Lan, Kunquan; Lin, Wei Steady-state solutions of one-dimensional competition models in an unstirred chemostat via the fixed point index theory. (English) Zbl 07316399 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 240-264 (2021). MSC: 45G15 34B18 47H10 47H30 92B05 PDF BibTeX XML Cite \textit{K. Lan} and \textit{W. Lin}, Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 240--264 (2021; Zbl 07316399) Full Text: DOI
Li, Jinlu Several fixed point theorems on partially ordered Banach spaces and their applications to integral equations. (English) Zbl 07282711 Fixed Point Theory 21, No. 1, 259-270 (2020). MSC: 06F30 45G10 47H10 PDF BibTeX XML Cite \textit{J. Li}, Fixed Point Theory 21, No. 1, 259--270 (2020; Zbl 07282711) Full Text: Link
Dalla Riva, M.; Lanza De Cristoforis, M.; Musolino, P. Mapping properties of weakly singular periodic volume potentials in Roumieu classes. (English) Zbl 07282580 J. Integral Equations Appl. 32, No. 2, 129-149 (2020). MSC: 47H30 31B10 PDF BibTeX XML Cite \textit{M. Dalla Riva} et al., J. Integral Equations Appl. 32, No. 2, 129--149 (2020; Zbl 07282580) Full Text: DOI Euclid
Mukhamedov, Farrukh; Khakimov, Otabek; Embong, Ahmad Fadillah Solvability of nonlinear integral equations and surjectivity of nonlinear Markov operators. (English) Zbl 1452.45004 Math. Methods Appl. Sci. 43, No. 15, 9102-9118 (2020). MSC: 45G10 47H30 47H25 47H60 PDF BibTeX XML Cite \textit{F. Mukhamedov} et al., Math. Methods Appl. Sci. 43, No. 15, 9102--9118 (2020; Zbl 1452.45004) Full Text: DOI
Patel, Subhashree; Panigrahi, Bijaya Laxmi Legendre spectral projection methods for weakly singular Hammerstein integral equations of mixed type. (English) Zbl 07220225 J. Anal. 28, No. 2, 387-413 (2020). Reviewer: Kai Diethelm (Schweinfurt) MSC: 45G05 65R20 PDF BibTeX XML Cite \textit{S. Patel} and \textit{B. L. Panigrahi}, J. Anal. 28, No. 2, 387--413 (2020; Zbl 07220225) Full Text: DOI
Mandal, Moumita; Nelakanti, Gnaneshwar Legendre spectral Galerkin and multi-Galerkin methods for nonlinear Volterra integral equations of Hammerstein type. (English) Zbl 07220221 J. Anal. 28, No. 2, 323-349 (2020). MSC: 65R20 45D05 45G10 PDF BibTeX XML Cite \textit{M. Mandal} and \textit{G. Nelakanti}, J. Anal. 28, No. 2, 323--349 (2020; Zbl 07220221) Full Text: DOI
Metwali, Mohamed M. A. On perturbed quadratic integral equations and initial value problem with nonlocal conditions in Orlicz spaces. (English) Zbl 07219830 Demonstr. Math. 53, 86-94 (2020). MSC: 45G10 47H30 47N20 PDF BibTeX XML Cite \textit{M. M. A. Metwali}, Demonstr. Math. 53, 86--94 (2020; Zbl 07219830) Full Text: DOI
Das, Payel; Nahid, Nilofar; Nelakanti, Gnaneshwar Superconvergence of iterated Galerkin method for a class of nonlinear Fredholm integral equations. (English) Zbl 1455.65231 Castillo, Oscar (ed.) et al., Recent advances in intelligent information systems and applied mathematics. Selected papers based on the presentations at the 2nd international conference on information technology and applied mathematics, ICITAM 2019, Haldia Institute of Technology, Haldia, India, March 7–9, 2019. Cham: Springer. Stud. Comput. Intell. 863, 53-74 (2020). MSC: 65R20 45G10 45B05 PDF BibTeX XML Cite \textit{P. Das} et al., Stud. Comput. Intell. 863, 53--74 (2020; Zbl 1455.65231) Full Text: DOI
Evseev, N. A.; Menovschikov, A. V. On changing variables in \(L^p\)-spaces with distributed-microstructure. (English. Russian original) Zbl 07215272 Russ. Math. 64, No. 3, 82-86 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 3, 92-97 (2020). MSC: 47H30 35A23 35B27 35K57 46E30 46E35 PDF BibTeX XML Cite \textit{N. A. Evseev} and \textit{A. V. Menovschikov}, Russ. Math. 64, No. 3, 82--86 (2020; Zbl 07215272); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 3, 92--97 (2020) Full Text: DOI
Mirzaee, Farshid; Samadyar, Nasrin Explicit representation of orthonormal Bernoulli polynomials and its application for solving Volterra-Fredholm-Hammerstein integral equations. (English) Zbl 1441.45001 S\(\vec{\text{e}}\)MA J. 77, No. 1, 81-96 (2020). Reviewer: Josef Kofroň (Praha) MSC: 45B05 45D05 45G10 65D30 65R20 42C05 PDF BibTeX XML Cite \textit{F. Mirzaee} and \textit{N. Samadyar}, S\(\vec{\text{e}}\)MA J. 77, No. 1, 81--96 (2020; Zbl 1441.45001) Full Text: DOI
Alfaqih, Waleed Mohd.; Imdad, Mohammad; Rouzkard, Fayyaz Unified common fixed point theorems in complex valued metric spaces via an implicit relation with applications. (English) Zbl 1431.54023 Bol. Soc. Parana. Mat. (3) 38, No. 4, 9-29 (2020). MSC: 54H25 54E40 45G10 PDF BibTeX XML Cite \textit{W. Mohd. Alfaqih} et al., Bol. Soc. Parana. Mat. (3) 38, No. 4, 9--29 (2020; Zbl 1431.54023) Full Text: Link
Sahlan, Monireh Nosrati Convergence of approximate solution of mixed Hammerstein type integral equations. (English) Zbl 1431.45004 Bol. Soc. Parana. Mat. (3) 38, No. 2, 61-74 (2020). MSC: 45G10 65L60 42C40 65Gxx PDF BibTeX XML Cite \textit{M. N. Sahlan}, Bol. Soc. Parana. Mat. (3) 38, No. 2, 61--74 (2020; Zbl 1431.45004) Full Text: Link
Goodrich, Christopher S. Pointwise conditions for perturbed Hammerstein integral equations with monotone nonlinear, nonlocal elements. (English) Zbl 07153996 Banach J. Math. Anal. 14, No. 1, 290-312 (2020). MSC: 47H30 34B10 34B18 45G10 45M20 47H14 PDF BibTeX XML Cite \textit{C. S. Goodrich}, Banach J. Math. Anal. 14, No. 1, 290--312 (2020; Zbl 07153996) Full Text: DOI
Infante, Gennaro Positive and increasing solutions of perturbed Hammerstein integral equations with derivative dependence. (English) Zbl 1443.45008 Discrete Contin. Dyn. Syst., Ser. B 25, No. 2, 691-699 (2020). MSC: 45G15 45M20 34B10 34B18 47H30 PDF BibTeX XML Cite \textit{G. Infante}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 2, 691--699 (2020; Zbl 1443.45008) Full Text: DOI
Cheng, Xiyou; Feng, Zhaosheng; Zhang, Zhitao Multiplicity of positive solutions to nonlinear systems of Hammerstein integral equations with weighted functions. (English) Zbl 1437.45004 Commun. Pure Appl. Anal. 19, No. 1, 221-240 (2020). Reviewer: Jürgen Appell (Würzburg) MSC: 45G15 45M20 47H30 PDF BibTeX XML Cite \textit{X. Cheng} et al., Commun. Pure Appl. Anal. 19, No. 1, 221--240 (2020; Zbl 1437.45004) Full Text: DOI
Okeke, Godwin Amechi; Bishop, Sheila Amina; Akewe, Hudson Random fixed point theorems in Banach spaces applied to a random nonlinear integral equation of the Hammerstein type. (English) Zbl 1442.47040 Fixed Point Theory Appl. 2019, Paper No. 15, 24 p. (2019). MSC: 47H40 47H10 47N20 45R05 PDF BibTeX XML Cite \textit{G. A. Okeke} et al., Fixed Point Theory Appl. 2019, Paper No. 15, 24 p. (2019; Zbl 1442.47040) Full Text: DOI
Chidume, C. E.; Nnakwe, M. O.; Adamu, A. A strong convergence theorem for generalized-\( \varPhi \)-strongly monotone maps, with applications. (English) Zbl 1442.47044 Fixed Point Theory Appl. 2019, Paper No. 11, 19 p. (2019). MSC: 47J25 47H05 47N10 47N20 PDF BibTeX XML Cite \textit{C. E. Chidume} et al., Fixed Point Theory Appl. 2019, Paper No. 11, 19 p. (2019; Zbl 1442.47044) Full Text: DOI
Rabbani, Mohsen An iterative algorithm to find a closed form of solution for Hammerstein nonlinear integral equation constructed by the concept of cosm-rs. (English) Zbl 1447.45007 Math. Sci., Springer 13, No. 3, 299-305 (2019). MSC: 45G10 47J25 47H30 47N60 92E99 PDF BibTeX XML Cite \textit{M. Rabbani}, Math. Sci., Springer 13, No. 3, 299--305 (2019; Zbl 1447.45007) Full Text: DOI
Goodrich, Christopher S. Coercive functionals and their relationship to multiplicity of solution to nonlocal boundary value problems. (English) Zbl 1436.45005 Topol. Methods Nonlinear Anal. 54, No. 2A, 409-426 (2019). Reviewer: Stepan Agop Tersian (Rousse) MSC: 45G10 45M20 34B10 PDF BibTeX XML Cite \textit{C. S. Goodrich}, Topol. Methods Nonlinear Anal. 54, No. 2A, 409--426 (2019; Zbl 1436.45005) Full Text: DOI Euclid
de Sousa, Robert; Minhós, Feliz Coupled systems of Hammerstein-type integral equations with sign-changing kernels. (English) Zbl 07155291 Nonlinear Anal., Real World Appl. 50, 469-483 (2019). MSC: 45G10 45F15 PDF BibTeX XML Cite \textit{R. de Sousa} and \textit{F. Minhós}, Nonlinear Anal., Real World Appl. 50, 469--483 (2019; Zbl 07155291) Full Text: DOI
Boichuk, A. A.; Kozlova, N. A.; Feruk, V. A. Weakly nonlinear integral equations of the Hammerstein type. (English) Zbl 1435.45003 Nonlinear Dyn. Syst. Theory 19, No. 2, 289-301 (2019). MSC: 45G10 45B05 39B42 PDF BibTeX XML Cite \textit{A. A. Boichuk} et al., Nonlinear Dyn. Syst. Theory 19, No. 2, 289--301 (2019; Zbl 1435.45003)
Ziari, Shokrollah Towards the accuracy of iterative numerical methods for fuzzy Hammerstein-Fredholm integral equations. (English) Zbl 1425.65216 Fuzzy Sets Syst. 375, 161-178 (2019). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{S. Ziari}, Fuzzy Sets Syst. 375, 161--178 (2019; Zbl 1425.65216) Full Text: DOI
De Cristoforis, Massimo Lanza; Musolino, Paolo Asymptotic behaviour of the energy integral of a two-parameter homogenization problem with nonlinear periodic Robin boundary conditions. (English) Zbl 1439.35154 Proc. Edinb. Math. Soc., II. Ser. 62, No. 4, 985-1016 (2019). Reviewer: Davide Buoso (Alessandria) MSC: 35J25 31B10 45A05 47H30 PDF BibTeX XML Cite \textit{M. L. De Cristoforis} and \textit{P. Musolino}, Proc. Edinb. Math. Soc., II. Ser. 62, No. 4, 985--1016 (2019; Zbl 1439.35154) Full Text: DOI
Eloe, Paul W.; Neugebauer, Jeffrey T. Avery fixed point theorem applied to Hammerstein integral equations. (English) Zbl 07115558 Electron. J. Differ. Equ. 2019, Paper No. 99, 20 p. (2019). MSC: 47H10 34A08 34B15 34B27 45G10 PDF BibTeX XML Cite \textit{P. W. Eloe} and \textit{J. T. Neugebauer}, Electron. J. Differ. Equ. 2019, Paper No. 99, 20 p. (2019; Zbl 07115558) Full Text: Link
El-Sayed, W. G.; El-Mowla, A. A. H. Abd Nonincreasing solutions for quadratic integral equations of convolution type. (English) Zbl 1434.45002 J. Math. Appl. 42, 95-107 (2019). MSC: 45G10 47H30 47N20 PDF BibTeX XML Cite \textit{W. G. El-Sayed} and \textit{A. A. H. A. El-Mowla}, J. Math. Appl. 42, 95--107 (2019; Zbl 1434.45002) Full Text: DOI
Poetzsche, Christian Numerical dynamics of integrodifference equations: global attractivity in a \(C^0\)-setting. (English) Zbl 1429.45004 SIAM J. Numer. Anal. 57, No. 5, 2121-2141 (2019). Reviewer: Alexander N. Tynda (Penza) MSC: 45J99 65R20 45G15 65P40 37C55 PDF BibTeX XML Cite \textit{C. Poetzsche}, SIAM J. Numer. Anal. 57, No. 5, 2121--2141 (2019; Zbl 1429.45004) Full Text: DOI
Belhadj, Maha; Ben Amar, Afif; Boumaiza, Mohamed Some fixed point theorems for Meir-Keeler condensing operators and application to a system of integral equations. (English) Zbl 07094826 Bull. Belg. Math. Soc. - Simon Stevin 26, No. 2, 223-239 (2019). MSC: 47H09 47H10 47H30 45B05 PDF BibTeX XML Cite \textit{M. Belhadj} et al., Bull. Belg. Math. Soc. - Simon Stevin 26, No. 2, 223--239 (2019; Zbl 07094826) Full Text: Link
Gulgowski, Jacek On integral bounded variation. (English) Zbl 1428.26019 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 399-422 (2019). Reviewer: Piotr Sworowski (Bydgoszcz) MSC: 26A45 45G10 45G05 47H30 PDF BibTeX XML Cite \textit{J. Gulgowski}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 399--422 (2019; Zbl 1428.26019) Full Text: DOI
Allouch, C.; Sbibih, D.; Tahrichi, M. Superconvergent product integration method for Hammerstein integral equations. (English) Zbl 1416.65525 J. Integral Equations Appl. 31, No. 1, 1-28 (2019). MSC: 65R20 45G10 47H30 PDF BibTeX XML Cite \textit{C. Allouch} et al., J. Integral Equations Appl. 31, No. 1, 1--28 (2019; Zbl 1416.65525) Full Text: DOI Euclid
Allouch, C.; Sbibih, D.; Tahrichi, M. Legendre superconvergent Galerkin-collocation type methods for Hammerstein equations. (English) Zbl 1433.65346 J. Comput. Appl. Math. 353, 253-264 (2019). MSC: 65R20 45G10 45B05 PDF BibTeX XML Cite \textit{C. Allouch} et al., J. Comput. Appl. Math. 353, 253--264 (2019; Zbl 1433.65346) Full Text: DOI
Mandal, Moumita; Nelakanti, Gnaneshwar Superconvergence results for weakly singular Fredholm-Hammerstein integral equations. (English) Zbl 1414.45002 Numer. Funct. Anal. Optim. 40, No. 5, 548-570 (2019). MSC: 45B05 45G10 65R20 PDF BibTeX XML Cite \textit{M. Mandal} and \textit{G. Nelakanti}, Numer. Funct. Anal. Optim. 40, No. 5, 548--570 (2019; Zbl 1414.45002) Full Text: DOI
Arab, Reza; Mursaleen, Mohammad; Rizvi, Syed M. H. Positive solution of a quadratic integral equation using generalization of Darbo’s fixed point theorem. (English) Zbl 07060055 Numer. Funct. Anal. Optim. 40, No. 10, 1150-1168 (2019). MSC: 47H30 46E10 34A08 46E15 PDF BibTeX XML Cite \textit{R. Arab} et al., Numer. Funct. Anal. Optim. 40, No. 10, 1150--1168 (2019; Zbl 07060055) Full Text: DOI
Cheng, Xiyou; Feng, Zhaosheng Existence and multiplicity of positive solutions to systems of nonlinear Hammerstein integral equations. (English) Zbl 1412.45014 Electron. J. Differ. Equ. 2019, Paper No. 52, 16 p. (2019). MSC: 45G15 37C25 45N05 PDF BibTeX XML Cite \textit{X. Cheng} and \textit{Z. Feng}, Electron. J. Differ. Equ. 2019, Paper No. 52, 16 p. (2019; Zbl 1412.45014) Full Text: Link
Lan, Kunquan; Lin, Wei Lyapunov type inequalities for Hammerstein integral equations and applications to population dynamics. (English) Zbl 07053029 Discrete Contin. Dyn. Syst., Ser. B 24, No. 4, 1943-1960 (2019). MSC: 47H30 35P30 45A05 47H10 92D25 PDF BibTeX XML Cite \textit{K. Lan} and \textit{W. Lin}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 4, 1943--1960 (2019; Zbl 07053029) Full Text: DOI
Awad, Hamed Kamal; Darwish, Mohamed Abdalla On Erdélyi-Kober cubic fractional integral equation of Urysohn-Volterra type. (English) Zbl 1437.45003 Differ. Uravn. Protsessy Upr. 2019, No. 1, 70-83 (2019). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45G05 45G10 47H30 26A33 PDF BibTeX XML Cite \textit{H. K. Awad} and \textit{M. A. Darwish}, Differ. Uravn. Protsessy Upr. 2019, No. 1, 70--83 (2019; Zbl 1437.45003) Full Text: Link
Mandal, Moumita; Nelakanti, Gnaneshwar Superconvergence results of Legendre spectral projection methods for weakly singular Fredholm-Hammerstein integral equations. (English) Zbl 1405.65173 J. Comput. Appl. Math. 349, 114-131 (2019). MSC: 65R20 45B05 45G10 PDF BibTeX XML Cite \textit{M. Mandal} and \textit{G. Nelakanti}, J. Comput. Appl. Math. 349, 114--131 (2019; Zbl 1405.65173) Full Text: DOI
Saiedinezhad, S. On a measure of noncompactness in the Holder space \(C^{k, \gamma}(\varOmega)\) and its application. (English) Zbl 1452.47002 J. Comput. Appl. Math. 346, 566-571 (2019). MSC: 47H08 47H10 47H30 47N20 PDF BibTeX XML Cite \textit{S. Saiedinezhad}, J. Comput. Appl. Math. 346, 566--571 (2019; Zbl 1452.47002) Full Text: DOI
Saha Ray, Santanu; Sahu, Prakash Kumar Novel methods for solving linear and nonlinear integral equations. (English) Zbl 1429.65006 Boca Raton, FL: CRC Press (ISBN 978-1-138-36274-1/hbk; 978-0-429-77738-7/ebook). xxi, 241 p. (2019). Reviewer: Alexander N. Tynda (Penza) MSC: 65-02 45-02 65R20 45A05 45B05 45G05 45G15 PDF BibTeX XML Cite \textit{S. Saha Ray} and \textit{P. K. Sahu}, Novel methods for solving linear and nonlinear integral equations. Boca Raton, FL: CRC Press (2019; Zbl 1429.65006) Full Text: Link
Al-Fadel, M. M. A. On a coupled system of Volterra-Stieltjes integral equations. (English) Zbl 1394.74048 Electron. J. Math. Analysis Appl. 7, No. 1, 95-101 (2019). MSC: 74H10 45G10 47H30 PDF BibTeX XML Cite \textit{M. M. A. Al-Fadel}, Electron. J. Math. Analysis Appl. 7, No. 1, 95--101 (2019; Zbl 1394.74048) Full Text: Link
Sumati Kumari, Panda; Alqahtani, Obaid; Karapınar, Erdal Some fixed-point theorems in \(b\)-dislocated metric space and applications. (English) Zbl 1425.54033 Symmetry 10, No. 12, Paper No. 691, 24 p. (2018). MSC: 54H25 47H10 34A12 45D05 47H30 PDF BibTeX XML Cite \textit{P. Sumati Kumari} et al., Symmetry 10, No. 12, Paper No. 691, 24 p. (2018; Zbl 1425.54033) Full Text: DOI
Khachatryan, Kh. A.; Terdzhyan, Ts. É.; Sardanyan, T. G. On the solvability of one system of nonlinear Hammerstein-type integral equations on the semiaxis. (English. Russian original) Zbl 1423.45003 Ukr. Math. J. 69, No. 8, 1287-1305 (2018); translation from Ukr. Mat. Zh. 69, No. 8, 1107-1122 (2017). MSC: 45G10 45F05 PDF BibTeX XML Cite \textit{Kh. A. Khachatryan} et al., Ukr. Math. J. 69, No. 8, 1287--1305 (2018; Zbl 1423.45003); translation from Ukr. Mat. Zh. 69, No. 8, 1107--1122 (2017) Full Text: DOI
Allouch, C.; Sbibih, D.; Tahrichi, M. Numerical solutions of weakly singular Hammerstein integral equations. (English) Zbl 1427.65414 Appl. Math. Comput. 329, 118-128 (2018). MSC: 65R20 45E10 45G10 PDF BibTeX XML Cite \textit{C. Allouch} et al., Appl. Math. Comput. 329, 118--128 (2018; Zbl 1427.65414) Full Text: DOI
Petruşel, Adrian; Rus, Ioan A. A class of functional-integral equations via Picard operator technique. (English) Zbl 1438.45006 Ann. Acad. Rom. Sci., Math. Appl. 10, No. 1, 15-24 (2018). MSC: 45G10 47H10 47H30 45M10 45N05 PDF BibTeX XML Cite \textit{A. Petruşel} and \textit{I. A. Rus}, Ann. Acad. Rom. Sci., Math. Appl. 10, No. 1, 15--24 (2018; Zbl 1438.45006) Full Text: Link
Micula, Sanda; Cattani, Carlo On a numerical method based on wavelets for Fredholm-Hammerstein integral equations of the second kind. (English) Zbl 1406.65138 Math. Methods Appl. Sci. 41, No. 18, 9103-9115 (2018). MSC: 65R20 65T60 45B05 47G10 65J15 PDF BibTeX XML Cite \textit{S. Micula} and \textit{C. Cattani}, Math. Methods Appl. Sci. 41, No. 18, 9103--9115 (2018; Zbl 1406.65138) Full Text: DOI
Casey, Kendall F. Periodic traveling-wave solutions to the Whitham equation. (English) Zbl 1405.35181 Math. Model. Nat. Phenom. 13, No. 2, Paper No. 16, 12 p. (2018). MSC: 35Q53 45G10 47H30 PDF BibTeX XML Cite \textit{K. F. Casey}, Math. Model. Nat. Phenom. 13, No. 2, Paper No. 16, 12 p. (2018; Zbl 1405.35181) Full Text: DOI
Goodrich, Christopher S. Radially symmetric solutions of elliptic PDEs with uniformly negative weight. (English) Zbl 1412.35144 Ann. Mat. Pura Appl. (4) 197, No. 5, 1585-1611 (2018). Reviewer: Dian K. Palagachev (Bari) MSC: 35J91 35J25 35B09 45G10 45M20 47H30 92D40 PDF BibTeX XML Cite \textit{C. S. Goodrich}, Ann. Mat. Pura Appl. (4) 197, No. 5, 1585--1611 (2018; Zbl 1412.35144) Full Text: DOI
Panigrahi, Bijaya Laxmi Legendre spectral projection methods for Hammerstein integral equations with weakly singular kernel. (English) Zbl 1406.65139 Int. J. Appl. Comput. Math. 4, No. 6, Paper No. 143, 15 p. (2018). Reviewer: Alexander N. Tynda (Penza) MSC: 65R20 45G05 47J05 76M22 PDF BibTeX XML Cite \textit{B. L. Panigrahi}, Int. J. Appl. Comput. Math. 4, No. 6, Paper No. 143, 15 p. (2018; Zbl 1406.65139) Full Text: DOI
Agarwal, Ravi P.; Metwali, Mohamed M. A.; O’Regan, Donal On existence and uniqueness of \(L_1\)-solutions for quadratic integral equations via a Krasnoselskii-type fixed point theorem. (English) Zbl 1402.45004 Rocky Mt. J. Math. 48, No. 6, 1743-1762 (2018). MSC: 45G10 47H30 47N20 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., Rocky Mt. J. Math. 48, No. 6, 1743--1762 (2018; Zbl 1402.45004) Full Text: DOI Euclid
Singh, Sukhjit; Gupta, Dharmendra Kumar; Singh, Randhir; Singh, Mehakpreet; Martinez, Eulalia Convergence of an iteration of fifth-order using weaker conditions on first order Fréchet derivative in Banach spaces. (English) Zbl 1404.65050 Int. J. Comput. Methods 15, No. 6, Article ID 1850048, 18 p. (2018). MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{S. Singh} et al., Int. J. Comput. Methods 15, No. 6, Article ID 1850048, 18 p. (2018; Zbl 1404.65050) Full Text: DOI
Saiedinezhad, Somayeh Existence and asymptotically stable solution of a Hammerstein type integral equation in a Hölder space. (English) Zbl 1402.45005 Bull. Belg. Math. Soc. - Simon Stevin 25, No. 3, 453-465 (2018). MSC: 45G10 45M10 47H08 47H10 PDF BibTeX XML Cite \textit{S. Saiedinezhad}, Bull. Belg. Math. Soc. - Simon Stevin 25, No. 3, 453--465 (2018; Zbl 1402.45005) Full Text: Euclid
Lanza de Cristoforis, M.; Musolino, P. Analytic dependence of a periodic analog of a fundamental solution upon the periodicity parameters. (English) Zbl 06921493 Ann. Mat. Pura Appl. (4) 197, No. 4, 1089-1116 (2018). MSC: 47H30 42B99 31B10 45A05 35J25 PDF BibTeX XML Cite \textit{M. Lanza de Cristoforis} and \textit{P. Musolino}, Ann. Mat. Pura Appl. (4) 197, No. 4, 1089--1116 (2018; Zbl 06921493) Full Text: DOI
Figueroa, Rubén; Tojo, F. Adrián F. Fixed points of Hammerstein-type equations on general cones. (English) Zbl 06918874 Fixed Point Theory 19, No. 2, 571-586 (2018). Reviewer: Mohamed Abdalla Darwish (Damanhour) MSC: 47H30 45G10 PDF BibTeX XML Cite \textit{R. Figueroa} and \textit{F. A. F. Tojo}, Fixed Point Theory 19, No. 2, 571--586 (2018; Zbl 06918874) Full Text: Link
Saeedi, L.; Tari, A. A numerical method for functional Hammerstein integro-differential equations,. (English) Zbl 1394.65170 Appl. Appl. Math. 13, No. 1, 333-353 (2018). MSC: 65R20 45J05 PDF BibTeX XML Cite \textit{L. Saeedi} and \textit{A. Tari}, Appl. Appl. Math. 13, No. 1, 333--353 (2018; Zbl 1394.65170) Full Text: Link
Kumar, Abhimanyu; Gupta, Dharmendra K.; Martínez, Eulalia; Singh, Sukhjit Convergence of a two-step iterative method for nondifferentiable operators in Banach spaces. (English) Zbl 1390.47021 Complexity 2018, Article ID 7352780, 11 p. (2018). MSC: 47J25 65J15 65R20 PDF BibTeX XML Cite \textit{A. Kumar} et al., Complexity 2018, Article ID 7352780, 11 p. (2018; Zbl 1390.47021) Full Text: DOI
Cabada, Alberto; López-Somoza, Lucía; Tojo, F. Adrián F. Existence of solutions of integral equations with asymptotic conditions. (English) Zbl 1392.45011 Nonlinear Anal., Real World Appl. 42, 140-159 (2018). MSC: 45G10 45P05 PDF BibTeX XML Cite \textit{A. Cabada} et al., Nonlinear Anal., Real World Appl. 42, 140--159 (2018; Zbl 1392.45011) Full Text: DOI
Shehu, Yekini; Iyiola, Olaniyi. S. Convergence of hybrid viscosity and steepest-descent methods for pseudocontractive mappings and nonlinear Hammerstein equations. (English) Zbl 1399.47186 Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 2, 610-626 (2018). MSC: 47J25 47H06 47H09 47N20 PDF BibTeX XML Cite \textit{Y. Shehu} and \textit{Olaniyi. S. Iyiola}, Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 2, 610--626 (2018; Zbl 1399.47186) Full Text: DOI
El-Sayed, A. M. A.; Al-Fadel, M. M. A. Existence of solution for a coupled system of Urysohn-Stieltjes functional integral equations. (English) Zbl 06856991 Tbil. Math. J. 11, No. 1, 117-125 (2018). MSC: 74H10 45G10 47H30 PDF BibTeX XML Cite \textit{A. M. A. El-Sayed} and \textit{M. M. A. Al-Fadel}, Tbil. Math. J. 11, No. 1, 117--125 (2018; Zbl 06856991) Full Text: DOI
Al-Fadel, M. M. A. Solvability of a coupled system of Urysohn-Stieltjes integral equations. (English) Zbl 1404.45008 Electron. J. Math. Analysis Appl. 6, No. 2, 203-210 (2018). MSC: 45G10 47H30 PDF BibTeX XML Cite \textit{M. M. A. Al-Fadel}, Electron. J. Math. Analysis Appl. 6, No. 2, 203--210 (2018; Zbl 1404.45008) Full Text: Link
Boulfoul, Bilal; Bellour, Azzeddine; Djebali, Smail Solvability of nonlinear integral equations of product type. (English) Zbl 1386.45003 Electron. J. Differ. Equ. 2018, Paper No. 19, 20 p. (2018). MSC: 45D05 45G10 47H08 47H09 47H10 47H30 PDF BibTeX XML Cite \textit{B. Boulfoul} et al., Electron. J. Differ. Equ. 2018, Paper No. 19, 20 p. (2018; Zbl 1386.45003) Full Text: Link
Ezquerro, J. A.; Hernández-Verón, M. A. The majorant principle applied to Hammerstein integral equations. (English) Zbl 1377.65168 Appl. Math. Lett. 75, 50-58 (2018). MSC: 65R20 45G10 47H30 PDF BibTeX XML Cite \textit{J. A. Ezquerro} and \textit{M. A. Hernández-Verón}, Appl. Math. Lett. 75, 50--58 (2018; Zbl 1377.65168) Full Text: DOI
Goodrich, Christopher S. New Harnack inequalities and existence theorems for radially symmetric solutions of elliptic PDEs with sign changing or vanishing Green’s function. (English) Zbl 1379.35097 J. Differ. Equations 264, No. 1, 236-262 (2018). MSC: 35J25 45G10 PDF BibTeX XML Cite \textit{C. S. Goodrich}, J. Differ. Equations 264, No. 1, 236--262 (2018; Zbl 1379.35097) Full Text: DOI
Alfadel, Masouda; El-Sayed, Ahmed On the weak solutions of a coupled system of Volterra-Stieltjes integral equations. (English) Zbl 1416.45001 Commentat. Math. 57, No. 2, 143-151 (2017). MSC: 45D05 26A42 47H30 PDF BibTeX XML Cite \textit{M. Alfadel} and \textit{A. El-Sayed}, Commentat. Math. 57, No. 2, 143--151 (2017; Zbl 1416.45001) Full Text: DOI
Chidume, C. E.; Bello, A. U. An iterative algorithm for approximating solutions of Hammerstein equations with monotone maps in Banach spaces. (English) Zbl 1426.65207 Appl. Math. Comput. 313, 408-417 (2017). MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{C. E. Chidume} and \textit{A. U. Bello}, Appl. Math. Comput. 313, 408--417 (2017; Zbl 1426.65207) Full Text: DOI
Khachatryan, Kh. A.; Petrosyan, A. S. One-parameter families of positive solutions of some classes of nonlinear convolution type integral equations. (Russian, English) Zbl 1413.45020 Sib. Zh. Chist. Prikl. Mat. 17, No. 1, 91-108 (2017); translation in J. Math. Sci., New York 231, No. 2, 153-167 (2018). MSC: 45M20 45M05 47H30 PDF BibTeX XML Cite \textit{Kh. A. Khachatryan} and \textit{A. S. Petrosyan}, Sib. Zh. Chist. Prikl. Mat. 17, No. 1, 91--108 (2017; Zbl 1413.45020); translation in J. Math. Sci., New York 231, No. 2, 153--167 (2018) Full Text: DOI
Khachatryan, Kh. A. On the solvability of one class of two-dimensional Urysohn integral equations. (Russian, English) Zbl 1413.45019 Mat. Tr. 20, No. 2, 193-205 (2017); translation in Sib. Adv. Math. 28, No. 3, 166-174 (2018). MSC: 45M20 45G10 47H30 PDF BibTeX XML Cite \textit{Kh. A. Khachatryan}, Mat. Tr. 20, No. 2, 193--205 (2017; Zbl 1413.45019); translation in Sib. Adv. Math. 28, No. 3, 166--174 (2018) Full Text: DOI
Otadi, Mahmood; Mosleh, Maryam Universal approximation method for the solution of integral equations. (English) Zbl 1407.65328 Math. Sci., Springer 11, No. 3, 181-187 (2017). MSC: 65R20 68T05 45D05 45G10 PDF BibTeX XML Cite \textit{M. Otadi} and \textit{M. Mosleh}, Math. Sci., Springer 11, No. 3, 181--187 (2017; Zbl 1407.65328) Full Text: DOI
Hesameddini, Esmail; Shahbazi, Mehdi Legendre collocation method and its convergence analysis for the numerical solutions of the conductor-like screening model for real solvents integral equation. (English) Zbl 1398.65354 Bull. Comput. Appl. Math. 5, No. 1, 33-51 (2017). MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{E. Hesameddini} and \textit{M. Shahbazi}, Bull. Comput. Appl. Math. 5, No. 1, 33--51 (2017; Zbl 1398.65354) Full Text: Link
Sekar, R. Chandra Guru; Murugesan, K. STWS approach for Hammerstein system of nonlinear Volterra integral equations of the second kind. (English) Zbl 1396.65157 Int. J. Comput. Math. 94, No. 9, 1867-1878 (2017). MSC: 65R10 45D05 45G15 PDF BibTeX XML Cite \textit{R. C. G. Sekar} and \textit{K. Murugesan}, Int. J. Comput. Math. 94, No. 9, 1867--1878 (2017; Zbl 1396.65157) Full Text: DOI
Uba, M. O.; Uzochukwu, M. I.; Onyido, M. A. Algorithm for approximating solutions of Hammerstein integral equations with maximal monotone operators. (English) Zbl 1390.45006 Indian J. Pure Appl. Math. 48, No. 3, 391-410 (2017). Reviewer: Alexander N. Tynda (Penza) MSC: 45B05 45G10 65R20 PDF BibTeX XML Cite \textit{M. O. Uba} et al., Indian J. Pure Appl. Math. 48, No. 3, 391--410 (2017; Zbl 1390.45006) Full Text: DOI
Grau-Sánchez, Miquel; Noguera, Miquel; Gutiérrez, José M. A multidimensional generalization of some classes of iterative methods. (English) Zbl 1384.65030 S\(\vec{\text{e}}\)MA J. 74, No. 1, 57-73 (2017). Reviewer: Anton Iliev (Plovdiv) MSC: 65H10 65R20 45E10 PDF BibTeX XML Cite \textit{M. Grau-Sánchez} et al., S\(\vec{\text{e}}\)MA J. 74, No. 1, 57--73 (2017; Zbl 1384.65030) Full Text: DOI
Infante, Gennaro; Minhós, Feliz Nontrivial solutions of systems of Hammerstein integral equations with first derivative dependence. (English) Zbl 1390.45020 Mediterr. J. Math. 14, No. 6, Paper No. 242, 18 p. (2017). Reviewer: Sergiu Aizicovici (Athens/Ohio) MSC: 45G15 34B10 34B18 47H30 PDF BibTeX XML Cite \textit{G. Infante} and \textit{F. Minhós}, Mediterr. J. Math. 14, No. 6, Paper No. 242, 18 p. (2017; Zbl 1390.45020) Full Text: DOI
Khachatryan, Kh. A.; Avetisyan, M. H. On solvability of an infinite nonlinear system of algebraic equations with Teoplitz-Hankel matrices. (English) Zbl 06823355 Proc. Yerevan State Univ., Phys. Math. Sci. 51, No. 2, 158-167 (2017). MSC: 47H30 45G05 PDF BibTeX XML Cite \textit{Kh. A. Khachatryan} and \textit{M. H. Avetisyan}, Proc. Yerevan State Univ., Phys. Math. Sci. 51, No. 2, 158--167 (2017; Zbl 06823355)
Bugajewska, Daria; Infante, Gennaro; Kasprzak, Piotr Solvability of Hammerstein integral equations with applications to boundary value problems. (English) Zbl 1384.45005 Z. Anal. Anwend. 36, No. 4, 393-417 (2017). Reviewer: Martin Väth (Prague) MSC: 45G10 26A45 45C05 45M20 47H30 34B15 PDF BibTeX XML Cite \textit{D. Bugajewska} et al., Z. Anal. Anwend. 36, No. 4, 393--417 (2017; Zbl 1384.45005) Full Text: DOI arXiv
Goodrich, Christopher S. A new coercivity condition applied to semipositone integral equations with nonpositive, unbounded nonlinearities and applications to nonlocal BVPs. (English) Zbl 1390.45016 J. Fixed Point Theory Appl. 19, No. 3, 1905-1938 (2017). Reviewer: Claudio Cuevas (Pernambuco) MSC: 45G10 47B39 34B10 34B18 35B09 35J25 35J91 45M20 47H30 PDF BibTeX XML Cite \textit{C. S. Goodrich}, J. Fixed Point Theory Appl. 19, No. 3, 1905--1938 (2017; Zbl 1390.45016) Full Text: DOI
Bica, Alexandru Mihai; Popescu, Constantin Iterative numerical method for nonlinear fuzzy Volterra integral equations. (English) Zbl 1380.65433 J. Intell. Fuzzy Syst. 32, No. 3, 1639-1648 (2017). MSC: 65R20 45D05 26E50 PDF BibTeX XML Cite \textit{A. M. Bica} and \textit{C. Popescu}, J. Intell. Fuzzy Syst. 32, No. 3, 1639--1648 (2017; Zbl 1380.65433) Full Text: DOI
Bugajewski, Dariusz; Czudek, Klaudiusz; Gulgowski, Jacek; Sadowski, Jȩdrzej On some nonlinear operators in \(\Lambda BV\)-spaces. (English) Zbl 06817776 J. Fixed Point Theory Appl. 19, No. 4, 2785-2818 (2017). MSC: 47H30 26A45 45G10 47B34 PDF BibTeX XML Cite \textit{D. Bugajewski} et al., J. Fixed Point Theory Appl. 19, No. 4, 2785--2818 (2017; Zbl 06817776) Full Text: DOI
Goodrich, Christopher S. The effect of a nonstandard cone on existence theorem applicability in nonlocal boundary value problems. (English) Zbl 1390.45015 J. Fixed Point Theory Appl. 19, No. 4, 2629-2646 (2017). Reviewer: Jin Liang (Shanghai) MSC: 45G10 26A42 45M20 34B10 34B18 35B09 35J25 47B40 47H14 47H30 PDF BibTeX XML Cite \textit{C. S. Goodrich}, J. Fixed Point Theory Appl. 19, No. 4, 2629--2646 (2017; Zbl 1390.45015) Full Text: DOI
Okeke, Godwin Amechi Best random proximity pair theorems for relatively U-continuous random operators with applications. (English) Zbl 1442.47039 East Asian Math. J. 33, No. 3, 271-289 (2017). MSC: 47H40 47H10 47N20 60H20 PDF BibTeX XML Cite \textit{G. A. Okeke}, East Asian Math. J. 33, No. 3, 271--289 (2017; Zbl 1442.47039) Full Text: DOI
Khachatryan, Khachatur A.; Sardaryan, Tigran H. On solvability of one class of Urysohn type nonlinear integral equation on the whole line. (Russian. English summary) Zbl 1375.45005 Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 17, No. 1, 40-50 (2017). MSC: 45G10 45L05 45M20 47H30 PDF BibTeX XML Cite \textit{K. A. Khachatryan} and \textit{T. H. Sardaryan}, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 17, No. 1, 40--50 (2017; Zbl 1375.45005) Full Text: DOI
Graef, John; Kong, Lingju; Minhós, Feliz Generalized Hammerstein equations and applications. (English) Zbl 1371.45008 Result. Math. 72, No. 1-2, 369-383 (2017). MSC: 45G10 34B15 47H30 PDF BibTeX XML Cite \textit{J. Graef} et al., Result. Math. 72, No. 1--2, 369--383 (2017; Zbl 1371.45008) Full Text: DOI
Webb, J. R. L. New fixed point index results and nonlinear boundary value problems. (English) Zbl 1422.47062 Bull. Lond. Math. Soc. 49, No. 3, 534-547 (2017). Reviewer: Zhilin Yang (Qingdao) MSC: 47H30 47H11 34B18 34B15 PDF BibTeX XML Cite \textit{J. R. L. Webb}, Bull. Lond. Math. Soc. 49, No. 3, 534--547 (2017; Zbl 1422.47062) Full Text: DOI
Pietkun, Radosław On some properties of the solution set map to Volterra integral inclusion. (English) Zbl 1376.45015 Topol. Methods Nonlinear Anal. 49, No. 2, 715-737 (2017). Reviewer: Andrey Zahariev (Plovdiv) MSC: 45N05 45G10 45D05 47H30 54C60 54C65 PDF BibTeX XML Cite \textit{R. Pietkun}, Topol. Methods Nonlinear Anal. 49, No. 2, 715--737 (2017; Zbl 1376.45015) Full Text: DOI Euclid
Sadrati, A.; Zertiti, A. Positive weighted pseudo almost automorphic solution for a class of systems of neutral nonlinear delay integral equations. (English) Zbl 1373.45004 J. Appl. Math. Bioinform. 7, No. 1, 1-25 (2017). MSC: 45G10 45G15 47H30 PDF BibTeX XML Cite \textit{A. Sadrati} and \textit{A. Zertiti}, J. Appl. Math. Bioinform. 7, No. 1, 1--25 (2017; Zbl 1373.45004)
Sahu, P. K.; Saha Ray, S. A new Bernoulli wavelet method for accurate solutions of nonlinear fuzzy Hammerstein-Volterra delay integral equations. (English) Zbl 1370.65082 Fuzzy Sets Syst. 309, 131-144 (2017). MSC: 65R20 45D05 45G10 26E50 65T60 92D30 PDF BibTeX XML Cite \textit{P. K. Sahu} and \textit{S. Saha Ray}, Fuzzy Sets Syst. 309, 131--144 (2017; Zbl 1370.65082) Full Text: DOI
Singh, Sukhjit; Gupta, D. K.; Badoni, Rakesh P.; Martínez, E.; Hueso, José L. Local convergence of a parameter based iteration with Hölder continuous derivative in Banach spaces. (English) Zbl 1387.47033 Calcolo 54, No. 2, 527-539 (2017). Reviewer: Xiaolong Qin (Chengdu) MSC: 47J25 65J15 47N20 PDF BibTeX XML Cite \textit{S. Singh} et al., Calcolo 54, No. 2, 527--539 (2017; Zbl 1387.47033) Full Text: DOI
Goodrich, Christopher S. Coercive nonlocal elements in fractional differential equations. (English) Zbl 1367.26017 Positivity 21, No. 1, 377-394 (2017). Reviewer: Wengui Yang (Sanmenxia) MSC: 26A33 34A08 34B10 45G10 45M20 34B18 PDF BibTeX XML Cite \textit{C. S. Goodrich}, Positivity 21, No. 1, 377--394 (2017; Zbl 1367.26017) Full Text: DOI
Argyros, I. K.; Hernández-Verón, M. A.; Rubio, M. J. Convergence of Steffensen’s method for non-differentiable operators. (English) Zbl 1366.65056 Numer. Algorithms 75, No. 1, 229-244 (2017). Reviewer: Bangti Jin (London) MSC: 65J15 45G10 47J25 65R20 47H30 PDF BibTeX XML Cite \textit{I. K. Argyros} et al., Numer. Algorithms 75, No. 1, 229--244 (2017; Zbl 1366.65056) Full Text: DOI
Messina, Eleonora; Vecchio, Antonia A sufficient condition for the stability of direct quadrature methods for Volterra integral equations. (English) Zbl 1364.65295 Numer. Algorithms 74, No. 4, 1223-1236 (2017). Reviewer: Kai Diethelm (Braunschweig) MSC: 65R20 45A05 45D05 45G10 47H30 PDF BibTeX XML Cite \textit{E. Messina} and \textit{A. Vecchio}, Numer. Algorithms 74, No. 4, 1223--1236 (2017; Zbl 1364.65295) Full Text: DOI
Mandal, Moumita; Nelakanti, Gnaneshwar Superconvergence of Legendre spectral projection methods for Fredholm-Hammerstein integral equations. (English) Zbl 1360.65308 J. Comput. Appl. Math. 319, 423-439 (2017). MSC: 65R20 45B05 45G10 47H30 PDF BibTeX XML Cite \textit{M. Mandal} and \textit{G. Nelakanti}, J. Comput. Appl. Math. 319, 423--439 (2017; Zbl 1360.65308) Full Text: DOI
Berenguer, M. I.; Gámez, D. Study on convergence and error of a numerical method for solving systems of nonlinear Fredholm-Volterra integral equations of Hammerstein type. (English) Zbl 1361.65097 Appl. Anal. 96, No. 3, 516-527 (2017). Reviewer: Neville Ford (Chester) MSC: 65R20 45G15 47H30 PDF BibTeX XML Cite \textit{M. I. Berenguer} and \textit{D. Gámez}, Appl. Anal. 96, No. 3, 516--527 (2017; Zbl 1361.65097) Full Text: DOI
Xie, Jiaquan; Huang, Qingxue; Zhao, Fuqiang Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations in two-dimensional spaces based on block pulse functions. (English) Zbl 1357.65327 J. Comput. Appl. Math. 317, 565-572 (2017). MSC: 65R20 45B05 45D05 45G10 47H30 PDF BibTeX XML Cite \textit{J. Xie} et al., J. Comput. Appl. Math. 317, 565--572 (2017; Zbl 1357.65327) Full Text: DOI
Allaei, Sonia Seyed; Diogo, Teresa; Rebelo, Magda Analytical and computational methods for a class of nonlinear singular integral equations. (English) Zbl 1357.65310 Appl. Numer. Math. 114, 2-17 (2017). MSC: 65R20 45D05 45G05 47H30 PDF BibTeX XML Cite \textit{S. S. Allaei} et al., Appl. Numer. Math. 114, 2--17 (2017; Zbl 1357.65310) Full Text: DOI
Lan, Kunquan; Lin, Wei Population models with quasi-constant-yield harvest rates. (English) Zbl 1353.34054 Math. Biosci. Eng. 14, No. 2, 467-490 (2017). MSC: 34C60 34B18 92D25 47H10 47H30 34B09 PDF BibTeX XML Cite \textit{K. Lan} and \textit{W. Lin}, Math. Biosci. Eng. 14, No. 2, 467--490 (2017; Zbl 1353.34054) Full Text: DOI
Cianciaruso, Filomena; Infante, Gennaro; Pietramala, Paolamaria Solutions of perturbed Hammerstein integral equations with applications. (English) Zbl 1351.45006 Nonlinear Anal., Real World Appl. 33, 317-347 (2017). MSC: 45G10 35J60 47H30 PDF BibTeX XML Cite \textit{F. Cianciaruso} et al., Nonlinear Anal., Real World Appl. 33, 317--347 (2017; Zbl 1351.45006) Full Text: DOI arXiv
Khachatryan, Khachatur Agavardovich; Terdzhyan, Tsolak Érnestovich; Broyan, Marine Firdusovich On solvability of a Hammerstein-voltera type nonlinear system of integral equations in critical case. (Russian. English summary) Zbl 07258475 Vladikavkaz. Mat. Zh. 18, No. 4, 71-79 (2016). MSC: 47 35 PDF BibTeX XML Cite \textit{K. A. Khachatryan} et al., Vladikavkaz. Mat. Zh. 18, No. 4, 71--79 (2016; Zbl 07258475) Full Text: MNR
Umakhanov, Aĭvar Yarakhmedovich; Sharapudinov, Idris Idrisovich Interpolation of functions by the Whittaker sums and their modifications: conditions for uniform convergence. (Russian. English summary) Zbl 07258474 Vladikavkaz. Mat. Zh. 18, No. 4, 61-70 (2016). MSC: 41 42 PDF BibTeX XML Cite \textit{A. Y. Umakhanov} and \textit{I. I. Sharapudinov}, Vladikavkaz. Mat. Zh. 18, No. 4, 61--70 (2016; Zbl 07258474) Full Text: MNR
Ahmadabadi, M. Nili; Laeli Dastjerdi, H. Tau approximation method for the weakly singular Volterra-Hammerstein integral equations. (English) Zbl 1410.65484 Appl. Math. Comput. 285, 241-247 (2016). MSC: 65R20 41A10 45G05 PDF BibTeX XML Cite \textit{M. N. Ahmadabadi} and \textit{H. Laeli Dastjerdi}, Appl. Math. Comput. 285, 241--247 (2016; Zbl 1410.65484) Full Text: DOI
Martínez, Eulalia; Singh, Sukhjit; Hueso, José L.; Gupta, Dharmendra K. Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. (English) Zbl 1410.65223 Appl. Math. Comput. 281, 252-265 (2016). MSC: 65J15 45G10 PDF BibTeX XML Cite \textit{E. Martínez} et al., Appl. Math. Comput. 281, 252--265 (2016; Zbl 1410.65223) Full Text: DOI
Abdel Hamid, Haydar; Al Sayed, Waad Integrable solutions of a generalized mixed-type functional integral equation. (English) Zbl 1410.45010 Appl. Math. Comput. 276, 356-366 (2016). MSC: 45N05 47G10 47H10 47H30 PDF BibTeX XML Cite \textit{H. Abdel Hamid} and \textit{W. Al Sayed}, Appl. Math. Comput. 276, 356--366 (2016; Zbl 1410.45010) Full Text: DOI arXiv
Singh, Sukhjit; Gupta, Dharmendra Kumar; Martínez, E.; Hueso, José L. Semilocal and local convergence of a fifth order iteration with Fréchet derivative satisfying Hölder condition. (English) Zbl 1410.65225 Appl. Math. Comput. 276, 266-277 (2016). MSC: 65J15 45G10 PDF BibTeX XML Cite \textit{S. Singh} et al., Appl. Math. Comput. 276, 266--277 (2016; Zbl 1410.65225) Full Text: DOI