395 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 2, Article ID 2050022, 25 p. (2020). MSC: 35Q92 35K57 35B35 35B32 35B10 PDF BibTeX XML Cite \textit{H. Qiu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 2, Article ID 2050022, 25 p. (2020; Zbl 1435.35395) Full Text: DOI
Li, Longyue; Mei, Yingying; Cao, Jianzhi Hopf bifurcation analysis and stability for a ratio-dependent predator-prey diffusive system with time delay. (English) Zbl 1435.35392 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 3, Article ID 2050037, 20 p. (2020). MSC: 35Q92 35R10 35B32 35B35 35B10 PDF BibTeX XML Cite \textit{L. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 3, Article ID 2050037, 20 p. (2020; Zbl 1435.35392) Full Text: DOI
Yang, Peng; Wang, Yuanshi Periodic solutions of a delayed eco-epidemiological model with infection-age structure and Holling type II functional response. (English) Zbl 1436.35302 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 1, Article ID 2050011, 20 p. (2020). MSC: 35Q92 92D30 92D40 35R10 35B32 35B10 PDF BibTeX XML Cite \textit{P. Yang} and \textit{Y. Wang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 1, Article ID 2050011, 20 p. (2020; Zbl 1436.35302) Full Text: DOI
Jiang, Weihua; An, Qi; Shi, Junping Formulation of the normal form of Turing-Hopf bifurcation in partial functional differential equations. (English) Zbl 1435.35043 J. Differ. Equations 268, No. 10, 6067-6102 (2020). MSC: 35B32 35R10 37L10 PDF BibTeX XML Cite \textit{W. Jiang} et al., J. Differ. Equations 268, No. 10, 6067--6102 (2020; Zbl 1435.35043) Full Text: DOI
Gomez, Daniel; Mei, Linfeng; Wei, Juncheng Stable and unstable periodic spiky solutions for the Gray-Scott system and the Schnakenberg system. (English) Zbl 1437.35054 J. Dyn. Differ. Equations 32, No. 1, 441-481 (2020). MSC: 35B32 35B25 35K51 35B10 92C40 35K58 35B35 PDF BibTeX XML Cite \textit{D. Gomez} et al., J. Dyn. Differ. Equations 32, No. 1, 441--481 (2020; Zbl 1437.35054) Full Text: DOI
Steindl, Alois; Edelmann, Johannes; Plöchl, Manfred Limit cycles at oversteer vehicle. (English) Zbl 1430.70082 Nonlinear Dyn. 99, No. 1, 313-321 (2020). MSC: 70K50 70K70 PDF BibTeX XML Cite \textit{A. Steindl} et al., Nonlinear Dyn. 99, No. 1, 313--321 (2020; Zbl 1430.70082) Full Text: DOI
Zhang, Li; Stepan, Gabor Bifurcations in basic models of delayed force control. (English) Zbl 1430.70085 Nonlinear Dyn. 99, No. 1, 99-108 (2020). MSC: 70K50 70K45 70K70 34C15 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{G. Stepan}, Nonlinear Dyn. 99, No. 1, 99--108 (2020; Zbl 1430.70085) Full Text: DOI
Li, Yan; Li, Sanyun; Zhang, Fengrong Dynamics of a diffusive predator-prey model with herd behavior. (English) Zbl 1432.92080 Nonlinear Anal., Model. Control 25, No. 1, 19-35 (2020). MSC: 92D25 35B32 35B10 35Q92 34C23 PDF BibTeX XML Cite \textit{Y. Li} et al., Nonlinear Anal., Model. Control 25, No. 1, 19--35 (2020; Zbl 1432.92080) Full Text: DOI
Gao, Xiaoyan; Ishag, Sadia; Fu, Shengmao; Li, Wanjun; Wang, Weiming Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator-prey model with predator harvesting. (English) Zbl 1430.35020 Nonlinear Anal., Real World Appl. 51, Article ID 102962, 28 p. (2020). MSC: 35B32 35B36 92D25 35K51 35B35 35Q92 PDF BibTeX XML Cite \textit{X. Gao} et al., Nonlinear Anal., Real World Appl. 51, Article ID 102962, 28 p. (2020; Zbl 1430.35020) Full Text: DOI
Liu, Ping; Yang, Bowen Dynamics analysis of a reaction-diffusion system with Beddington-DeAngelis functional response and strong Allee effect. (English) Zbl 1430.35022 Nonlinear Anal., Real World Appl. 51, Article ID 102953, 23 p. (2020). MSC: 35B32 35K57 92D25 35K51 PDF BibTeX XML Cite \textit{P. Liu} and \textit{B. Yang}, Nonlinear Anal., Real World Appl. 51, Article ID 102953, 23 p. (2020; Zbl 1430.35022) Full Text: DOI
Jiang, Xiaowei; Chen, Xiangyong; Chi, Ming; Chen, Jie On Hopf bifurcation and control for a delay systems. (English) Zbl 1433.34098 Appl. Math. Comput. 370, Article ID 124906, 10 p. (2020). MSC: 34K20 34K18 34K35 37G15 93C55 PDF BibTeX XML Cite \textit{X. Jiang} et al., Appl. Math. Comput. 370, Article ID 124906, 10 p. (2020; Zbl 1433.34098) Full Text: DOI
Algaba, A.; Fuentes, N.; Gamero, E.; García, C. Orbital normal forms for a class of three-dimensional systems with an application to Hopf-zero bifurcation analysis of Fitzhugh-Nagumo system. (English) Zbl 1433.34055 Appl. Math. Comput. 369, Article ID 124893, 21 p. (2020). MSC: 34C20 34C23 37G15 92C20 37G05 34C05 PDF BibTeX XML Cite \textit{A. Algaba} et al., Appl. Math. Comput. 369, Article ID 124893, 21 p. (2020; Zbl 1433.34055) Full Text: DOI
Drubi, Fátima; Ibáñez, Santiago; Rivela, David Chaotic behavior in the unfolding of Hopf-Bogdanov-Takens singularities. (English) Zbl 07151751 Discrete Contin. Dyn. Syst., Ser. B 25, No. 2, 599-615 (2020). MSC: 37G35 37D45 PDF BibTeX XML Cite \textit{F. Drubi} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 2, 599--615 (2020; Zbl 07151751) Full Text: DOI
Liu, Yuying; Guo, Yuxiao; Wei, Junjie Dynamics in a diffusive predator-prey system with stage structure and strong Allee effect. (English) Zbl 1433.35426 Commun. Pure Appl. Anal. 19, No. 2, 883-910 (2020). MSC: 35Q92 37L10 35B35 92D25 35B32 35B40 35P20 PDF BibTeX XML Cite \textit{Y. Liu} et al., Commun. Pure Appl. Anal. 19, No. 2, 883--910 (2020; Zbl 1433.35426) Full Text: DOI
Hu, Min; Li, Tao; Chen, Xingwu Bi-center problem and Hopf cyclicity of a cubic Liénard system. (English) Zbl 1439.34036 Discrete Contin. Dyn. Syst., Ser. B 25, No. 1, 401-414 (2020). Reviewer: Eduard Musafirov (Grodno) MSC: 34C05 34C07 34C23 37G10 34E10 34C25 PDF BibTeX XML Cite \textit{M. Hu} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 1, 401--414 (2020; Zbl 1439.34036) Full Text: DOI
Cao, Xun; Jiang, Weihua Interactions of Turing and Hopf bifurcations in an additional food provided diffusive predator-prey model. (English) Zbl 07334274 J. Appl. Anal. Comput. 9, No. 4, 1277-1304 (2019). MSC: 35B10 35B32 35B35 35B36 35K57 PDF BibTeX XML Cite \textit{X. Cao} and \textit{W. Jiang}, J. Appl. Anal. Comput. 9, No. 4, 1277--1304 (2019; Zbl 07334274) Full Text: DOI
Liu, Chunxia; Li, Shumin; Yan, Yan Hopf bifurcation analysis of a density predator-prey model with Crowley-Martin functional response and two time delays. (English) Zbl 07334269 J. Appl. Anal. Comput. 9, No. 4, 1589-1605 (2019). MSC: 70K45 70K50 PDF BibTeX XML Cite \textit{C. Liu} et al., J. Appl. Anal. Comput. 9, No. 4, 1589--1605 (2019; Zbl 07334269) Full Text: DOI
Song, Yongli; Jiang, Heping; Yuan, Yuan Turing-Hopf bifurcation in the reaction-diffusion system with delay and application to a diffusive predator-prey model. (English) Zbl 07334245 J. Appl. Anal. Comput. 9, No. 3, 1132-1164 (2019). MSC: 35B10 35B32 35B35 35K57 35R10 PDF BibTeX XML Cite \textit{Y. Song} et al., J. Appl. Anal. Comput. 9, No. 3, 1132--1164 (2019; Zbl 07334245) Full Text: DOI
Kumar, Anuj; Srivastava, Prashant K.; Gupta, R. P. Nonlinear dynamics of infectious diseases via information-induced vaccination and saturated treatment. (English) Zbl 07316591 Math. Comput. Simul. 157, 77-99 (2019). MSC: 92D 34D 34C PDF BibTeX XML Cite \textit{A. Kumar} et al., Math. Comput. Simul. 157, 77--99 (2019; Zbl 07316591) Full Text: DOI
Duan, Daifeng; Niu, Ben; Wei, Junjie Hopf-Hopf bifurcation and chaotic attractors in a delayed diffusive predator-prey model with fear effect. (English) Zbl 1448.35029 Chaos Solitons Fractals 123, 206-216 (2019). MSC: 35B32 35R10 92D25 35B15 PDF BibTeX XML Cite \textit{D. Duan} et al., Chaos Solitons Fractals 123, 206--216 (2019; Zbl 1448.35029) Full Text: DOI
Ledesma-Durán, Aldo; Aragón, José Luis Primary and secondary instabilities of the mixed mode solution in a reaction diffusion system near the codimension-two Turing-Hopf point. (English) Zbl 1448.35031 Chaos Solitons Fractals 124, 68-77 (2019). MSC: 35B32 35K57 65M60 37M05 PDF BibTeX XML Cite \textit{A. Ledesma-Durán} and \textit{J. L. Aragón}, Chaos Solitons Fractals 124, 68--77 (2019; Zbl 1448.35031) Full Text: DOI
Hu, Haijun; Tan, Yanxiang; Huang, Jianhua Hopf bifurcation analysis on a delayed reaction-diffusion system modelling the spatial spread of bacterial and viral diseases. (English) Zbl 1448.35532 Chaos Solitons Fractals 125, 152-162 (2019). MSC: 35R10 35B32 35B35 35K57 PDF BibTeX XML Cite \textit{H. Hu} et al., Chaos Solitons Fractals 125, 152--162 (2019; Zbl 1448.35532) Full Text: DOI
Čermák, Jan; Nechvátal, Luděk Stability and chaos in the fractional Chen system. (English) Zbl 1448.34087 Chaos Solitons Fractals 125, 24-33 (2019). MSC: 34C28 34A08 34C60 37G10 37G35 37M05 37D45 PDF BibTeX XML Cite \textit{J. Čermák} and \textit{L. Nechvátal}, Chaos Solitons Fractals 125, 24--33 (2019; Zbl 1448.34087) Full Text: DOI
Liu, Fuxiang; Yang, Ruizhi; Tang, Leiyu Hopf bifurcation in a diffusive predator-prey model with competitive interference. (English) Zbl 1448.92221 Chaos Solitons Fractals 120, 250-258 (2019). MSC: 92D25 35B32 35R10 PDF BibTeX XML Cite \textit{F. Liu} et al., Chaos Solitons Fractals 120, 250--258 (2019; Zbl 1448.92221) Full Text: DOI
Lv, Yunfei; Pei, Yongzhen; Wang, Yong Bifurcations and simulations of two predator-prey models with nonlinear harvesting. (English) Zbl 1448.92228 Chaos Solitons Fractals 120, 158-170 (2019). MSC: 92D25 34C23 34D23 37G10 PDF BibTeX XML Cite \textit{Y. Lv} et al., Chaos Solitons Fractals 120, 158--170 (2019; Zbl 1448.92228) Full Text: DOI
Chaurasia, Sudhanshu Shekhar; Choudhary, Anshul; Shrimali, Manish Dev; Sinha, Sudeshna Suppression and revival of oscillations through time-varying interaction. (English) Zbl 1442.34064 Chaos Solitons Fractals 118, 249-254 (2019). MSC: 34C15 34C23 37G10 PDF BibTeX XML Cite \textit{S. S. Chaurasia} et al., Chaos Solitons Fractals 118, 249--254 (2019; Zbl 1442.34064) Full Text: DOI
Yao, Shengwei; Ding, Liwang; Song, Zigen; Xu, Jieqiong Two bifurcation routes to multiple chaotic coexistence in an inertial two-neural system with time delay. (English) Zbl 1439.70032 Nonlinear Dyn. 95, No. 2, 1549-1563 (2019). MSC: 70K55 70K50 92B20 PDF BibTeX XML Cite \textit{S. Yao} et al., Nonlinear Dyn. 95, No. 2, 1549--1563 (2019; Zbl 1439.70032) Full Text: DOI
Bonciolini, Giacomo; Noiray, Nicolas Bifurcation dodge: avoidance of a thermoacoustic instability under transient operation. (English) Zbl 1437.37063 Nonlinear Dyn. 96, No. 1, 703-716 (2019). MSC: 37G35 37C70 70K50 PDF BibTeX XML Cite \textit{G. Bonciolini} and \textit{N. Noiray}, Nonlinear Dyn. 96, No. 1, 703--716 (2019; Zbl 1437.37063) Full Text: DOI
Kamath, Gopal Krishna; Jagannathan, Krishna; Raina, Gaurav Stability, convergence and Hopf bifurcation analyses of the classical car-following model. (English) Zbl 1437.76004 Nonlinear Dyn. 96, No. 1, 185-204 (2019). MSC: 76A30 70K50 PDF BibTeX XML Cite \textit{G. K. Kamath} et al., Nonlinear Dyn. 96, No. 1, 185--204 (2019; Zbl 1437.76004) Full Text: DOI
Paul, Deepraj; Singh, Suneet; Mishra, Surendra Impact of system pressure on the characteristics of stability boundary for a single-channel flow boiling system. (English) Zbl 1437.76050 Nonlinear Dyn. 96, No. 1, 175-184 (2019). MSC: 76T10 70K50 PDF BibTeX XML Cite \textit{D. Paul} et al., Nonlinear Dyn. 96, No. 1, 175--184 (2019; Zbl 1437.76050) Full Text: DOI
Bountis, Anastasios; Kominis, Yannis; Shena, Joniald; Kovanis, Vassilios Complex dynamics induced by asymmetry in coupled laser systems. (English) Zbl 1441.78022 Nelineĭn. Din. 15, No. 4, 429-455 (2019). MSC: 78A60 34C05 34D23 37C27 37G15 37G40 82D37 PDF BibTeX XML Cite \textit{A. Bountis} et al., Nelineĭn. Din. 15, No. 4, 429--455 (2019; Zbl 1441.78022) Full Text: DOI MNR