Zhang, Liwei; Yu, Jiang; Zhang, Xiang Global dynamical behavior of Fitzhugh-Nagumo systems with invariant algebraic surfaces. (English) Zbl 07314141 Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 16, 27 p. (2021). MSC: 37G05 34C20 34C14 37J35 PDF BibTeX XML Cite \textit{L. Zhang} et al., Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 16, 27 p. (2021; Zbl 07314141) Full Text: DOI
Leta, Temesgen Desta; Liu, Wenjun; Achab, Abdelfattah El; Rezazadeh, Hadi; Bekir, Ahmet Dynamical behavior of traveling wave solutions for a \((2+1)\)-dimensional Bogoyavlenskii coupled system. (English) Zbl 07314139 Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 14, 23 p. (2021). MSC: 37C27 37C29 PDF BibTeX XML Cite \textit{T. D. Leta} et al., Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 14, 23 p. (2021; Zbl 07314139) Full Text: DOI
Elenin, G. G.; Elenina, T. G.; Ivanov, A. A. On the accuracy of a family of adaptive symplectic conservative methods for the Kepler problem. (Russian) Zbl 07312370 Mat. Model. 33, No. 2, 55-66 (2021). MSC: 65 70 PDF BibTeX XML Cite \textit{G. G. Elenin} et al., Mat. Model. 33, No. 2, 55--66 (2021; Zbl 07312370) Full Text: DOI MNR
Šepitka, Peter; Šimon Hilscher, Roman Distribution and number of focal points for linear Hamiltonian systems. (English) Zbl 07312031 Linear Algebra Appl. 611, 26-45 (2021). MSC: 37 PDF BibTeX XML Cite \textit{P. Šepitka} and \textit{R. Šimon Hilscher}, Linear Algebra Appl. 611, 26--45 (2021; Zbl 07312031) Full Text: DOI
Fu, Yayun; Cai, Wenjun; Wang, Yushun A linearly implicit structure-preserving scheme for the fractional sine-Gordon equation based on the IEQ approach. (English) Zbl 07310780 Appl. Numer. Math. 160, 368-385 (2021). MSC: 35K 35R 65M PDF BibTeX XML Cite \textit{Y. Fu} et al., Appl. Numer. Math. 160, 368--385 (2021; Zbl 07310780) Full Text: DOI
Novak, Tina; Žerovnik, Janez Real forms of the complex Neumann system: a method for finding real roots of polynomial \(U_{\mathcal{S}} ( \lambda )\). (English) Zbl 07309635 J. Comput. Appl. Math. 390, Article ID 113362, 14 p. (2021). MSC: 37J39 37J35 15A06 26C10 PDF BibTeX XML Cite \textit{T. Novak} and \textit{J. Žerovnik}, J. Comput. Appl. Math. 390, Article ID 113362, 14 p. (2021; Zbl 07309635) Full Text: DOI
Chen, Li; Lee, Jinyeop; Liew, Matthew Combined mean-field and semiclassical limits of large fermionic systems. (English) Zbl 07308635 J. Stat. Phys. 182, No. 2, Paper No. 24, 42 p. (2021). MSC: 81V74 81Q20 81Q05 37K10 35Q40 81P16 35Q83 81R30 PDF BibTeX XML Cite \textit{L. Chen} et al., J. Stat. Phys. 182, No. 2, Paper No. 24, 42 p. (2021; Zbl 07308635) Full Text: DOI
de la Llave, Rafael; Xu, Lu Whiskered tori for presymplectic dynamical systems. (English) Zbl 07307355 J. Dyn. Differ. Equations 33, No. 1, 1-34 (2021). MSC: 37K55 70K43 70H15 PDF BibTeX XML Cite \textit{R. de la Llave} and \textit{L. Xu}, J. Dyn. Differ. Equations 33, No. 1, 1--34 (2021; Zbl 07307355) Full Text: DOI
Jiang, Chaolong; Wang, Yushun; Gong, Yuezheng Explicit high-order energy-preserving methods for general Hamiltonian partial differential equations. (English) Zbl 07305223 J. Comput. Appl. Math. 388, Article ID 113298, 17 p. (2021). MSC: 65M22 65L06 65M70 65N35 35Q55 35Q41 PDF BibTeX XML Cite \textit{C. Jiang} et al., J. Comput. Appl. Math. 388, Article ID 113298, 17 p. (2021; Zbl 07305223) Full Text: DOI
Eidnes, Sølve; Li, Lu; Sato, Shun Linearly implicit structure-preserving schemes for Hamiltonian systems. (English) Zbl 07305172 J. Comput. Appl. Math. 387, Article ID 112489, 13 p. (2021). MSC: 65M06 65P10 35Q53 PDF BibTeX XML Cite \textit{S. Eidnes} et al., J. Comput. Appl. Math. 387, Article ID 112489, 13 p. (2021; Zbl 07305172) Full Text: DOI
Benzoni-Gavage, Sylvie; Mietka, Colin; Rodrigues, Luis Miguel Modulated equations of Hamiltonian PDEs and dispersive shocks. (English) Zbl 07303411 Nonlinearity 34, No. 1, 578-641 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35Q35 35C07 35C08 35B10 35B40 37K45 PDF BibTeX XML Cite \textit{S. Benzoni-Gavage} et al., Nonlinearity 34, No. 1, 578--641 (2021; Zbl 07303411) Full Text: DOI
Szewieczek, Gudrun A duality for Guichard nets. (English) Zbl 07302647 Manuscr. Math. 164, No. 1-2, 193-221 (2021). MSC: 53A05 53A30 37K25 37K35 PDF BibTeX XML Cite \textit{G. Szewieczek}, Manuscr. Math. 164, No. 1--2, 193--221 (2021; Zbl 07302647) Full Text: DOI
Yang, Xiaomei; Xu, Junxiang Persistence of degenerate lower dimensional invariant tori in reversible systems with Bruno non-degeneracy conditions. (English) Zbl 07302070 Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 7, 26 p. (2021). MSC: 37J40 PDF BibTeX XML Cite \textit{X. Yang} and \textit{J. Xu}, Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 7, 26 p. (2021; Zbl 07302070) Full Text: DOI
Liu, Jian-Gen; Yang, Xiao-Jun; Feng, Yi-Ying; Cui, Ping; Geng, Lu-Lu On integrability of the higher dimensional time fractional KdV-type equation. (English) Zbl 07299633 J. Geom. Phys. 160, Article ID 104000, 16 p. (2021). MSC: 37K10 26A33 35Q53 35R11 PDF BibTeX XML Cite \textit{J.-G. Liu} et al., J. Geom. Phys. 160, Article ID 104000, 16 p. (2021; Zbl 07299633) Full Text: DOI
Chen, Yufei; Liu, Qihuai; Su, Heng Generalized Hamiltonian forms of dissipative mechanical systems via a unified approach. (English) Zbl 07299624 J. Geom. Phys. 160, Article ID 103976, 13 p. (2021). MSC: 37J06 37L05 70H03 70H05 PDF BibTeX XML Cite \textit{Y. Chen} et al., J. Geom. Phys. 160, Article ID 103976, 13 p. (2021; Zbl 07299624) Full Text: DOI
Gernandt, H.; Haller, F. E.; Reis, T.; Schaft, A. J. van der Port-Hamiltonian formulation of nonlinear electrical circuits. (English) Zbl 07299392 J. Geom. Phys. 159, Article ID 103959, 16 p. (2021). MSC: 34A09 37J39 53D12 93C10 94C15 PDF BibTeX XML Cite \textit{H. Gernandt} et al., J. Geom. Phys. 159, Article ID 103959, 16 p. (2021; Zbl 07299392) Full Text: DOI
Martynchuk, N.; Broer, H. W.; Efstathiou, K. Recent advances in the monodromy theory of integrable Hamiltonian systems. (English) Zbl 07298852 Indag. Math., New Ser. 32, No. 1, 193-223 (2021). MSC: 37J30 37J35 81S08 81S10 81S05 PDF BibTeX XML Cite \textit{N. Martynchuk} et al., Indag. Math., New Ser. 32, No. 1, 193--223 (2021; Zbl 07298852) Full Text: DOI
Startsev, S. Ya. Symmetry drivers and formal integrals of hyperbolic systems. (English. Russian original) Zbl 07283015 J. Math. Sci., New York 252, No. 2, 232-241 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 152, 110-119 (2018). MSC: 37K06 37K10 35L70 35L65 PDF BibTeX XML Cite \textit{S. Ya. Startsev}, J. Math. Sci., New York 252, No. 2, 232--241 (2021; Zbl 07283015); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 152, 110--119 (2018) Full Text: DOI
Borisov, A. V.; Tsiganov, A. V.; Mikishanina, E. A. On inhomogeneous nonholonomic Bilimovich system. (English) Zbl 07280111 Commun. Nonlinear Sci. Numer. Simul. 94, Article ID 105573, 12 p. (2021). MSC: 37J60 70F25 70E40 PDF BibTeX XML Cite \textit{A. V. Borisov} et al., Commun. Nonlinear Sci. Numer. Simul. 94, Article ID 105573, 12 p. (2021; Zbl 07280111) Full Text: DOI
Kulagin, N.; Lerman, L.; Malkin, A. Solitons and cavitons in a nonlocal Whitham equation. (English) Zbl 07274920 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105525, 19 p. (2021). MSC: 76B25 35Q51 37N10 PDF BibTeX XML Cite \textit{N. Kulagin} et al., Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105525, 19 p. (2021; Zbl 07274920) Full Text: DOI
Nikolov, Svetoslav G.; Vassilev, Vassil M. Completely integrable dynamical systems of Hopf-Langford type. (English) Zbl 07274872 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105464, 9 p. (2021). MSC: 37J35 70H06 PDF BibTeX XML Cite \textit{S. G. Nikolov} and \textit{V. M. Vassilev}, Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105464, 9 p. (2021; Zbl 07274872) Full Text: DOI
Zhang, Wen; Zhang, Jian; Mi, Heilong Ground states and multiple solutions for Hamiltonian elliptic system with gradient term. (English) Zbl 1448.35178 Adv. Nonlinear Anal. 10, 331-352 (2021). MSC: 35J47 35J50 35A01 PDF BibTeX XML Cite \textit{W. Zhang} et al., Adv. Nonlinear Anal. 10, 331--352 (2021; Zbl 1448.35178) Full Text: DOI
Zhang, Jian; Chen, Jianhua; Li, Quanqing; Zhang, Wen Concentration behavior of semiclassical solutions for Hamiltonian elliptic system. (English) Zbl 1448.35177 Adv. Nonlinear Anal. 10, 233-260 (2021). MSC: 35J47 35J50 35A01 PDF BibTeX XML Cite \textit{J. Zhang} et al., Adv. Nonlinear Anal. 10, 233--260 (2021; Zbl 1448.35177) Full Text: DOI
Moon, Byungsoo Single peaked traveling wave solutions to a generalized \(\mu\)-Novikov equation. (English) Zbl 1440.35276 Adv. Nonlinear Anal. 10, 66-75 (2021). MSC: 35Q35 37K45 37K40 37K10 PDF BibTeX XML Cite \textit{B. Moon}, Adv. Nonlinear Anal. 10, 66--75 (2021; Zbl 1440.35276) Full Text: DOI
Chen, Xin; Zha, Qi-Lao Two synthetical five-component nonlinear integrable systems: Darboux transformations and applications. (English) Zbl 07312245 Int. J. Mod. Phys. B 34, No. 32, Article ID 2050314, 23 p. (2020). MSC: 35Q53 37K10 37K35 PDF BibTeX XML Cite \textit{X. Chen} and \textit{Q.-L. Zha}, Int. J. Mod. Phys. B 34, No. 32, Article ID 2050314, 23 p. (2020; Zbl 07312245) Full Text: DOI
Babalic, Corina N. Complete integrability and complex solitons for generalized Volterra system with branched dispersion. (English) Zbl 07312202 Int. J. Mod. Phys. B 34, No. 29, Article ID 2050274, 12 p. (2020). MSC: 37K10 37K40 PDF BibTeX XML Cite \textit{C. N. Babalic}, Int. J. Mod. Phys. B 34, No. 29, Article ID 2050274, 12 p. (2020; Zbl 07312202) Full Text: DOI
Belozerov, Gleb V. Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space. (English. Russian original) Zbl 07308576 Sb. Math. 211, No. 11, 1503-1538 (2020); translation from Mat. Sb. 211, No. 11, 3-40 (2020). MSC: 37J35 37G10 70E40 PDF BibTeX XML Cite \textit{G. V. Belozerov}, Sb. Math. 211, No. 11, 1503--1538 (2020; Zbl 07308576); translation from Mat. Sb. 211, No. 11, 3--40 (2020) Full Text: DOI
Fukuda, T.; Janeczko, S. Poisson-Lie algebras and singular symplectic forms associated to corank 1 type singularities. (English. Russian original) Zbl 07308457 Proc. Steklov Inst. Math. 311, 129-151 (2020); translation from Tr. Mat. Inst. Steklova 311, 140-163 (2020). MSC: 53D17 37C 37J39 PDF BibTeX XML Cite \textit{T. Fukuda} and \textit{S. Janeczko}, Proc. Steklov Inst. Math. 311, 129--151 (2020; Zbl 07308457); translation from Tr. Mat. Inst. Steklova 311, 140--163 (2020) Full Text: DOI
Drimalova, Iva; Šimon Hilscher, Roman Antiprincipal solutions at infinity for symplectic systems on time scales. (English) Zbl 07307857 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 44, 32 p. (2020). MSC: 34N05 34C10 39A12 39A21 PDF BibTeX XML Cite \textit{I. Drimalova} and \textit{R. Šimon Hilscher}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 44, 32 p. (2020; Zbl 07307857) Full Text: DOI
Bountis, Anastasios; Kaloudis, Konstantinos; Oikonomou, Thomas; Manda, Bertin Many; Skokos, Charalampos Stability properties of 1-dimensional Hamiltonian lattices with nonanalytic potentials. (English) Zbl 07306749 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 15, Article ID 2030047, 19 p. (2020). MSC: 37 82 PDF BibTeX XML Cite \textit{A. Bountis} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 15, Article ID 2030047, 19 p. (2020; Zbl 07306749) Full Text: DOI
Chalykh, Oleg; Fairon, Maxime On the Hamiltonian formulation of the trigonometric spin Ruijsenaars-Schneider system. (English) Zbl 07305700 Lett. Math. Phys. 110, No. 11, 2893-2940 (2020). MSC: 70H06 53D20 16G20 PDF BibTeX XML Cite \textit{O. Chalykh} and \textit{M. Fairon}, Lett. Math. Phys. 110, No. 11, 2893--2940 (2020; Zbl 07305700) Full Text: DOI
Wu, Kailiang; Qin, Tong; Xiu, Dongbin Structure-preserving method for reconstructing unknown Hamiltonian systems from trajectory data. (English) Zbl 07303420 SIAM J. Sci. Comput. 42, No. 6, A3704-A3729 (2020). MSC: 65P10 65P99 65Z99 PDF BibTeX XML Cite \textit{K. Wu} et al., SIAM J. Sci. Comput. 42, No. 6, A3704--A3729 (2020; Zbl 07303420) Full Text: DOI
Li, Yingzhe; Sun, Yajuan; Crouseilles, Nicolas Numerical simulations of one laser-plasma model based on Poisson structure. (English) Zbl 07303075 J. Comput. Phys. 405, Article ID 109172, 20 p. (2020). MSC: 65M08 65M70 76X05 76Y05 70G45 PDF BibTeX XML Cite \textit{Y. Li} et al., J. Comput. Phys. 405, Article ID 109172, 20 p. (2020; Zbl 07303075) Full Text: DOI
Gaeta, Giuseppe; Walcher, Sebastian Higher order normal modes. (English) Zbl 07300133 J. Geom. Mech. 12, No. 3, 421-434 (2020). MSC: 37J06 34A05 15A69 PDF BibTeX XML Cite \textit{G. Gaeta} and \textit{S. Walcher}, J. Geom. Mech. 12, No. 3, 421--434 (2020; Zbl 07300133) Full Text: DOI
Biswas, Indranil; Gómez, Tomás L.; Oliveira, André Complex Lagrangians in a hyperkähler manifold and the relative Albanese. (English) Zbl 07299611 Complex Manifolds 7, 230-240 (2020). MSC: 14J42 53D12 37K10 14D21 PDF BibTeX XML Cite \textit{I. Biswas} et al., Complex Manifolds 7, 230--240 (2020; Zbl 07299611) Full Text: DOI
Robnik, Marko A brief introduction to stationary quantum chaos in generic systems. (English) Zbl 1452.81002 Nonlinear Phenom. Complex Syst., Minsk 23, No. 2, 172-191 (2020). MSC: 81-01 81Q50 PDF BibTeX XML Cite \textit{M. Robnik}, Nonlinear Phenom. Complex Syst., Minsk 23, No. 2, 172--191 (2020; Zbl 1452.81002) Full Text: DOI
Moges, H. T.; Manos, Th.; Skokos, Ch. On the behavior of the generalized alignment index (GALI) method for regular motion in multidimensional Hamiltonian systems. (English) Zbl 1452.65396 Nonlinear Phenom. Complex Syst., Minsk 23, No. 2, 153-164 (2020). MSC: 65P10 37M25 37J46 PDF BibTeX XML Cite \textit{H. T. Moges} et al., Nonlinear Phenom. Complex Syst., Minsk 23, No. 2, 153--164 (2020; Zbl 1452.65396) Full Text: DOI
Bountis, Anastasios Complex dynamics and statistics of 1-D Hamiltonian lattices: long range interactions and supratransmission. (English) Zbl 07299253 Nonlinear Phenom. Complex Syst., Minsk 23, No. 2, 133-148 (2020). MSC: 37K60 37K55 37J40 37A50 37A60 82B20 PDF BibTeX XML Cite \textit{A. Bountis}, Nonlinear Phenom. Complex Syst., Minsk 23, No. 2, 133--148 (2020; Zbl 07299253) Full Text: DOI
Ding, Jinfeng; Zhang, Yi Noether’s theorems for a type of quasi-fractional Birkhoffian systems in even space. (Chinese. English summary) Zbl 07295936 J. Yunnan Univ., Nat. Sci. 42, No. 4, 673-678 (2020). MSC: 70H33 70G10 PDF BibTeX XML Cite \textit{J. Ding} and \textit{Y. Zhang}, J. Yunnan Univ., Nat. Sci. 42, No. 4, 673--678 (2020; Zbl 07295936) Full Text: DOI
Miao, Jiale; Yang, Junmin On the expansion of the Melnikov function near a double heteroclinic loop with two nilpotent cusps. (English) Zbl 07295653 J. Shanghai Norm. Univ., Nat. Sci. 49, No. 3, 295-310 (2020). MSC: 34C07 34C37 PDF BibTeX XML Cite \textit{J. Miao} and \textit{J. Yang}, J. Shanghai Norm. Univ., Nat. Sci. 49, No. 3, 295--310 (2020; Zbl 07295653) Full Text: DOI
Gao, Xin-Yi; Guo, Yong-Jiang; Shan, Wen-Rui Bilinear forms through the binary Bell polynomials, \(N\) solitons and Bäcklund transformations of the Boussinesq-Burgers system for the shallow water waves in a lake or near an ocean beach. (English) Zbl 1451.76023 Commun. Theor. Phys. 72, No. 9, Article ID 095002, 5 p. (2020). MSC: 76B15 37K35 35Q53 35C08 PDF BibTeX XML Cite \textit{X.-Y. Gao} et al., Commun. Theor. Phys. 72, No. 9, Article ID 095002, 5 p. (2020; Zbl 1451.76023) Full Text: DOI
Riaz, H. Wajahat A. Darboux transformation and exact multisolitons for a matrix coupled dispersionless system. (English) Zbl 1451.35051 Commun. Theor. Phys. 72, No. 7, Article ID 075001, 7 p. (2020). MSC: 35C08 35A30 37K35 PDF BibTeX XML Cite \textit{H. W. A. Riaz}, Commun. Theor. Phys. 72, No. 7, Article ID 075001, 7 p. (2020; Zbl 1451.35051) Full Text: DOI
Fromm, Samuel Admissible boundary values for the Gerdjikov-Ivanov equation with asymptotically time-periodic boundary data. (English) Zbl 07292447 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 079, 15 p. (2020). MSC: 37K15 37K40 35Q15 PDF BibTeX XML Cite \textit{S. Fromm}, SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 079, 15 p. (2020; Zbl 07292447) Full Text: DOI
Augner, Björn; Laasri, Hafida Exponential stability for infinite-dimensional non-autonomous port-Hamiltonian systems. (English) Zbl 07290533 Syst. Control Lett. 144, Article ID 104757, 11 p. (2020). MSC: 93D23 93C35 93B70 PDF BibTeX XML Cite \textit{B. Augner} and \textit{H. Laasri}, Syst. Control Lett. 144, Article ID 104757, 11 p. (2020; Zbl 07290533) Full Text: DOI
Datar, Ved V.; Pingali, Vamsi Pritham On coupled constant scalar curvature Kähler metrics. (English) Zbl 07285778 J. Symplectic Geom. 18, No. 4, 961-994 (2020). Reviewer: Nicolai K. Smolentsev (Kemerovo) MSC: 32Q15 53D20 53C55 58D17 58B20 PDF BibTeX XML Cite \textit{V. V. Datar} and \textit{V. P. Pingali}, J. Symplectic Geom. 18, No. 4, 961--994 (2020; Zbl 07285778) Full Text: DOI
Amjad, Z.; Haider, B. Multisolitons of the \(U(N)\) generalized Heisenberg magnet model and the Yang-Baxter relation. (English. Russian original) Zbl 07284355 Theor. Math. Phys. 205, No. 2, 1426-1438 (2020); translation from Teor. Mat. Fiz. 205, No. 2, 208-221 (2020). MSC: 82D40 35C08 16T25 37K35 37K40 PDF BibTeX XML Cite \textit{Z. Amjad} and \textit{B. Haider}, Theor. Math. Phys. 205, No. 2, 1426--1438 (2020; Zbl 07284355); translation from Teor. Mat. Fiz. 205, No. 2, 208--221 (2020) Full Text: DOI
Sechin, I. A.; Zotov, A. V. Integrable system of generalized relativistic interacting tops. (English. Russian original) Zbl 07284344 Theor. Math. Phys. 205, No. 1, 1291-1302 (2020); translation from Teor. Mat. Fiz. 205, No. 1, 55-67 (2020). MSC: 37J35 37J37 70E40 PDF BibTeX XML Cite \textit{I. A. Sechin} and \textit{A. V. Zotov}, Theor. Math. Phys. 205, No. 1, 1291--1302 (2020; Zbl 07284344); translation from Teor. Mat. Fiz. 205, No. 1, 55--67 (2020) Full Text: DOI
Bogdanov, L. V. Dispersionless integrable systems and the Bogomolny equations on an Einstein-Weyl geometry background. (English. Russian original) Zbl 07284343 Theor. Math. Phys. 205, No. 1, 1279-1290 (2020); translation from Teor. Mat. Fiz. 205, No. 1, 41-54 (2020). MSC: 81T13 81V22 81T20 53C25 37K10 PDF BibTeX XML Cite \textit{L. V. Bogdanov}, Theor. Math. Phys. 205, No. 1, 1279--1290 (2020; Zbl 07284343); translation from Teor. Mat. Fiz. 205, No. 1, 41--54 (2020) Full Text: DOI
Pogrebkov, A. K. Multiplicative dynamical systems in terms of the induced dynamics. (English. Russian original) Zbl 07284337 Theor. Math. Phys. 204, No. 3, 1201-1208 (2020); translation from Teor. Mat. Fiz. 204, No. 3, 436-444 (2020). MSC: 37J35 70H06 PDF BibTeX XML Cite \textit{A. K. Pogrebkov}, Theor. Math. Phys. 204, No. 3, 1201--1208 (2020; Zbl 07284337); translation from Teor. Mat. Fiz. 204, No. 3, 436--444 (2020) Full Text: DOI
Chanu, C. M.; Rastelli, G. Extensions of nonnatural Hamiltonians. (English. Russian original) Zbl 07284330 Theor. Math. Phys. 204, No. 3, 1101-1109 (2020); translation from Teor. Mat. Fiz. 204, No. 3, 321-331 (2020). MSC: 70H06 PDF BibTeX XML Cite \textit{C. M. Chanu} and \textit{G. Rastelli}, Theor. Math. Phys. 204, No. 3, 1101--1109 (2020; Zbl 07284330); translation from Teor. Mat. Fiz. 204, No. 3, 321--331 (2020) Full Text: DOI
Ratiu, Tudor S.; Tarama, Daisuke Geodesic flows on real forms of complex semi-simple Lie groups of rigid body type. (English) Zbl 07283932 Res. Math. Sci. 7, No. 4, Paper No. 32, 36 p. (2020). MSC: 53D25 70E15 70E45 22E46 PDF BibTeX XML Cite \textit{T. S. Ratiu} and \textit{D. Tarama}, Res. Math. Sci. 7, No. 4, Paper No. 32, 36 p. (2020; Zbl 07283932) Full Text: DOI
Zhu, Xiaoming A coupled \((2+1)\)-dimensional mKdV system and its nonlocal reductions. (English) Zbl 07281812 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105438, 10 p. (2020). MSC: 37K10 37K35 37K35 35Q53 35Q51 PDF BibTeX XML Cite \textit{X. Zhu}, Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105438, 10 p. (2020; Zbl 07281812) Full Text: DOI
Didov, A. A.; Uleysky, M. Yu.; Budyansky, M. V. Stable and unstable periodic orbits and their bifurcations in the nonlinear dynamical system with a fixed point vortex in a periodic flow. (English) Zbl 07281801 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105426, 13 p. (2020). MSC: 35Q35 76D17 35B32 37D45 37G15 82C40 PDF BibTeX XML Cite \textit{A. A. Didov} et al., Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105426, 13 p. (2020; Zbl 07281801) Full Text: DOI
Gao, Xin-Yi; Guo, Yong-Jiang; Shan, Wen-Rui Hetero-Bäcklund transformation and similarity reduction of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics. (English) Zbl 1448.37084 Phys. Lett., A 384, No. 31, Article ID 126788, 4 p. (2020). MSC: 37K35 35Q53 PDF BibTeX XML Cite \textit{X.-Y. Gao} et al., Phys. Lett., A 384, No. 31, Article ID 126788, 4 p. (2020; Zbl 1448.37084) Full Text: DOI
Ioannou-Sougleridis, Ioannis; Frantzeskakis, Dimitrios J.; Horikis, Theodoros P. A Davey-Stewartson description of two-dimensional solitons in nonlocal media. (English) Zbl 07279088 Stud. Appl. Math. 144, No. 1, 3-17 (2020). MSC: 35Q55 35Q41 35Q51 37K10 35C08 35B40 PDF BibTeX XML Cite \textit{I. Ioannou-Sougleridis} et al., Stud. Appl. Math. 144, No. 1, 3--17 (2020; Zbl 07279088) Full Text: DOI
Vakhnenko, Oleksiy O. Nonlinear integrable systems containing the canonical subsystems of distinct physical origins. (English) Zbl 1448.81361 Phys. Lett., A 384, No. 3, Article ID 126081, 9 p. (2020). MSC: 81R12 82B23 82C23 82B20 37K10 PDF BibTeX XML Cite \textit{O. O. Vakhnenko}, Phys. Lett., A 384, No. 3, Article ID 126081, 9 p. (2020; Zbl 1448.81361) Full Text: DOI
Nikolaenko, Stanislav S. Topological classification of Hamiltonian systems on two-dimensional noncompact manifolds. (English. Russian original) Zbl 07276775 Sb. Math. 211, No. 8, 1127-1158 (2020); translation from Mat. Sb. 211, No. 8, 68-101 (2020). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J39 37J20 37J35 37C15 37G10 58K45 70H06 PDF BibTeX XML Cite \textit{S. S. Nikolaenko}, Sb. Math. 211, No. 8, 1127--1158 (2020; Zbl 07276775); translation from Mat. Sb. 211, No. 8, 68--101 (2020) Full Text: DOI
Ruíz-Pantaleón, J. C.; García-Beltrán, D.; Vorobiev, Yu. Infinitesimal Poisson algebras and linearization of Hamiltonian systems. (English) Zbl 07276374 Ann. Global Anal. Geom. 58, No. 4, 415-431 (2020). Reviewer: Iakovos Androulidakis (Athína) MSC: 53D17 53C05 PDF BibTeX XML Cite \textit{J. C. Ruíz-Pantaleón} et al., Ann. Global Anal. Geom. 58, No. 4, 415--431 (2020; Zbl 07276374) Full Text: DOI
Xiang, Mingqi; Yang, Di; Zhang, Binlin Homoclinic solutions for Hamiltonian systems with variable-order fractional derivatives. (English) Zbl 07275426 Complex Var. Elliptic Equ. 65, No. 8, 1412-1432 (2020). MSC: 37J46 34A08 26A33 35R11 PDF BibTeX XML Cite \textit{M. Xiang} et al., Complex Var. Elliptic Equ. 65, No. 8, 1412--1432 (2020; Zbl 07275426) Full Text: DOI
Qin, Dongdong; Tang, Xianhua; Wu, Qingfang Existence and concentration properties of ground state solutions for elliptic systems. (English) Zbl 07275418 Complex Var. Elliptic Equ. 65, No. 8, 1257-1286 (2020). MSC: 35J05 35J50 35E05 PDF BibTeX XML Cite \textit{D. Qin} et al., Complex Var. Elliptic Equ. 65, No. 8, 1257--1286 (2020; Zbl 07275418) Full Text: DOI
Chen, Mo; Rosier, Lionel Exact controllability of the linear Zakharov-Kuznetsov equation. (English) Zbl 07272906 Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3889-3916 (2020). MSC: 37K99 37N35 93B05 35Q93 35Q53 PDF BibTeX XML Cite \textit{M. Chen} and \textit{L. Rosier}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3889--3916 (2020; Zbl 07272906) Full Text: DOI
Yumagulov, M. G.; Ibragimova, L. S.; Belova, A. S. Approximate research of problems on perturbation of periodic and autonomous Hamiltonian systems in critical cases. (English) Zbl 07272852 Lobachevskii J. Math. 41, No. 9, 1924-1931 (2020). MSC: 37J40 37J25 37J20 PDF BibTeX XML Cite \textit{M. G. Yumagulov} et al., Lobachevskii J. Math. 41, No. 9, 1924--1931 (2020; Zbl 07272852) Full Text: DOI
Goldys, Beniamin; Neklyudov, Misha Rescaling nonlinear noise for 1D stochastic parabolic equations. (English) Zbl 07272807 Stoch. Dyn. 20, No. 4, Article ID 2050027, 17 p. (2020). MSC: 60H15 37K99 60H50 PDF BibTeX XML Cite \textit{B. Goldys} and \textit{M. Neklyudov}, Stoch. Dyn. 20, No. 4, Article ID 2050027, 17 p. (2020; Zbl 07272807) Full Text: DOI
Usova, Anastasiia A.; Tarasyev, Alexander M. Approximate optimal control in the infinite time horizon problem with phase constraints. (English) Zbl 07271762 Minimax Theory Appl. 5, No. 2, 455-470 (2020). MSC: 91B32 49J15 PDF BibTeX XML Cite \textit{A. A. Usova} and \textit{A. M. Tarasyev}, Minimax Theory Appl. 5, No. 2, 455--470 (2020; Zbl 07271762) Full Text: Link
Efimov, Sergey S.; Sidorenko, Vladislav V. An analytically treatable model of long-term dynamics in a mean motion resonance with coexisting resonant modes. (English) Zbl 1448.70018 Celest. Mech. Dyn. Astron. 132, No. 5, Paper No. 27, 38 p. (2020). MSC: 70F07 70H11 70K55 PDF BibTeX XML Cite \textit{S. S. Efimov} and \textit{V. V. Sidorenko}, Celest. Mech. Dyn. Astron. 132, No. 5, Paper No. 27, 38 p. (2020; Zbl 1448.70018) Full Text: DOI
Ding, Liang; Wei, Jinlong Notes on nontrivial multiple periodic solutions for second-order discrete Hamiltonian system. (English) Zbl 1451.39011 Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4393-4409 (2020). MSC: 39A23 39A30 PDF BibTeX XML Cite \textit{L. Ding} and \textit{J. Wei}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4393--4409 (2020; Zbl 1451.39011) Full Text: DOI
Berti, Massimiliano; Bolle, Philippe Quasi-periodic solutions of nonlinear wave equations on the \(d\)-dimensional torus. (English) Zbl 07269838 EMS Monographs in Mathematics. Zürich: European Mathematical Society (EMS) (ISBN 978-3-03719-211-5/hbk; 978-3-03719-711-0/ebook). xv, 358 p. (2020). MSC: 37-02 37Kxx 35Qxx PDF BibTeX XML Cite \textit{M. Berti} and \textit{P. Bolle}, Quasi-periodic solutions of nonlinear wave equations on the \(d\)-dimensional torus. Zürich: European Mathematical Society (EMS) (2020; Zbl 07269838) Full Text: DOI
Li, Na; Li, Xun; Yu, Zhiyong Indefinite mean-field type linear-quadratic stochastic optimal control problems. (English) Zbl 1451.93418 Automatica 122, Article ID 109267, 10 p. (2020). MSC: 93E20 49N10 60H10 PDF BibTeX XML Cite \textit{N. Li} et al., Automatica 122, Article ID 109267, 10 p. (2020; Zbl 1451.93418) Full Text: DOI
Gaveau, Bernard; Moreau, Michel On the stochastic representation and Markov approximation of Hamiltonian systems. (English) Zbl 1451.82024 Chaos 30, No. 8, 083104, 10 p. (2020). MSC: 82C05 60J20 60G10 PDF BibTeX XML Cite \textit{B. Gaveau} and \textit{M. Moreau}, Chaos 30, No. 8, 083104, 10 p. (2020; Zbl 1451.82024) Full Text: DOI
Khmelnytskaya, K. V.; Kravchenko, V. V.; Torba, S. M. Time-dependent one-dimensional electromagnetic wave propagation in inhomogeneous media: exact solution in terms of transmutations and Neumann series of Bessel functions. (English) Zbl 1450.78003 Lobachevskii J. Math. 41, No. 5, 785-796 (2020). MSC: 78A25 78A40 33C10 30G20 37K35 35Q60 PDF BibTeX XML Cite \textit{K. V. Khmelnytskaya} et al., Lobachevskii J. Math. 41, No. 5, 785--796 (2020; Zbl 1450.78003) Full Text: DOI
Peng, Jiao; Zhu, Jianqing On Lie symmetry of relative motion dynamics of non-holonomic systems in phase space on time scales. (Chinese. English summary) Zbl 07267223 J. Yunnan Univ., Nat. Sci. 42, No. 3, 492-498 (2020). MSC: 70H33 70F25 PDF BibTeX XML Cite \textit{J. Peng} and \textit{J. Zhu}, J. Yunnan Univ., Nat. Sci. 42, No. 3, 492--498 (2020; Zbl 07267223) Full Text: DOI
Zhang, Yi Noether’s theorem for holonomic nonconservative mechanical systems on time scales. (Chinese. English summary) Zbl 07267160 J. Suzhou Univ. Sci. Technol., Nat. Sci. 37, No. 1, 6-11 (2020). MSC: 70H33 70F20 34N05 PDF BibTeX XML Cite \textit{Y. Zhang}, J. Suzhou Univ. Sci. Technol., Nat. Sci. 37, No. 1, 6--11 (2020; Zbl 07267160) Full Text: DOI
Song, Chuanjing Quasi-symmetry and conserved quantity for generalized Birkhoffian system on time scales. (English) Zbl 07267156 J. Suzhou Univ. Sci. Technol., Nat. Sci. 37, No. 1, 12-17, 40 (2020). MSC: 70H33 34N05 PDF BibTeX XML Cite \textit{C. Song}, J. Suzhou Univ. Sci. Technol., Nat. Sci. 37, No. 1, 12--17, 40 (2020; Zbl 07267156) Full Text: DOI
Dai, Hongbing; Wang, Junjie; Cai, Shanshan; Hou, Yuanyuan New multi-symplectic Fourier pseudospectral method for a class of DGH equation. (Chinese. English summary) Zbl 07266875 J. Lanzhou Univ. Technol. 46, No. 1, 162-166 (2020). MSC: 65P10 PDF BibTeX XML Cite \textit{H. Dai} et al., J. Lanzhou Univ. Technol. 46, No. 1, 162--166 (2020; Zbl 07266875)
Peng, Jiao; Zhu, Jianqing The Lie symmetry of relative to non-inertial systems for nonholonomic systems on time scales. (Chinese. English summary) Zbl 07266683 J. Cent. China Norm. Univ., Nat. Sci. 54, No. 3, 368-372 (2020). MSC: 70H33 70F25 PDF BibTeX XML Cite \textit{J. Peng} and \textit{J. Zhu}, J. Cent. China Norm. Univ., Nat. Sci. 54, No. 3, 368--372 (2020; Zbl 07266683) Full Text: DOI
Que, Chaoyue; Zhu, Jianqing Lie symmetries and conserved quantities of nonholonomic systems with variable mass on time scales. (Chinese. English summary) Zbl 07266676 J. Cent. China Norm. Univ., Nat. Sci. 54, No. 2, 207-212 (2020). MSC: 70H33 70F25 PDF BibTeX XML Cite \textit{C. Que} and \textit{J. Zhu}, J. Cent. China Norm. Univ., Nat. Sci. 54, No. 2, 207--212 (2020; Zbl 07266676) Full Text: DOI
Wang, Jiahang; Bao, Siyuan Two kinds of generalized gradient representations for Birkhoffian system in the event space. (Chinese. English summary) Zbl 07266670 J. Cent. China Norm. Univ., Nat. Sci. 54, No. 2, 174-177 (2020). MSC: 37J25 70H14 PDF BibTeX XML Cite \textit{J. Wang} and \textit{S. Bao}, J. Cent. China Norm. Univ., Nat. Sci. 54, No. 2, 174--177 (2020; Zbl 07266670) Full Text: DOI
Yang, Lixia; Zhang, Yi Integrating factors and conserved quantities for fractional Birkhoffian system. (Chinese. English summary) Zbl 07266665 J. Cent. China Norm. Univ., Nat. Sci. 54, No. 1, 30-35 (2020). MSC: 70H06 70H33 26A33 PDF BibTeX XML Cite \textit{L. Yang} and \textit{Y. Zhang}, J. Cent. China Norm. Univ., Nat. Sci. 54, No. 1, 30--35 (2020; Zbl 07266665) Full Text: DOI
Fan, Junhai; Jia, Jufang; Lai, Andi; Zhou, Zhenhuan; Xu, Xinsheng Symplectic method for the forced vibration of bilayers graphene system in steady-state. (Chinese. English summary) Zbl 07266455 Chin. J. Comput. Mech. 37, No. 2, 193-198 (2020). MSC: 65P10 70K40 PDF BibTeX XML Cite \textit{J. Fan} et al., Chin. J. Comput. Mech. 37, No. 2, 193--198 (2020; Zbl 07266455) Full Text: DOI
Xiao, Rui-jie; Pan, Gui-xia; Liu, Ye Tunable multicolor optomechanically induced transparency in multi-cavity optomechanical system. (English) Zbl 1450.81077 Int. J. Theor. Phys. 59, No. 10, 3256-3267 (2020). MSC: 81V80 82D80 81Q10 82C31 PDF BibTeX XML Cite \textit{R.-j. Xiao} et al., Int. J. Theor. Phys. 59, No. 10, 3256--3267 (2020; Zbl 1450.81077) Full Text: DOI
Bruno, A. D. Normal form of a Hamiltonian system with a periodic perturbation. (English. Russian original) Zbl 07264238 Comput. Math. Math. Phys. 60, No. 1, 36-52 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 1, 39-56 (2020). MSC: 70 35 PDF BibTeX XML Cite \textit{A. D. Bruno}, Comput. Math. Math. Phys. 60, No. 1, 36--52 (2020; Zbl 07264238); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 1, 39--56 (2020) Full Text: DOI
Hu, Weipeng; Zhang, Chuanzeng; Deng, Zichen Vibration and elastic wave propagation in spatial flexible damping panel attached to four special springs. (English) Zbl 1448.74048 Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105199, 19 p. (2020). MSC: 74H45 74K99 PDF BibTeX XML Cite \textit{W. Hu} et al., Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105199, 19 p. (2020; Zbl 1448.74048) Full Text: DOI
Qi, Guoyuan; Hu, Jianbing Modelling of both energy and volume conservative chaotic systems and their mechanism analyses. (English) Zbl 07261596 Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105171, 15 p. (2020). MSC: 70E 37J06 PDF BibTeX XML Cite \textit{G. Qi} and \textit{J. Hu}, Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105171, 15 p. (2020; Zbl 07261596) Full Text: DOI
Lamb, Jeroen S. W.; Lima, Mauricio F. S.; Martins, Ricardo M.; Teixeira, Marco Antonio; Yang, Jiazhong On the Hamiltonian structure of normal forms at elliptic equilibria of reversible vector fields in \(\mathbb{R}^4\). (English) Zbl 1452.37065 J. Differ. Equations 269, No. 12, 11366-11395 (2020). MSC: 37J40 37C15 PDF BibTeX XML Cite \textit{J. S. W. Lamb} et al., J. Differ. Equations 269, No. 12, 11366--11395 (2020; Zbl 1452.37065) Full Text: DOI
Popivanov, Petar; Slavova, Angela Explicit solutions of the hyperbolic Monge-Ampere type equation, of a nonlinear evolution system and their qualitative properties. (English) Zbl 07258556 C. R. Acad. Bulg. Sci. 73, No. 6, 767-775 (2020). Reviewer: Ivan Landjev (Sofia) MSC: 35L70 35Q55 35A30 35C05 37K10 81Q05 PDF BibTeX XML Cite \textit{P. Popivanov} and \textit{A. Slavova}, C. R. Acad. Bulg. Sci. 73, No. 6, 767--775 (2020; Zbl 07258556) Full Text: DOI
Benner, Peter; Goyal, Pawan; Van Dooren, Paul Identification of port-Hamiltonian systems from frequency response data. (English) Zbl 1451.93063 Syst. Control Lett. 143, Article ID 104741, 9 p. (2020). MSC: 93B30 93C80 93B70 PDF BibTeX XML Cite \textit{P. Benner} et al., Syst. Control Lett. 143, Article ID 104741, 9 p. (2020; Zbl 1451.93063) Full Text: DOI
Zhang, Liang; Chen, Guanwei Infinitely many homoclinic solutions for perturbed second-order Hamiltonian systems with subquadratic potentials. (English) Zbl 07254919 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 9, 23 p. (2020). MSC: 34C37 37J45 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{G. Chen}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 9, 23 p. (2020; Zbl 07254919) Full Text: DOI
Mbodji, Yatma; Dathe, Hamidou The Marsden-Weinstein reduction theorem for contact-symplectic pairs. (English) Zbl 1452.53070 Math. Sci., Springer 14, No. 2, 109-120 (2020). MSC: 53D15 53C15 53D17 PDF BibTeX XML Cite \textit{Y. Mbodji} and \textit{H. Dathe}, Math. Sci., Springer 14, No. 2, 109--120 (2020; Zbl 1452.53070) Full Text: DOI
Sun, Chenmin; Tzvetkov, Nikolay Gibbs measure dynamics for the fractional NLS. (English) Zbl 1448.35481 SIAM J. Math. Anal. 52, No. 5, 4638-4704 (2020). MSC: 35Q55 37K99 35R11 26A33 PDF BibTeX XML Cite \textit{C. Sun} and \textit{N. Tzvetkov}, SIAM J. Math. Anal. 52, No. 5, 4638--4704 (2020; Zbl 1448.35481) Full Text: DOI
Gérard, Patrick; Grellier, Sandrine On a damped Szegö equation (with an appendix in collaboration with Christian Klein). (English) Zbl 1448.35022 SIAM J. Math. Anal. 52, No. 5, 4391-4420 (2020). MSC: 35B15 35Q55 47B35 37K15 PDF BibTeX XML Cite \textit{P. Gérard} and \textit{S. Grellier}, SIAM J. Math. Anal. 52, No. 5, 4391--4420 (2020; Zbl 1448.35022) Full Text: DOI
Hentosh, O. Ye.; Balinsky, A. A.; Prykarpatski, A. K. The generalized centrally extended Lie algebraic structures and related integrable heavenly type equations. (English) Zbl 1451.37088 Carpathian Math. Publ. 12, No. 1, 242-264 (2020). Reviewer: Di Yang (Hefei) MSC: 37K30 37K25 37K10 17B80 35Q53 58J70 PDF BibTeX XML Cite \textit{O. Ye. Hentosh} et al., Carpathian Math. Publ. 12, No. 1, 242--264 (2020; Zbl 1451.37088) Full Text: DOI
Kobtsev, I. F. An elliptic billiard in a potential force field: classification of motions, topological analysis. (English. Russian original) Zbl 1448.37066 Sb. Math. 211, No. 7, 987-1013 (2020); translation from Mat. Sb. 211, No. 7, 93-120 (2020). MSC: 37J35 37C83 37G10 70H06 70E40 PDF BibTeX XML Cite \textit{I. F. Kobtsev}, Sb. Math. 211, No. 7, 987--1013 (2020; Zbl 1448.37066); translation from Mat. Sb. 211, No. 7, 93--120 (2020) Full Text: DOI
Delshams, Amadeu; Gonchenko, Marina; Gutiérrez, Pere Exponentially small splitting of separatrices associated to 3D whiskered tori with cubic frequencies. (English) Zbl 1450.37056 Commun. Math. Phys. 378, No. 3, 1931-1976 (2020). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J40 37J20 37J25 37J06 70H08 PDF BibTeX XML Cite \textit{A. Delshams} et al., Commun. Math. Phys. 378, No. 3, 1931--1976 (2020; Zbl 1450.37056) Full Text: DOI
Thomine, Damien Keplerian shear in ergodic theory. (Le cisaillement Keplérien en théorie ergodique.) (English. French summary) Zbl 1451.37083 Ann. Henri Lebesgue 3, 649-676 (2020). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J39 37J35 37A25 70F15 37N05 PDF BibTeX XML Cite \textit{D. Thomine}, Ann. Henri Lebesgue 3, 649--676 (2020; Zbl 1451.37083) Full Text: DOI
Sun, Xianbo; Yu, Pei Cyclicity of periodic annulus and Hopf cyclicity in perturbing a hyper-elliptic Hamiltonian system with a degenerate heteroclinic loop. (English) Zbl 1452.34043 J. Differ. Equations 269, No. 11, 9224-9253 (2020). MSC: 34C07 34C05 34C23 34E10 37G20 37J40 34C37 PDF BibTeX XML Cite \textit{X. Sun} and \textit{P. Yu}, J. Differ. Equations 269, No. 11, 9224--9253 (2020; Zbl 1452.34043) Full Text: DOI
Wang, Yi; Si, Jianguo Quasi-periodic solutions for beam equations with the nonlinear terms depending on the space variable. (English) Zbl 1451.37093 Appl. Anal. 99, No. 12, 2150-2169 (2020). MSC: 37K55 35B10 35B15 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{J. Si}, Appl. Anal. 99, No. 12, 2150--2169 (2020; Zbl 1451.37093) Full Text: DOI
Zhang, Li; Wang, Chenchen; Hu, Zhaoping Limit cycle bifurcations from an order-3 nilpotent center of cubic Hamiltonian systems perturbed by cubic polynomials. (English) Zbl 07247475 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2050126, 11 p. (2020). Reviewer: Majid Gazor (Isfahan) MSC: 34C23 34C05 34C07 37J40 34E10 PDF BibTeX XML Cite \textit{L. Zhang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2050126, 11 p. (2020; Zbl 07247475) Full Text: DOI
Katsanikas, Matthaios; García-Garrido, Víctor J.; Wiggins, S. Detection of dynamical matching in a Caldera Hamiltonian system using Lagrangian descriptors. (English) Zbl 07247473 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2030026, 16 p. (2020). MSC: 70 37 PDF BibTeX XML Cite \textit{M. Katsanikas} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2030026, 16 p. (2020; Zbl 07247473) Full Text: DOI
Llibre, Jaume; Martínez, Y. Paulina Dynamics of a family of Lotka-Volterra systems in \(\mathbb{R}^3\). (English) Zbl 1451.37025 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 199, Article ID 111915, 14 p. (2020). MSC: 37C10 37J35 34C05 34C07 70K05 PDF BibTeX XML Cite \textit{J. Llibre} and \textit{Y. P. Martínez}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 199, Article ID 111915, 14 p. (2020; Zbl 1451.37025) Full Text: DOI
Zheltukhin, Kostyantyn; Zheltukhina, Natalya On the discretization of Darboux integrable systems. (English) Zbl 1441.37078 J. Nonlinear Math. Phys. 27, No. 4, 616-632 (2020). MSC: 37K10 37K60 PDF BibTeX XML Cite \textit{K. Zheltukhin} and \textit{N. Zheltukhina}, J. Nonlinear Math. Phys. 27, No. 4, 616--632 (2020; Zbl 1441.37078) Full Text: DOI