zbMATH — the first resource for mathematics

High regularity partition of unity for structural physically non-linear analysis. (English) Zbl 1403.74120
Summary: Meshfree techniques, such as \(hp\)-Clouds and Element Free Galerkin Methods, have been used as attractive alternatives to finite element method, due to the flexibility in constructing conforming approximations. These approximations can present high regularity, improving the description of the state variables used in physically non-linear problems. On the other hand, some drawbacks can be highlighted, as the lack of the Kronecker-delta property and numerical integration problems. These drawbacks can be overcome by using a \(C^k\), \(k\) arbitrarily large, partition of unity (PoU) function, built over a finite element mesh, but with the approximate characteristic of the meshfree methods. Here, this procedure is for the first time investigated to simulate the non-linear behavior of structures with quasi-brittle materials. The smeared crack model is adopted and numerical results, obtained with different kinds of polynomial enrichments, are compared with the experimental results.

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74R05 Brittle damage
Full Text: DOI
[1] Winkler, B.; Hofstetter, G.; Lehar, H., Application of a constitutive model for concrete to the analysis of a precast segmental tunnel lining, Int J Numer Anal Methods Geomech, 28, 7-8, 797-819, (2004) · Zbl 1112.74547
[2] Costa-Mattos, H.; Pires-Domingues, S. M.; Rochinha, F. A., Structural failure prediction of quasi-brittle structures: modeling and simulation, Comput Mater Sci, 46, 2, 407-417, (2009)
[3] Su, X. T.; Yang, Z. J.; Liu, G. H., Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: a 3D study, Int J Solids Struct, 47, 17, 2336-2345, (2010) · Zbl 1194.74313
[4] Fuina, J. S.; Pitangueira, R. L.S.; Penna, S. S., A comparison of two microplane constitutive models for quasi-brittle materials, Appl Math Model, 35, 11, 5326-5337, (2011) · Zbl 1228.74069
[5] Cervera, M.; Chiumenti, M.; Codina, R., Mesh objective modeling of cracks using continuous linear strain and displacement interpolations, Int J Numer Methods Eng, 87, 10, 962-987, (2011) · Zbl 1242.74101
[6] Moës, N.; Belytschko, T., Extended finite element method for cohesive crack growth, Eng Fract Mech, 69, 813-833, (2002)
[7] Mariani, S.; Perego, U., Extended finite element method for quasi-brittle fracture, Int J Numer Methods Eng, 58, 1, 103-126, (2003) · Zbl 1032.74673
[8] Barros, B. F.; Proença, B. S.P.; Barcellos, C. S., Generalized finite element method in structural nonlinear analysis - a p-adaptive strategy, Comput Mech, 33, 2, 95-107, (2004) · Zbl 1067.74063
[9] Unger, J. F.; Eckardt, S.; Könke, C., Modelling of cohesive crack growth in concrete structures with the extended finite element method, Comput Methods Appl Mech Eng, 196, 41, 4087-4100, (2007) · Zbl 1173.74387
[10] Bobinski, J.; Tejchman, J., Application of extended finite element method to cracked concrete elements - numerical aspects, Arch Civil Eng, 58, 4, 409, (2012)
[11] Kim, J.; Duarte, C. A., A new generalized finite element method for two-scale simulations of propagating cohesive fractures in 3-D, Int J Numer Methods Eng, 104, 13, 1139-1172, (2015) · Zbl 1352.74286
[12] Kabele, P.; Yamaguchi, E.; Horii, H., FEM-BEM superposition method for fracture analysis of quasi-brittle structures, Int J Fract, 100, 3, 249-274, (1999)
[13] Peixoto, R.; Anacleto, F.; Ribeiro, G.; Pitangueira, R.; Penna, S., A solution strategy for non-linear implicit BEM formulation using a unified constitutive modelling framework, Eng Anal Bound Elem, 64, 295-310, (2016) · Zbl 1403.74217
[14] Rabczuk, T.; Zi, G., A meshfree method based on the local partition of unity for cohesive cracks, Comput Mech, 39, 6, 743-760, (2007) · Zbl 1161.74055
[15] Zi, G.; Rabczuk, T.; Wall, W., Extended meshfree methods without branch enrichment for cohesive cracks, Comput Mech, 40, 2, 367-382, (2007) · Zbl 1162.74053
[16] Rabczuk, T.; Zi, G.; Bordas, S.; Nguyen-Xuan, H., A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures, Eng Fract Mech, 75, 16, 4740-4758, (2008)
[17] Rabczuk, T.; Bordas, S.; Zi, G., On three-dimensional modelling of crack growth using partition of unity methods, Comput Struct, 88, 23-24, 1391-1411, (2010)
[18] Dong, Y.; Wu, S.; Xu, S. S.; Zhang, Y.; Fang, S., Analysis of concrete fracture using a novel cohesive crack method, Appl Math Model, 34, 12, 4219-4231, (2010) · Zbl 1201.74288
[19] Chaudhuri, P., Multi-scale modeling of fracture in concrete composites, Compos: Part B, 47, 162-172, (2013)
[20] Ghosh, A.; Chaudhuri, P., Computational modeling of fracture in concrete using a meshfree meso-macro-multiscale method, Comput Mater Sci, 69, 204-215, (2013)
[21] Rabczuk, T.; Belytschko, T., Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Int J Numer Methods Eng, 61, 13, 2316-2343, (2004) · Zbl 1075.74703
[22] Ventura, G.; Xu, J. X.; Belytschko, T., A vector level set method and new discontinuity approximations for crack growth by EFG, Int J Numer Methods Eng, 54, 6, 923-944, (2002) · Zbl 1034.74053
[23] Torres, D. A.F.; Barcellos, C. S.; Mendonça, P. T.R., Effects of the smoothness of partitions of unity on the quality of representation of singular enrichments for GFEM/XFEM stress approximations around brittle cracks, Comput Methods Appl Mech Eng, 283, 243-279, (2015) · Zbl 1423.74849
[24] Duarte, C. A., The hp-cloud method, (1996), The University of Texas at Austin, Phd thesis
[25] Duarte, C. A.; Oden, J. T., Hp clouds - A meshless method to solve boundary-value problem, Tech. Rep, (1995), TICAM, The University of Texas at Austin
[26] Duarte, C. A.; Oden, J. T., H-p clouds - an h-p meshless method, Numer Methods Partial Differ Equ, 12, 6, 673-705, (1996) · Zbl 0869.65069
[27] Duarte, C. A.; Oden, J. T., An h-p adaptive method using cloud, Comput Methods Appl Mech Eng, 139, 237-262, (1996) · Zbl 0918.73328
[28] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int J Numer Methods Eng, 37, 2, 229-256, (1994) · Zbl 0796.73077
[29] Melenk, J. M., On generalized finite element methods, (1995), University of Maryland, College Park, Ph.D. thesis
[30] Melenk, J. M.; Babuška, I., The partition of unity finite element method: basic theory and applications, Comput Methods Appl Mech Eng, 39, 289-314, (1996) · Zbl 0881.65099
[31] Babuška, I.; Melenk, J. M., The partition of unity method, Int J Numer Methods Eng, 40, 4, 727-758, (1997) · Zbl 0949.65117
[32] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int J Numer Methods Eng, 45, 601-620, (1999) · Zbl 0943.74061
[33] Strouboulis, T.; Babuška, I.; Copps, K., The design and analysis of the generalized finite element method, Comput Methods Appl Mech Eng, 181, 1-3, 43-69, (2000) · Zbl 0983.65127
[34] Dolbow, J.; Belytschko, T., Numerical integration of the Galerkin weak form in meshfree methods, Comput Mech, 23, 3, 219-230, (1999) · Zbl 0963.74076
[35] Duarte, C. A.; Kim, D. J.; Quaresma, D. M., Arbitrarily smooth generalized finite element approximations, Comput Methods Appl Mech Eng, 196, 33-56, (2006) · Zbl 1120.74816
[36] Duarte, C.; Migliano, D.; Baker, E., A technique to combine meshfree-and finite element-based partition of unity approximations, Tech. Rep, (2005), Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign
[37] Freitas, A.; Torres, D. A.F.; Mendonça, P. T.R.; Barcellos, C. S., Comparative analysis of C^k- and C^0-GFEM applied to two-dimensional problems of confined plasticity, Lat Am J Solids Struct, 12, 5, 861-882, (2015)
[38] Edwards, H. C., C^∞ finite element basis functions, Tech. Rep. 96-45, (1996), TICAM, The University of Texas at Austin
[39] Shapiro, V., Theory of R-functions and applications: a primer, Tech. Rep. TR91-1219, (1991), Computer Science Department, Cornell University
[40] Barros, F. B.; Barcellos, C. S.; Duarte, C. A., P-adaptive C^k generalized finite element method for arbitrary polygonal clouds, Comput Mech, 41, 1, 175-187, (2007) · Zbl 1162.74455
[41] Mendonça, P. T.R.; Barcellos, C. S.; Torres, D. A.F., Robust C^k/C^0 generalized FEM approximations for higher-order conformity requirements: application to reddy’s HSDT model for anisotropic laminated plates, Compos Struct, 96, 332-345, (2013)
[42] Alves, P. D.; Barros, F. B.; Pitangueira, R. L.S., An object-oriented approach to the generalized finite element method, Adv Eng Softw, 59, 1-18, (2013)
[43] Carreira, D. J.; Chu, K. H., Stress-strain relationship for plain concrete in compression, Am Concr Inst J, 82, 797-804, (1985)
[44] Carreira, D. J.; Chu, K. H., Stress-strain relationship for reinforced concrete in tension, Am Concr Inst J, 83, 21-28, (1986)
[45] Oden, J. T.; Reddy, J. N., An introduction to the mathematical theory of finite elements, Pure and applied mathematics, (1976), John Wiley & Sons, Inc. · Zbl 0336.35001
[46] Shepard, D., A two-dimensional interpolation function for irregularly-spaced data, Proceedings of the 1968 23rd ACM national conference, 517-524, (1968), ACM
[47] Fries, T. P.; Matthias, H. G., Classification and overview of meshfree methods, 64, (2004), Department of Mathematics and Computer Science, Technical Univ of Braunschweig
[48] Barcellos, C. S.; T. R. Mendonça, P.; Duarte, C. A., A C^k continuous generalized finite element formulation applied to laminated Kirchhoff plate model, Comput Mech, 44, 377-393, (2009) · Zbl 1166.74044
[49] Ngo, D.; Scordelis, A., Finite element analysis of reinforced concrete beams, J Am Concr Inst, 67, 152-163, (1967)
[50] Nilson, A., Nonlinear analysis of concrete by the finite element method, J Am Concr Inst, 65, 757-766, (1968)
[51] Rashid, Y. R., Ultimate strength analysis of prestressed concrete pressure vessels, Nucl Eng Des, 7, 334-344, (1968)
[52] Suidan, M.; Schnobrich, W. C., Finite element analysis of reinforced concrete, J Struct Div, 2109-2121, (1973)
[53] Bažant, Z. P.; Oh, B., Crack band theory for fracture of concrete, Mater Struct, 16, 3, 155-177, (1983)
[54] Borst, R., Smeared cracking, plasticity, creep and thermal loading - a unified approach, Comput Methods Appl Mech Eng, 62, 89-110, (1987) · Zbl 0607.73109
[55] Rots, J. G.; Nauta, P.; Kusters, G. M.; Blaauwendrra, J., Smeared crack approach and fracture localization in concrete, HERON, 30, 1-48, (1985)
[56] Bažant, Z. P.; Lin, F.-B., Nonlocal smeared cracking model for concrete fracture, J Struct Eng, 114, 11, 2493-2510, (1988)
[57] Mazars, J., Application de la mécanique de l’endommagement au comportement non lineaire et à rupture du béton de structure, (1984), Université Paris 6; Paris, France, Ph.D. thesis
[58] Mazars, J.; Pijaudier-Cabot, G., Continuum damage theory - application to concrete, J Eng Mech, 115, 345-365, (1989)
[59] Borst, R.; Guitiérrez, M. A., A unified framework for concrete damage and fracture models including size effects, Int J Fract, 95, 1, 261-277, (1999)
[60] Borst, R., Fracture in quasi-brittle materials: a review of continuum damage-based approaches, Eng Fract Mech, 69, 95-112, (2002)
[61] Carol, I.; Rizzi, E.; Willam, K., A unified theory of elastic degradation and damage based on a loading surface, Int J Solids Struct, 31, 2835-2865, (1994) · Zbl 0943.74550
[62] Penna, S. S., Formulação multipotencial para modelos de degradação elástica: Unificação teórica, proposta de novo modelo, implementação computacional e modelagem de estruturas de concreto, (2011), Universidade Federal de Minas Gerais; Belo Horizonte, MG, Brazil, Ph.D. thesis
[63] Gori, L.; Penna, S. S.; Pitangueira, R. L.S., A computational framework for constitutive modelling, Comput Struct, 187, 1-23, (2017)
[64] Monteiro, A. B.; Wolenski, A. R.V.; Penna, S. S.; Barros, F. B.; Pitangueira, R. L.S., Application of the generalized finite element method on the physically nonlinear analysis of structures, XXXV CILAMCE - Congresso Íbero Latino Americano de Métodos Computacionais em Engenharia, 1-19, (2014), Fortaleza, CE, Brazil
[65] Wolenski, A. R.V.; Monteiro, A. B.; Penna, S. S.; Barros, F. B.; Pitangueira, R. L.S., GFEM nonlinear analysis using microplane constitutive models, XXXV CILAMCE - Congresso Íbero Latino Americano de Métodos Computacionais em Engenharia, 1-14, (2015), Rio de Janeiro, RJ, Brazil
[66] Gori, L.; Andrade, M. P.; da Silva, R. P.; Penna, S. S.; da Silva Pitangueira, R. L., Scalar damage based on micropolar continua - mesh-free approximation, Revista Interdisciplinar de Pesquisa em Engenharia-RIPE, 2, 7, 93-111, (2017)
[67] Silva, R. P., Análise não-linear de estruturas de concreto por meio do método element free Galerkin, (2012), Universidade Federal de Minas Gerais; Belo Horizonte, MG, Brazil, Ph.D. thesis
[68] Yang, Y.; Shieh, M., Solution method for nonlinear problems with multiple critical points, AIAA J, 28, 2110-2116, (1990)
[69] Zeiml, M.; Zhang, Y.; Pichler, C.; Lackner, R.; Mang, H., A coupled thermo-hygro-chemo-mechanical model for the simulation of spalling of concrete subjected to fire loading, MATEC Web of Conferences, 6, 05001, (2013), EDP Sciences
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.