Ghigi, Alessandro; Pirola, Gian Pietro; Torelli, Sara Totally geodesic subvarieties in the moduli space of curves. (English) Zbl 07312333 Commun. Contemp. Math. 23, No. 3, Article ID 2050020, 13 p. (2021). MSC: 14C30 14H10 14H15 32G20 PDF BibTeX XML Cite \textit{A. Ghigi} et al., Commun. Contemp. Math. 23, No. 3, Article ID 2050020, 13 p. (2021; Zbl 07312333) Full Text: DOI
Dumitrescu, Olivia; Fredrickson, Laura; Kydonakis, Georgios; Mazzeo, Rafe; Mulase, Motohico; Neitzke, Andrew From the Hitchin section to opers through nonabelian Hodge. (English) Zbl 07311278 J. Differ. Geom. 117, No. 2, 223-253 (2021). MSC: 53C07 58E15 14D21 81T13 PDF BibTeX XML Cite \textit{O. Dumitrescu} et al., J. Differ. Geom. 117, No. 2, 223--253 (2021; Zbl 07311278) Full Text: DOI Euclid
Perlman, Michael; Raicu, Claudiu Hodge ideals for the determinant hypersurface. (English) Zbl 07309266 Sel. Math., New Ser. 27, No. 1, Paper No. 1, 22 p. (2021). MSC: 14M12 14J17 14E15 13D45 PDF BibTeX XML Cite \textit{M. Perlman} and \textit{C. Raicu}, Sel. Math., New Ser. 27, No. 1, Paper No. 1, 22 p. (2021; Zbl 07309266) Full Text: DOI
Campana, Frédéric Local projectivity of Lagrangian fibrations on hyperkähler manifolds. (English) Zbl 07307699 Manuscr. Math. 164, No. 3-4, 589-591 (2021). MSC: 14C30 14D06 14J32 14K99 32J25 32J27 PDF BibTeX XML Cite \textit{F. Campana}, Manuscr. Math. 164, No. 3--4, 589--591 (2021; Zbl 07307699) Full Text: DOI
Felisetti, Camilla A support theorem for nested Hilbert schemes of planar curves. (English) Zbl 07307693 Manuscr. Math. 164, No. 3-4, 467-488 (2021). MSC: 14D20 14C30 PDF BibTeX XML Cite \textit{C. Felisetti}, Manuscr. Math. 164, No. 3--4, 467--488 (2021; Zbl 07307693) Full Text: DOI
Conder, Jonathan; Dewey, Edward; Izadi, Elham Surfaces generating the even primal cohomology of an abelian fivefold. (English) Zbl 07307515 Math. Ann. 379, No. 1-2, 441-464 (2021). MSC: 14C30 14D06 14K12 14H40 PDF BibTeX XML Cite \textit{J. Conder} et al., Math. Ann. 379, No. 1--2, 441--464 (2021; Zbl 07307515) Full Text: DOI
Florentino, Carlos; Nozad, Azizeh; Zamora, Alfonso Serre polynomials of \(SL_n\)- and \(PGL_n\)-character varieties of free groups. (English) Zbl 07303890 J. Geom. Phys. 161, Article ID 104008, 22 p. (2021). MSC: 14L30 32S35 14D20 PDF BibTeX XML Cite \textit{C. Florentino} et al., J. Geom. Phys. 161, Article ID 104008, 22 p. (2021; Zbl 07303890) Full Text: DOI
Gao, Tingran; Brodzki, Jacek; Mukherjee, Sayan The geometry of synchronization problems and learning group actions. (English) Zbl 07303730 Discrete Comput. Geom. 65, No. 1, 150-211 (2021). MSC: 05C50 62H30 57R22 58A14 28D05 35B65 35J60 49N90 49Q20 PDF BibTeX XML Cite \textit{T. Gao} et al., Discrete Comput. Geom. 65, No. 1, 150--211 (2021; Zbl 07303730) Full Text: DOI
Laterveer, Robert Algebraic cycles and Gushel-Mukai fivefolds. (English) Zbl 07303206 J. Pure Appl. Algebra 225, No. 5, Article ID 106582, 19 p. (2021). MSC: 14C15 14C25 14C30 PDF BibTeX XML Cite \textit{R. Laterveer}, J. Pure Appl. Algebra 225, No. 5, Article ID 106582, 19 p. (2021; Zbl 07303206) Full Text: DOI
Chung, Kiryong; Yoon, Youngho Intersection cohomology of pure sheaf spaces using Kirwan’s desingularization. (English) Zbl 07299629 J. Geom. Phys. 160, Article ID 103992, 15 p. (2021). MSC: 14F43 14B05 14N35 32S35 32S60 55N33 PDF BibTeX XML Cite \textit{K. Chung} and \textit{Y. Yoon}, J. Geom. Phys. 160, Article ID 103992, 15 p. (2021; Zbl 07299629) Full Text: DOI
Harder, Andrew Hodge numbers of Landau-Ginzburg models. (English) Zbl 07298465 Adv. Math. 378, Article ID 107436, 41 p. (2021). MSC: 14C30 14J32 14J33 14M25 32J25 53D37 PDF BibTeX XML Cite \textit{A. Harder}, Adv. Math. 378, Article ID 107436, 41 p. (2021; Zbl 07298465) Full Text: DOI
Emerton, Matthew; Gee, Toby “Scheme-theoretic images” of morphisms of stacks. (English) Zbl 07297285 Algebr. Geom. 8, No. 1, 1-132 (2021). MSC: 14D23 11S23 PDF BibTeX XML Cite \textit{M. Emerton} and \textit{T. Gee}, Algebr. Geom. 8, No. 1, 1--132 (2021; Zbl 07297285) Full Text: DOI
Chen, Chao Hasse polynomials of L-functions of certain exponential sums. (English) Zbl 07312718 Finite Fields Appl. 68, Article ID 101736, 19 p. (2020). MSC: 11S40 11T23 11L07 PDF BibTeX XML Cite \textit{C. Chen}, Finite Fields Appl. 68, Article ID 101736, 19 p. (2020; Zbl 07312718) Full Text: DOI
Kashio, Tomokazu A period-ring-valued gamma function and a refinement of the reciprocity law on Stark units. (English) Zbl 07311548 RIMS Kôkyûroku Bessatsu B83, 169-181 (2020). MSC: 11R27 11R42 14F30 14K22 PDF BibTeX XML Cite \textit{T. Kashio}, RIMS Kôkyûroku Bessatsu B83, 169--181 (2020; Zbl 07311548) Full Text: Link
Seto, Shoo The first nonzero eigenvalue of the p-Laplacian on differential forms. (English) Zbl 07307886 Pac. J. Math. 309, No. 1, 213-222 (2020). MSC: 47J10 53C65 PDF BibTeX XML Cite \textit{S. Seto}, Pac. J. Math. 309, No. 1, 213--222 (2020; Zbl 07307886) Full Text: DOI
Halpern-Leistner, Daniel; Pomerleano, Daniel Equivariant Hodge theory and noncommutative geometry. (English) Zbl 07305771 Geom. Topol. 24, No. 5, 2361-2433 (2020). MSC: 14A22 14C30 19D55 19L47 PDF BibTeX XML Cite \textit{D. Halpern-Leistner} and \textit{D. Pomerleano}, Geom. Topol. 24, No. 5, 2361--2433 (2020; Zbl 07305771) Full Text: DOI
Cattaneo, Alberto S.; Moshayedi, Nima Introduction to the BV-BFV formalism. (English) Zbl 07305683 Rev. Math. Phys. 32, No. 9, Article ID 2030006, 67 p. (2020). MSC: 81T70 81T20 53D55 58A50 81Q30 PDF BibTeX XML Cite \textit{A. S. Cattaneo} and \textit{N. Moshayedi}, Rev. Math. Phys. 32, No. 9, Article ID 2030006, 67 p. (2020; Zbl 07305683) Full Text: DOI
Pauly, Dirk; Zulehner, Walter The divdiv-complex and applications to biharmonic equations. (English) Zbl 07304793 Appl. Anal. 99, No. 9, 1579-1630 (2020). MSC: 35G15 58A14 PDF BibTeX XML Cite \textit{D. Pauly} and \textit{W. Zulehner}, Appl. Anal. 99, No. 9, 1579--1630 (2020; Zbl 07304793) Full Text: DOI
Laterveer, Robert Algebraic cycles and verra fourfolds. (English) Zbl 07303959 Tohoku Math. J. (2) 72, No. 3, 451-485 (2020). MSC: 14C15 14C25 14C30 PDF BibTeX XML Cite \textit{R. Laterveer}, Tohoku Math. J. (2) 72, No. 3, 451--485 (2020; Zbl 07303959) Full Text: DOI Euclid
Bakker, Benjamin; Tsimerman, Jacob Lectures on the Ax-Schanuel conjecture. (English) Zbl 1452.14007 Nicole, Marc-Hubert (ed.), Arithmetic geometry of logarithmic pairs and hyperbolicity of moduli spaces. Hyperbolicity in Montréal. Based on three workshops, Montréal, Canada, 2018–2019. Cham: Springer. CRM Short Courses, 1-68 (2020). MSC: 14D07 32G20 03C64 11J81 11-02 14-02 PDF BibTeX XML Cite \textit{B. Bakker} and \textit{J. Tsimerman}, in: Arithmetic geometry of logarithmic pairs and hyperbolicity of moduli spaces. Hyperbolicity in Montréal. Based on three workshops, Montréal, Canada, 2018--2019. Cham: Springer. 1--68 (2020; Zbl 1452.14007) Full Text: DOI
Liu, Tong; Moon, Yong Suk Relative crystalline representations and \(p\)-divisible groups in the small ramification case. (English) Zbl 07299334 Algebra Number Theory 14, No. 10, 2773-2789 (2020). MSC: 11F80 11S20 14L05 PDF BibTeX XML Cite \textit{T. Liu} and \textit{Y. S. Moon}, Algebra Number Theory 14, No. 10, 2773--2789 (2020; Zbl 07299334) Full Text: DOI
Müller, Susanne \(F\)-pure threshold and height of quasihomogeneous polynomials. (English) Zbl 07298187 J. Commut. Algebra 12, No. 4, 559-572 (2020). MSC: 13A35 14B05 32S35 PDF BibTeX XML Cite \textit{S. Müller}, J. Commut. Algebra 12, No. 4, 559--572 (2020; Zbl 07298187) Full Text: DOI Euclid
Levin, Brandon; Wang-Erickson, Carl A Harder-Narasimhan theory for Kisin modules. (English) Zbl 07297281 Algebr. Geom. 7, No. 6, 645-695 (2020). MSC: 11S20 14L24 14G35 PDF BibTeX XML Cite \textit{B. Levin} and \textit{C. Wang-Erickson}, Algebr. Geom. 7, No. 6, 645--695 (2020; Zbl 07297281) Full Text: DOI
Peng, Jun-Jin Constructing \(p\), \(n\)-forms from \(p\)-forms via the Hodge star operator and the exterior derivative. (English) Zbl 1451.83012 Commun. Theor. Phys. 72, No. 6, Article ID 065402, 9 p. (2020). MSC: 83C20 58A14 PDF BibTeX XML Cite \textit{J.-J. Peng}, Commun. Theor. Phys. 72, No. 6, Article ID 065402, 9 p. (2020; Zbl 1451.83012) Full Text: DOI
Sakallı, Sümeyra; Voronov, Alexander A. On the \(\operatorname{BV}\) structure on the cohomology of moduli space. (English) Zbl 07283911 Pure Appl. Math. Q. 16, No. 3, 755-773 (2020). Reviewer: Quentin Gendron (Guanajuato) MSC: 14F17 14H15 32G15 PDF BibTeX XML Cite \textit{S. Sakallı} and \textit{A. A. Voronov}, Pure Appl. Math. Q. 16, No. 3, 755--773 (2020; Zbl 07283911) Full Text: DOI
Fargues, Laurent \(G\)-torsion in \(p\)-adic Hodge theory. (\(G\)-torseurs en théorie de Hodge \(p\)-adique.) (French. English summary) Zbl 07283067 Compos. Math. 156, No. 10, 2076-2110 (2020). MSC: 14H99 14L05 14L24 11S31 PDF BibTeX XML Cite \textit{L. Fargues}, Compos. Math. 156, No. 10, 2076--2110 (2020; Zbl 07283067) Full Text: DOI
Hedayatzadeh, Hadi S. Mohammad A Cartesian diagram of Rapoport-Zink towers over universal covers of \(p\)-divisible groups. (English) Zbl 07282690 Commun. Number Theory Phys. 14, No. 4, 699-737 (2020). MSC: 11G18 11S31 11G25 PDF BibTeX XML Cite \textit{H. S. M. Hedayatzadeh}, Commun. Number Theory Phys. 14, No. 4, 699--737 (2020; Zbl 07282690) Full Text: DOI
Howe, Sean A unipotent circle action on \(p\)-adic modular forms. (English) Zbl 07281950 Trans. Am. Math. Soc., Ser. B 7, 186-226 (2020). MSC: 11F33 11F77 PDF BibTeX XML Cite \textit{S. Howe}, Trans. Am. Math. Soc., Ser. B 7, 186--226 (2020; Zbl 07281950) Full Text: DOI
Lim, Lek-Heng Hodge Laplacians on graphs. (English) Zbl 07279899 SIAM Rev. 62, No. 3, 685-715 (2020). MSC: 05C50 58A14 20G10 PDF BibTeX XML Cite \textit{L.-H. Lim}, SIAM Rev. 62, No. 3, 685--715 (2020; Zbl 07279899) Full Text: DOI
Lee, Younggi; Park, Jeehoon; Park, Junyeong; Yim, Jaehyun An algorithm for a lifted Massey triple product of a smooth projective plane curve. (English) Zbl 07276756 Int. J. Algebra Comput. 30, No. 8, 1651-1669 (2020). MSC: 14D07 14C30 14C25 18N 14F40 14J70 14D15 13D10 PDF BibTeX XML Cite \textit{Y. Lee} et al., Int. J. Algebra Comput. 30, No. 8, 1651--1669 (2020; Zbl 07276756) Full Text: DOI
Laterveer, Robert On the motive of Kapustka-Rampazzo’s Calabi-Yau threefolds. (English) Zbl 07276075 Hokkaido Math. J. 49, No. 2, 227-245 (2020). MSC: 14C15 14C25 14C30 PDF BibTeX XML Cite \textit{R. Laterveer}, Hokkaido Math. J. 49, No. 2, 227--245 (2020; Zbl 07276075) Full Text: DOI Euclid
Hain, Richard Hodge theory of the Goldman bracket. (English) Zbl 07274791 Geom. Topol. 24, No. 4, 1841-1906 (2020). MSC: 14C30 17B62 58A12 57N05 PDF BibTeX XML Cite \textit{R. Hain}, Geom. Topol. 24, No. 4, 1841--1906 (2020; Zbl 07274791) Full Text: DOI
Cirici, Joana; Horel, Geoffroy Mixed Hodge structures and formality of symmetric monoidal functors. (English) Zbl 07274514 Ann. Sci. Éc. Norm. Supér. (4) 53, No. 4, 1071-1104 (2020). Reviewer: Mohammad Reza Rahmati (León) MSC: 32S35 18M60 55P62 PDF BibTeX XML Cite \textit{J. Cirici} and \textit{G. Horel}, Ann. Sci. Éc. Norm. Supér. (4) 53, No. 4, 1071--1104 (2020; Zbl 07274514) Full Text: DOI
Ebrahimi-Fard, K. (ed.); Burgos Gil, J. I. (ed.); Manchon, D. (ed.) Amplitudes, Hodge theory and ramification. From periods and motives to Feynman amplitudes. Lectures presented at the Clay Mathematics Institute 2014 summer school, “Periods and Motives: Feynman amplitudes in the 21st century”, Madrid, Spain, June 30 – July 25, 2014. (English) Zbl 1446.81001 Clay Mathematics Proceedings 21. Providence, RI: American Mathematical Society (AMS); Cambridge, MA: Clay Mathematics Institute (ISBN 978-1-4704-4329-0/pbk). xiv, 229 p. (2020). MSC: 81-03 01A61 81Q30 81T18 14C15 14D07 11S15 00B25 PDF BibTeX XML Cite \textit{K. Ebrahimi-Fard} (ed.) et al., Amplitudes, Hodge theory and ramification. From periods and motives to Feynman amplitudes. Lectures presented at the Clay Mathematics Institute 2014 summer school, ``Periods and Motives: Feynman amplitudes in the 21st century'', Madrid, Spain, June 30 -- July 25, 2014. Providence, RI: American Mathematical Society (AMS); Cambridge, MA: Clay Mathematics Institute (2020; Zbl 1446.81001)
Rizzi, Luca; Zucconi, Francesco Differential forms and quadrics of the canonical image. (English) Zbl 07271318 Ann. Mat. Pura Appl. (4) 199, No. 6, 2341-2356 (2020). MSC: 14C34 14D07 14E99 14J10 14J40 PDF BibTeX XML Cite \textit{L. Rizzi} and \textit{F. Zucconi}, Ann. Mat. Pura Appl. (4) 199, No. 6, 2341--2356 (2020; Zbl 07271318) Full Text: DOI
Laterveer, Robert On the Chow ring of Fano varieties of type \(S2\). (English) Zbl 1448.14007 Abh. Math. Semin. Univ. Hamb. 90, No. 1, 17-28 (2020). MSC: 14C15 14C25 14C30 14J45 PDF BibTeX XML Cite \textit{R. Laterveer}, Abh. Math. Semin. Univ. Hamb. 90, No. 1, 17--28 (2020; Zbl 1448.14007) Full Text: DOI
Eskin, Alex; Mcmullen, Curtis T.; Mukamel, Ronen E.; Wright, Alex Billiards, quadrilaterals, and moduli spaces. (English) Zbl 07268737 J. Am. Math. Soc. 33, No. 4, 1039-1086 (2020). MSC: 32G15 14C30 14H52 PDF BibTeX XML Cite \textit{A. Eskin} et al., J. Am. Math. Soc. 33, No. 4, 1039--1086 (2020; Zbl 07268737) Full Text: DOI
Bakker, B.; Klingler, B.; Tsimerman, J. Tame topology of arithmetic quotients and algebraicity of Hodge loci. (English) Zbl 07268734 J. Am. Math. Soc. 33, No. 4, 917-939 (2020). MSC: 14D07 14C30 22F30 03C64 PDF BibTeX XML Cite \textit{B. Bakker} et al., J. Am. Math. Soc. 33, No. 4, 917--939 (2020; Zbl 07268734) Full Text: DOI
Dan, Ananyo; Kaur, Inder Néron models of intermediate Jacobians associated to moduli spaces. (English) Zbl 07265772 Rev. Mat. Complut. 33, No. 3, 885-910 (2020). MSC: 14C30 14C34 14D07 32G20 32S35 14D20 14H40 PDF BibTeX XML Cite \textit{A. Dan} and \textit{I. Kaur}, Rev. Mat. Complut. 33, No. 3, 885--910 (2020; Zbl 07265772) Full Text: DOI
Yang, Di; Zagier, Don; Zhang, Youjin Masur-Veech volumes of quadratic differentials and their asymptotics. (English) Zbl 1452.14034 J. Geom. Phys. 158, Article ID 103870, 12 p. (2020). Reviewer: Dawei Chen (Chestnut Hill) MSC: 14H81 14H10 14H15 32G15 30F30 PDF BibTeX XML Cite \textit{D. Yang} et al., J. Geom. Phys. 158, Article ID 103870, 12 p. (2020; Zbl 1452.14034) Full Text: DOI
Osterbrink, Frank; Pauly, Dirk Low frequency asymptotics and electro-magneto-statics for time-harmonic Maxwell’s equations in exterior weak Lipschitz domains with mixed boundary conditions. (English) Zbl 07263709 SIAM J. Math. Anal. 52, No. 5, 4971-5000 (2020). Reviewer: Eric Stachura (Marietta) MSC: 35Q60 78A25 78A30 35B40 PDF BibTeX XML Cite \textit{F. Osterbrink} and \textit{D. Pauly}, SIAM J. Math. Anal. 52, No. 5, 4971--5000 (2020; Zbl 07263709) Full Text: DOI
Bannai, Kenichi; Hagihara, Kei; Yamada, Kazuki; Yamamoto, Shuji The Hodge realization of the polylogarithm on the product of multiplicative groups. (English) Zbl 07263179 Math. Z. 296, No. 3-4, 1787-1817 (2020). MSC: 11G55 14C30 PDF BibTeX XML Cite \textit{K. Bannai} et al., Math. Z. 296, No. 3--4, 1787--1817 (2020; Zbl 07263179) Full Text: DOI
Hansen, David; Li, Shizhang Line bundles on rigid varieties and Hodge symmetry. (English) Zbl 1450.14007 Math. Z. 296, No. 3-4, 1777-1786 (2020). MSC: 14G22 14G20 14F30 14C30 14K30 PDF BibTeX XML Cite \textit{D. Hansen} and \textit{S. Li}, Math. Z. 296, No. 3--4, 1777--1786 (2020; Zbl 1450.14007) Full Text: DOI
Greb, Daniel; Kebekus, Stefan; Peternell, Thomas; Taji, Behrouz Harmonic metrics on Higgs sheaves and uniformization of varieties of general type. (English) Zbl 07262917 Math. Ann. 378, No. 3-4, 1061-1094 (2020). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 32Q30 14E20 14E30 53C07 PDF BibTeX XML Cite \textit{D. Greb} et al., Math. Ann. 378, No. 3--4, 1061--1094 (2020; Zbl 07262917) Full Text: DOI
Dubrovin, Boris; Liu, Si-Qi; Yang, Di; Zhang, Youjin Hodge-GUE correspondence and the discrete KdV equation. (English) Zbl 07258560 Commun. Math. Phys. 379, No. 2, 461-490 (2020). Reviewer: Jipeng Cheng (Xuzhou) MSC: 37K20 37K60 37K25 37K10 39A36 58A14 PDF BibTeX XML Cite \textit{B. Dubrovin} et al., Commun. Math. Phys. 379, No. 2, 461--490 (2020; Zbl 07258560) Full Text: DOI
Muñoz, Vicente; González-Prieto, Ángel; Rojo, Juan Ángel Geometry and topology of manifolds. Surfaces and beyond. (English) Zbl 07258505 Graduate Studies in Mathematics 208. Providence, RI: American Mathematical Society (AMS); Madrid: Real Sociedad Matemática Española (RSME) (ISBN 978-1-4704-6132-4/pbk; 978-1-4704-6162-1/ebook). x, 408 p. (2020). Reviewer: Bruno Zimmermann (Trieste) MSC: 57-02 53-02 55-02 30Fxx 53Cxx PDF BibTeX XML Cite \textit{V. Muñoz} et al., Geometry and topology of manifolds. Surfaces and beyond. Providence, RI: American Mathematical Society (AMS); Madrid: Real Sociedad Matemática Española (RSME) (2020; Zbl 07258505)
Cavalcanti, Gil R. Hodge theory of SKT manifolds. (English) Zbl 1451.53097 Adv. Math. 374, Article ID 107270, 42 p. (2020). MSC: 53C55 53C15 53D18 53C29 53D30 PDF BibTeX XML Cite \textit{G. R. Cavalcanti}, Adv. Math. 374, Article ID 107270, 42 p. (2020; Zbl 1451.53097) Full Text: DOI
Primozic, Eric Computations of de Rham cohomology rings of classifying stacks at torsion primes. (English) Zbl 1448.14020 New York J. Math. 26, 1002-1027 (2020). MSC: 14F40 20G05 14L17 PDF BibTeX XML Cite \textit{E. Primozic}, New York J. Math. 26, 1002--1027 (2020; Zbl 1448.14020) Full Text: Link
Liao, Xia; Yoon, Youngho On the explicit calculation of Hirzebruch-Milnor classes of certain low dimensional hyperplane arrangements and some combinatorics. (English) Zbl 1448.14008 Commun. Algebra 48, No. 10, 4501-4530 (2020). MSC: 14C17 14J17 14N20 32S35 PDF BibTeX XML Cite \textit{X. Liao} and \textit{Y. Yoon}, Commun. Algebra 48, No. 10, 4501--4530 (2020; Zbl 1448.14008) Full Text: DOI
Backman, Spencer; Eur, Christopher; Simpson, Connor Simplicial generation of Chow rings of matroids. (English) Zbl 1447.05046 Sémin. Lothar. Comb. 84B, 84B.52, 11 p. (2020). MSC: 05B35 52B40 14T99 PDF BibTeX XML Cite \textit{S. Backman} et al., Sémin. Lothar. Comb. 84B, 84B.52, 11 p. (2020; Zbl 1447.05046) Full Text: Link
Brélivet, Thomas; Hertling, Claus Bernoulli moments of spectral numbers and Hodge numbers. (English) Zbl 1451.14023 J. Singul. 20, 205-231 (2020). Reviewer: Mohammad Reza Rahmati (León) MSC: 14C30 32S25 62E99 32S35 PDF BibTeX XML Cite \textit{T. Brélivet} and \textit{C. Hertling}, J. Singul. 20, 205--231 (2020; Zbl 1451.14023) Full Text: DOI
Hartl, Urs; Kim, Wansu Local shtukas, Hodge-Pink structures and Galois representations. (English) Zbl 1440.14113 Böckle, Gebhard (ed.) et al., \(t\)-motives: Hodge structures, transcendence and other motivic aspects. EMS Series of Congress Reports. Zürich: European Mathematical Society (EMS). 183-259 (2020). MSC: 14F30 14C30 11F70 14G20 14G35 11G09 PDF BibTeX XML Cite \textit{U. Hartl} and \textit{W. Kim}, in: \(t\)-motives: Hodge structures, transcendence and other motivic aspects. Zürich: European Mathematical Society (EMS). 183--259 (2020; Zbl 1440.14113) Full Text: DOI
Hartl, Urs; Juschka, Ann-Kristin Pink’s theory of Hodge structures and the Hodge conjecture over function fields. (English) Zbl 1451.14013 Böckle, Gebhard (ed.) et al., \(t\)-motives: Hodge structures, transcendence and other motivic aspects. Zürich: European Mathematical Society (EMS). EMS Ser. Congr. Rep., 31-182 (2020). MSC: 14C15 14C30 11G09 11J93 11R58 13A35 PDF BibTeX XML Cite \textit{U. Hartl} and \textit{A.-K. Juschka}, in: \(t\)-motives: Hodge structures, transcendence and other motivic aspects. Zürich: European Mathematical Society (EMS). 31--182 (2020; Zbl 1451.14013) Full Text: DOI
Brownawell, W. Dale; Papanikolas, Matthew A. A rapid introduction to Drinfeld modules, \(t\)-modules, and \(t\)-motives. (English) Zbl 1440.14020 Böckle, Gebhard (ed.) et al., \(t\)-motives: Hodge structures, transcendence and other motivic aspects. EMS Series of Congress Reports. Zürich: European Mathematical Society (EMS). 3-30 (2020). MSC: 14C15 14C30 11G09 11R58 14-01 PDF BibTeX XML Cite \textit{W. D. Brownawell} and \textit{M. A. Papanikolas}, in: \(t\)-motives: Hodge structures, transcendence and other motivic aspects. Zürich: European Mathematical Society (EMS). 3--30 (2020; Zbl 1440.14020) Full Text: DOI
Amar, Eric Correction to: “On the \(L^r\) Hodge theory in complete non compact Riemannian manifolds”. (English) Zbl 1441.58001 Math. Z. 296, No. 1-2, 877-879 (2020). MSC: 58A14 PDF BibTeX XML Cite \textit{E. Amar}, Math. Z. 296, No. 1--2, 877--879 (2020; Zbl 1441.58001) Full Text: DOI
Ebeling, Wolfgang; Takahashi, Atsushi Lattices for Landau-Ginzburg orbifolds. (English) Zbl 07242459 Math. Z. 296, No. 1-2, 639-659 (2020). MSC: 32S25 32S35 14L30 53D37 PDF BibTeX XML Cite \textit{W. Ebeling} and \textit{A. Takahashi}, Math. Z. 296, No. 1--2, 639--659 (2020; Zbl 07242459) Full Text: DOI
Diaz, Humberto On the unramified cohomology of certain quotient varieties. (English) Zbl 1442.14037 Math. Z. 296, No. 1-2, 261-273 (2020). MSC: 14C30 14C35 14C25 14F22 14C15 14L30 PDF BibTeX XML Cite \textit{H. Diaz}, Math. Z. 296, No. 1--2, 261--273 (2020; Zbl 1442.14037) Full Text: DOI
Charalambous, Nelia; Lu, Zhiqin The spectrum of the Laplacian on forms over flat manifolds. (English) Zbl 1447.58030 Math. Z. 296, No. 1-2, 1-12 (2020). MSC: 58J50 53C35 PDF BibTeX XML Cite \textit{N. Charalambous} and \textit{Z. Lu}, Math. Z. 296, No. 1--2, 1--12 (2020; Zbl 1447.58030) Full Text: DOI
Kim, Sangjib; Lee, Soo Teck Hodge dual operators and model algebras for rational representations of the general linear group. (English) Zbl 07242360 J. Algebra 562, 497-536 (2020). MSC: 20G05 13A50 05E10 PDF BibTeX XML Cite \textit{S. Kim} and \textit{S. T. Lee}, J. Algebra 562, 497--536 (2020; Zbl 07242360) Full Text: DOI
Tsuji, Takeshi Crystalline \(\mathbb{Z}_p\)-representations and \(A_{\inf}\)-representations with Frobenius. (English) Zbl 1440.14118 Bhatt, Bhargav (ed.) et al., \(p\)-adic Hodge theory. Proceedings of the Simons symposium, Schloss Elmau, Germany, May 7–13, 2017. Cham: Springer. Simons Symp., 161-319 (2020). MSC: 14F30 14F20 14F40 13A35 PDF BibTeX XML Cite \textit{T. Tsuji}, in: \(p\)-adic Hodge theory. Proceedings of the Simons symposium, Schloss Elmau, Germany, May 7--13, 2017. Cham: Springer. 161--319 (2020; Zbl 1440.14118) Full Text: DOI
Gros, Michel On a \(q\)-local deformation of the non-abelian Hodge theory into a positive characteristic. (Sur une \(q\)-déformation locale de la théorie de Hodge non-abélienne en caractéristique positive.) (French) Zbl 1440.14112 Bhatt, Bhargav (ed.) et al., \(p\)-adic Hodge theory. Proceedings of the Simons symposium, Schloss Elmau, Germany, May 7–13, 2017. Cham: Springer. Simons Symp., 143-160 (2020). MSC: 14F30 14G20 13A35 PDF BibTeX XML Cite \textit{M. Gros}, in: \(p\)-adic Hodge theory. Proceedings of the Simons symposium, Schloss Elmau, Germany, May 7--13, 2017. Cham: Springer. 143--160 (2020; Zbl 1440.14112) Full Text: DOI
Morrow, Matthew Notes on the \(\mathbb A_{\inf}\)-cohomology of integral \(p\)-adic Hodge theory. (English) Zbl 1440.14116 Bhatt, Bhargav (ed.) et al., \(p\)-adic Hodge theory. Proceedings of the Simons symposium, Schloss Elmau, Germany, May 7–13, 2017. Cham: Springer. Simons Symp., 1-69 (2020). MSC: 14F30 13A35 14G45 PDF BibTeX XML Cite \textit{M. Morrow}, in: \(p\)-adic Hodge theory. Proceedings of the Simons symposium, Schloss Elmau, Germany, May 7--13, 2017. Cham: Springer. 1--69 (2020; Zbl 1440.14116) Full Text: DOI
Zhao, Rundong; Wang, Menglun; Chen, Jiahui; Tong, Yiying; Wei, Guo-Wei The de Rham-Hodge analysis and modeling of biomolecules. (English) Zbl 1448.92158 Bull. Math. Biol. 82, No. 8, Paper No. 108, 38 p. (2020). MSC: 92D20 55M99 53B50 PDF BibTeX XML Cite \textit{R. Zhao} et al., Bull. Math. Biol. 82, No. 8, Paper No. 108, 38 p. (2020; Zbl 1448.92158) Full Text: DOI
Bannai, Kenichi; Hagihara, Kei; Kobayashi, Shinichi; Yamada, Kazuki; Yamamoto, Shuji; Yasuda, Seidai Category of mixed plectic Hodge structures. (English) Zbl 07240174 Asian J. Math. 24, No. 1, 31-76 (2020). MSC: 14C30 PDF BibTeX XML Cite \textit{K. Bannai} et al., Asian J. Math. 24, No. 1, 31--76 (2020; Zbl 07240174) Full Text: DOI
Ran, Ziv A Bogomolov unobstructedness theorem for log-symplectic manifolds in general position. (English) Zbl 1447.32019 J. Inst. Math. Jussieu 19, No. 5, 1509-1519 (2020). MSC: 32G07 53D17 14J40 32J27 PDF BibTeX XML Cite \textit{Z. Ran}, J. Inst. Math. Jussieu 19, No. 5, 1509--1519 (2020; Zbl 1447.32019) Full Text: DOI
Catanese, Fabrizio; Demleitner, Andreas Rigid group actions on complex tori are projective (after Ekedahl). (English) Zbl 1440.14210 Commun. Contemp. Math. 22, No. 7, Article ID 1950092, 15 p. (2020). MSC: 14K22 16G99 16K20 20C05 32G20 32Q15 PDF BibTeX XML Cite \textit{F. Catanese} and \textit{A. Demleitner}, Commun. Contemp. Math. 22, No. 7, Article ID 1950092, 15 p. (2020; Zbl 1440.14210) Full Text: DOI
Mongardi, Giovanni; Ottem, John Christian Curve classes on irreducible holomorphic symplectic varieties. (English) Zbl 1440.14038 Commun. Contemp. Math. 22, No. 7, Article ID 1950078, 15 p. (2020). MSC: 14C25 14J40 14J42 14C30 PDF BibTeX XML Cite \textit{G. Mongardi} and \textit{J. C. Ottem}, Commun. Contemp. Math. 22, No. 7, Article ID 1950078, 15 p. (2020; Zbl 1440.14038) Full Text: DOI
Sheng, Mao; Shentu, Junchao On \(E_1\)-degeneration for the special fiber of a semistable family. (English) Zbl 07236195 Commun. Number Theory Phys. 14, No. 3, 555-584 (2020). MSC: 14F40 14C30 14D06 PDF BibTeX XML Cite \textit{M. Sheng} and \textit{J. Shentu}, Commun. Number Theory Phys. 14, No. 3, 555--584 (2020; Zbl 07236195) Full Text: DOI
Lawrence, Brian; Venkatesh, Akshay Diophantine problems and \(p\)-adic period mappings. (English) Zbl 07233321 Invent. Math. 221, No. 3, 893-999 (2020). Reviewer: Evis Ieronymou (Nicosia) MSC: 11G35 11F80 11J89 14G05 PDF BibTeX XML Cite \textit{B. Lawrence} and \textit{A. Venkatesh}, Invent. Math. 221, No. 3, 893--999 (2020; Zbl 07233321) Full Text: DOI
Groechenig, Michael; Wyss, Dimitri; Ziegler, Paul Mirror symmetry for moduli spaces of Higgs bundles via \(p\)-adic integration. (English) Zbl 1451.14123 Invent. Math. 221, No. 2, 505-596 (2020). Reviewer: André Oliveira (Porto) MSC: 14J33 14H60 14G20 PDF BibTeX XML Cite \textit{M. Groechenig} et al., Invent. Math. 221, No. 2, 505--596 (2020; Zbl 1451.14123) Full Text: DOI
Kerr, Matt; Li, Muxi Two applications of the integral regulator. (English) Zbl 1440.14022 Pac. J. Math. 306, No. 2, 539-556 (2020). MSC: 14C15 14C25 14C30 19E15 PDF BibTeX XML Cite \textit{M. Kerr} and \textit{M. Li}, Pac. J. Math. 306, No. 2, 539--556 (2020; Zbl 1440.14022) Full Text: DOI
Przyjalkowski, Victor; Shramov, Constantin Hodge level for weighted complete intersections. (English) Zbl 1440.14196 Collect. Math. 71, No. 3, 549-574 (2020). MSC: 14J45 14C30 14M10 PDF BibTeX XML Cite \textit{V. Przyjalkowski} and \textit{C. Shramov}, Collect. Math. 71, No. 3, 549--574 (2020; Zbl 1440.14196) Full Text: DOI
Todorov, Ivan Perturbative quantum field theory meets number theory. (English) Zbl 1444.81029 Burgos Gil, José Ignacio (ed.) et al., Periods in quantum field theory and arithmetic. Outcome of the “Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory”, ICMAT 2014, Madrid, Spain, September 15–19, 2014. Cham: Springer. Springer Proc. Math. Stat. 314, 1-28 (2020). MSC: 81T15 81T18 14C30 11G55 11M32 16T05 16E45 PDF BibTeX XML Cite \textit{I. Todorov}, Springer Proc. Math. Stat. 314, 1--28 (2020; Zbl 1444.81029) Full Text: DOI
Dettweiler, Michael; Reiter, Stefan On the Hodge theory of the additive middle convolution. (English) Zbl 1441.14040 Publ. Res. Inst. Math. Sci. 56, No. 3, 503-537 (2020). Reviewer: Vladimir P. Kostov (Nice) MSC: 14D07 32G20 32S40 34M99 PDF BibTeX XML Cite \textit{M. Dettweiler} and \textit{S. Reiter}, Publ. Res. Inst. Math. Sci. 56, No. 3, 503--537 (2020; Zbl 1441.14040) Full Text: DOI
Petersen, Peter; Wink, Matthias The Bochner technique and weighted curvatures. (English) Zbl 1444.53032 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 064, 10 p. (2020). MSC: 53C23 53B20 53C20 53C21 58A14 PDF BibTeX XML Cite \textit{P. Petersen} and \textit{M. Wink}, SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 064, 10 p. (2020; Zbl 1444.53032) Full Text: DOI
Yang, Song; Yu, Xun Rational cubic fourfolds in Hassett divisors. (Cubiques rationnelles de dimension 4 dans les diviseurs de Hassett.) (English. French summary) Zbl 1440.14041 C. R., Math., Acad. Sci. Paris 358, No. 2, 129-137 (2020). MSC: 14C30 14E08 14M20 PDF BibTeX XML Cite \textit{S. Yang} and \textit{X. Yu}, C. R., Math., Acad. Sci. Paris 358, No. 2, 129--137 (2020; Zbl 1440.14041) Full Text: DOI
Chen, Xi; Lewis, James D.; Pearlstein, Gregory Indecomposable \(K_1\) classes on a surface and membrane integrals. (English. French summary) Zbl 1440.14034 C. R., Math., Acad. Sci. Paris 358, No. 4, 511-513 (2020). MSC: 14C25 14C30 14C35 PDF BibTeX XML Cite \textit{X. Chen} et al., C. R., Math., Acad. Sci. Paris 358, No. 4, 511--513 (2020; Zbl 1440.14034) Full Text: DOI
Chen, T. H.; Ngô, B. C. On the Hitchin morphism for higher-dimensional varieties. (English) Zbl 1448.14014 Duke Math. J. 169, No. 10, 1971-2004 (2020). Reviewer: Alexey Lavrov (Moskva) MSC: 14D20 32G13 14J60 PDF BibTeX XML Cite \textit{T. H. Chen} and \textit{B. C. Ngô}, Duke Math. J. 169, No. 10, 1971--2004 (2020; Zbl 1448.14014) Full Text: DOI Euclid
Tosatti, Valentino; Zhang, Yuguang Collapsing Hyperkähler manifolds. (English) Zbl 07226617 Ann. Sci. Éc. Norm. Supér. (4) 53, No. 3, 751-786 (2020). MSC: 32Q25 14J32 14J33 53C26 32G20 PDF BibTeX XML Cite \textit{V. Tosatti} and \textit{Y. Zhang}, Ann. Sci. Éc. Norm. Supér. (4) 53, No. 3, 751--786 (2020; Zbl 07226617) Full Text: DOI
Demleitner, Andreas Classification of Bagnera-de Franchis varieties in small dimensions. (English. French summary) Zbl 07224977 Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 1, 111-133 (2020). MSC: 14K10 14J10 14J30 14J35 11R18 14C30 PDF BibTeX XML Cite \textit{A. Demleitner}, Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 1, 111--133 (2020; Zbl 07224977) Full Text: DOI
Asakura, Masanori; Yabu, Toshifumi Explicit logarithmic formulas of special values of hypergeometric functions \({}_3F_2\). (English) Zbl 1442.14039 Commun. Contemp. Math. 22, No. 5, Article ID 1950040, 22 p. (2020). MSC: 14D07 11G15 33C20 11G55 14K22 19F27 PDF BibTeX XML Cite \textit{M. Asakura} and \textit{T. Yabu}, Commun. Contemp. Math. 22, No. 5, Article ID 1950040, 22 p. (2020; Zbl 1442.14039) Full Text: DOI
Yokura, Shoji Topics of motivic characteristic classes. (English. Japanese original) Zbl 07220090 Sugaku Expo. 33, No. 1, 57-84 (2020); translation from Sūgaku 68, No. 2, 151-176 (2016). MSC: 14C17 14C40 14F45 14F99 14N35 32S35 55N22 PDF BibTeX XML Full Text: DOI
Frediani, Paola; Ghigi, Alessandro; Pirola, Gian Pietro Fujita decomposition and Hodge loci. (English) Zbl 07219259 J. Inst. Math. Jussieu 19, No. 4, 1389-1408 (2020). MSC: 14C30 14D07 14H10 14H15 14H40 32G20 PDF BibTeX XML Cite \textit{P. Frediani} et al., J. Inst. Math. Jussieu 19, No. 4, 1389--1408 (2020; Zbl 07219259) Full Text: DOI
Kapovich, Michael Periods of abelian differentials and dynamics. (English) Zbl 1436.37047 Moree, Pieter (ed.) et al., Dynamics: topology and numbers. Conference, Max Planck Institute for Mathematics, Bonn, Germany, July 2–6, 2018. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 744, 297-315 (2020). MSC: 37D40 14K20 22D40 22E40 32G20 57K20 PDF BibTeX XML Cite \textit{M. Kapovich}, Contemp. Math. 744, 297--315 (2020; Zbl 1436.37047) Full Text: DOI
Hamm, Helmut A. Divisor class groups of singular varieties. (English) Zbl 1442.14021 Castro-Jiménez, Francisco-Jesús (ed.) et al., A panorama of singularities. A panorama on singular varieties. Conference to celebrate Lê Dũng Tráng’s 70th birthday, University of Seville, IMUS, Spain, February 7–10, 2017. Providence, RI: American Mathematical Society (AMS); Madrid: Real Sociedad Matemática Española (RSME). Contemp. Math. 742, 73-83 (2020). MSC: 14C15 14C20 14C30 32S50 PDF BibTeX XML Cite \textit{H. A. Hamm}, Contemp. Math. 742, 73--83 (2020; Zbl 1442.14021) Full Text: DOI
Zhou, Jiuru Vanishing theorems for \(L^2\) harmonic \(p\)-forms on Riemannian manifolds with a weighted \(p\)-Poincaré inequality. (English) Zbl 1441.53054 J. Math. Anal. Appl. 490, No. 1, Article ID 124229, 9 p. (2020). MSC: 53C43 58A14 PDF BibTeX XML Cite \textit{J. Zhou}, J. Math. Anal. Appl. 490, No. 1, Article ID 124229, 9 p. (2020; Zbl 1441.53054) Full Text: DOI
Wei, Chuanhao Logarithmic comparison with smooth boundary divisor in mixed Hodge modules. (English) Zbl 07208930 Mich. Math. J. 69, No. 1, 201-223 (2020). MSC: 14C30 14D06 14D07 PDF BibTeX XML Cite \textit{C. Wei}, Mich. Math. J. 69, No. 1, 201--223 (2020; Zbl 07208930) Full Text: DOI Euclid
Schaub, Michael T.; Benson, Austin R.; Horn, Paul; Lippner, Gabor; Jadbabaie, Ali Random walks on simplicial complexes and the normalized Hodge 1-Laplacian. (English) Zbl 1441.05205 SIAM Rev. 62, No. 2, 353-391 (2020). MSC: 05C81 05C80 05C82 68R10 68P05 05E45 05C90 91D30 55U10 PDF BibTeX XML Cite \textit{M. T. Schaub} et al., SIAM Rev. 62, No. 2, 353--391 (2020; Zbl 1441.05205) Full Text: DOI
Böckle, Gebhard (ed.); Goss, David (ed.); Hartl, Urs (ed.); Papanikolas, Matthew (ed.) \(t\)-motives: Hodge structures, transcendence and other motivic aspects. (English) Zbl 1441.14003 EMS Series of Congress Reports. Zürich: European Mathematical Society (EMS) (ISBN 978-3-03719-198-9/hbk; 978-3-03719-698-4/ebook). xi, 461 p. (2020). MSC: 14-06 11-06 14C15 14C30 11G09 11J93 11R58 13A35 00B15 PDF BibTeX XML Cite \textit{G. Böckle} (ed.) et al., \(t\)-motives: Hodge structures, transcendence and other motivic aspects. Zürich: European Mathematical Society (EMS) (2020; Zbl 1441.14003) Full Text: DOI
Nikdelan, Younes Modular vector fields attached to dwork family: \(\mathfrak{sl}_2(\mathbb{C})\) Lie algebra. (English) Zbl 07206637 Mosc. Math. J. 20, No. 1, 127-151 (2020). MSC: 32M25 37F99 14J15 14J32 PDF BibTeX XML Cite \textit{Y. Nikdelan}, Mosc. Math. J. 20, No. 1, 127--151 (2020; Zbl 07206637) Full Text: Link
Gastel, Andreas Canonical gauges in higher gauge theory. (English) Zbl 1447.81162 Commun. Math. Phys. 376, No. 2, 1053-1071 (2020). MSC: 81T13 70S15 53C05 53D50 46E36 55R65 58A14 14F08 18N10 PDF BibTeX XML Cite \textit{A. Gastel}, Commun. Math. Phys. 376, No. 2, 1053--1071 (2020; Zbl 1447.81162) Full Text: DOI
Brown, Gavin; Fatighenti, Enrico Hodge numbers and deformations of Fano 3-folds. (English) Zbl 07206345 Doc. Math. 25, 267-307 (2020). MSC: 14J30 14C30 14E30 PDF BibTeX XML Cite \textit{G. Brown} and \textit{E. Fatighenti}, Doc. Math. 25, 267--307 (2020; Zbl 07206345) Full Text: DOI
Debarre, Olivier; Kuznetsov, Alexander Gushel-Mukai varieties: moduli. (English) Zbl 07206083 Int. J. Math. 31, No. 2, Article ID 2050013, 59 p. (2020). MSC: 14D22 14D23 14J10 14J45 14J30 14J35 14J40 14D07 PDF BibTeX XML Cite \textit{O. Debarre} and \textit{A. Kuznetsov}, Int. J. Math. 31, No. 2, Article ID 2050013, 59 p. (2020; Zbl 07206083) Full Text: DOI
Suzuki, Fumiaki A remark on a 3-fold constructed by Colliot-Thélène and Voisin. (English) Zbl 1441.14132 Math. Res. Lett. 27, No. 1, 301-317 (2020). Reviewer: Giosuè Muratore (Roma) MSC: 14J30 14C30 14C35 PDF BibTeX XML Cite \textit{F. Suzuki}, Math. Res. Lett. 27, No. 1, 301--317 (2020; Zbl 1441.14132)
González-Prieto, Ángel; Logares, Marina; Muñoz, Vicente A lax monoidal topological quantum field theory for representation varieties. (English) Zbl 1441.57031 Bull. Sci. Math. 161, Article ID 102871, 33 p. (2020). Reviewer: Ramsès Fernàndez-València (Barcelona) MSC: 57R56 14C30 14D07 14D21 PDF BibTeX XML Cite \textit{Á. González-Prieto} et al., Bull. Sci. Math. 161, Article ID 102871, 33 p. (2020; Zbl 1441.57031) Full Text: DOI
Ottem, John Christian; Suzuki, Fumiaki A pencil of Enriques surfaces with non-algebraic integral Hodge classes. (English) Zbl 1440.14039 Math. Ann. 377, No. 1-2, 183-197 (2020). Reviewer: Mauro Fortuna (Hannover) MSC: 14C25 14C30 14J28 PDF BibTeX XML Cite \textit{J. C. Ottem} and \textit{F. Suzuki}, Math. Ann. 377, No. 1--2, 183--197 (2020; Zbl 1440.14039) Full Text: DOI
Achter, Jeffrey D.; Casalaina-Martin, Sebastian; Vial, Charles Distinguished models of intermediate Jacobians. (English) Zbl 1446.14029 J. Inst. Math. Jussieu 19, No. 3, 891-918 (2020). MSC: 14K30 14C25 14C30 11G10 11G35 PDF BibTeX XML Cite \textit{J. D. Achter} et al., J. Inst. Math. Jussieu 19, No. 3, 891--918 (2020; Zbl 1446.14029) Full Text: DOI
Mustaţă, Mircea; Olano, Sebastián; Popa, Mihnea Local vanishing and Hodge filtration for rational singularities. (English) Zbl 1443.14040 J. Inst. Math. Jussieu 19, No. 3, 801-819 (2020). Reviewer: Mohammad Reza Rahmati (León) MSC: 14J17 14F17 32S25 32S35 PDF BibTeX XML Cite \textit{M. Mustaţă} et al., J. Inst. Math. Jussieu 19, No. 3, 801--819 (2020; Zbl 1443.14040) Full Text: DOI
Hain, Richard; Matsumoto, Makoto Universal mixed elliptic motives. (English) Zbl 07202790 J. Inst. Math. Jussieu 19, No. 3, 663-766 (2020). MSC: 14F42 14F35 14H52 11G55 14C30 19E20 PDF BibTeX XML Cite \textit{R. Hain} and \textit{M. Matsumoto}, J. Inst. Math. Jussieu 19, No. 3, 663--766 (2020; Zbl 07202790) Full Text: DOI
González-Prieto, Ángel Virtual classes of parabolic \(\operatorname{SL}_2(\mathbb{C})\)-character varieties. (English) Zbl 07201206 Adv. Math. 368, Article ID 107148, 40 p. (2020). MSC: 14C30 57R56 14L24 14D21 PDF BibTeX XML Cite \textit{Á. González-Prieto}, Adv. Math. 368, Article ID 107148, 40 p. (2020; Zbl 07201206) Full Text: DOI