×

A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes. (English) Zbl 1349.76242

Summary: We present a three dimensional (3D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedral meshes. The new approach stores the conserved variables (mass, momentum, and total energy) at the nodes of the mesh and solves the conservation equations on a control volume surrounding the point. This type of an approach is termed a point-centered hydrodynamic (PCH) method. The conservation equations are discretized using an edge-based finite element (FE) approach with linear basis functions. All fluxes in the new approach are calculated at the center of each tetrahedron. A multidirectional Riemann-like problem is solved at the center of the tetrahedron. The advective fluxes are calculated by solving a 1D Riemann problem on each face of the nodal control volume. A 2-stage Runge-Kutta method is used to evolve the solution forward in time, where the advective fluxes are part of the temporal integration. The mesh velocity is smoothed by solving a Laplacian equation. The details of the new ALE hydrodynamic scheme are discussed. Results from a range of numerical test problems are presented.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs

Software:

ReALE; Trix; CAVEAT; FLAG
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Addessio, F.; Baumgardner, J.; Dukowicz, J.; Johnson, N.; Kashiwa, B.; Rauenzahn, R.; Zemach, C., CAVEAT: a computer code for fluid dynamics problems with large distortion and internal slip (1990), Los Alamos National Laboratory, Technical Report LA-10613-MS-REV.1
[2] Addessio, F.; Cline, M.; Dukowicz, J., A general topology, Godunov method, Comput. Phys. Commun., 48, 65-73 (1988)
[3] Barth, T., An introduction to recent developments in theory and numerics for conservation laws, (Rohde, C.; Kroner, D.; Ohlberger, M., Lecture Notes in Computational Science and Engineering (1998), Springer), 274-275
[4] Boscheri, W.; Balsara, D. S.; Dumbser, M., High-order Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers, J. Comput. Phys., 267, 112-138 (2014) · Zbl 1349.76309
[5] Boscheri, W.; Dumbser, M., A direct arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D, J. Comput. Phys., 275, 484-523 (2014) · Zbl 1349.76310
[6] Burton, D., Multidimensional discretization of conservation laws for unstructured polyhedral grids (1994), Lawrence Livermore National Laboratory, Technical Report UCRL-JC-118306
[7] Burton, D.; Carney, T.; Morgan, N.; Sambasivan, S.; Shashkov, M., A cell centered Lagrangian Godunov-like method of solid dynamics, J. Comput. Fluids, 83, 33-47 (2013) · Zbl 1290.76095
[8] Caramana, E.; Burton, D.; Shashkov, M.; Whalen, P. P., The construction of compatible hydrodynamic algorithms utilizing conservation of total energy, J. Appl. Phys., 146, 227-262 (1998) · Zbl 0931.76080
[9] Caramana, E.; Rousculp, C.; Burton, D., A compatible energy and symmetry preserving Lagrangian hydrodynamics algorithm in three dimensional Cartesian geometry, J. Comput. Phys., 157, 89-119 (2000) · Zbl 0961.76049
[10] Carré, G.; Del Pino, S.; Després, B.; Labourasse, E., Cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, J. Comput. Phys., 228, 5160-5183 (2009) · Zbl 1168.76029
[11] Clark, R., The evolution of HOBO, Comput. Phys. Commun., 48, 61-64 (1988)
[12] Coggeshall, S., Analytic solutions of hydrodynamics equations, Phys. Fluids A, 3, 760-769 (1991) · Zbl 0732.76002
[13] Cooper, P., Explosive Engineering, 188-189 (1996), Wiley-VCH
[14] Crowley, W., Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics (1971), Springer-Verlag · Zbl 0215.58001
[15] Crowley, W., Free-Lagrangian methods for compressible hydrodynamics in two space dimensions, (Proceedings of the First International Conference on Free-Lagrange Methods (1985), Springer-Verlag), 1-21 · Zbl 0581.76075
[16] Davis, S., Simplified second-order Godunov-type methods, SIAM J. Sci. Stat. Comput., 3, 445-473 (1988) · Zbl 0645.65050
[17] Després, B.; Mazeran, C., Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. Ration. Mech. Anal., 178, 327-372 (2005) · Zbl 1096.76046
[18] Dobrev, V.; Ellis, T.; Kolev, T.; Rieben, R., Curvillinear finite elements for Lagrangian hydrodynamics, Int. J. Numer. Methods Fluids, 65, 1295-1310 (2011) · Zbl 1255.76075
[19] Doebling, S., Impact of numerical treatment of shocks on verification assessment of the FLAG Lagrangian hydrodynamics code using the Sedov problem (2014), Los Alamos National Laboratory, Technical Report
[20] Dukowicz, J., A general, non-iterative Riemann solver for Godunov’s method, J. Comput. Phys., 61, 119-137 (1985) · Zbl 0629.76074
[21] Dukowicz, J.; Meltz, B., Vorticity errors in multidimensional Lagrangian codes, J. Comput. Phys., 99, 115-134 (1992) · Zbl 0743.76058
[22] Esmond, M.; Thurber, A., One dimensional Lagrangian hydrocode development (2013), Los Alamos National Laboratory, Technical Report LA-UR-13-26506
[23] Farhat, C.; Geuzine, P.; Grandmont, C., The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids, J. Comput. Phys., 174, 669-694 (2001) · Zbl 1157.76372
[24] Formaggia, L.; Peraire, J.; Morgan, K., Simulation of store separation using the finite element method, Appl. Math. Model., 12, 175-181 (1988) · Zbl 0644.76080
[25] Fritts, M.; Boris, J., The Lagrangian solution of transient problems in hydrodynamics using a triangular mesh, J. Comput. Phys., 31, 173-215 (1979) · Zbl 0403.76033
[26] Galera, S.; Maire, P.-H.; Breil, J., A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction, J. Comput. Phys., 229, 5755-5787 (2010) · Zbl 1346.76105
[27] Gittings, M., Trix: a free-Lagrangian hydrocode, (Proceedings of the Advances in the Free-Lagrange Method conference (1990), Springer-Verlag), 28-36
[28] Guillard, H.; Farhat, C., On the significance of the geometric conservation law for flow computations on moving meshes, Comput. Methods Appl. Mech. Eng., 190, 1467-1482 (2000) · Zbl 0993.76049
[29] Harlow, F., Hydrodynamic problems involving large fluid distortions, J. Assoc. Comput. Mach., 4, 137-142 (1957)
[30] Kidder, R., Laser compression of matter: optical power and energy requirements, Nucl. Fusion, 14, 797-803 (1974)
[31] Kidder, R., Theory of homogeneous isentropic compression and its application to laser fusion, Nucl. Fusion, 14, 53-60 (1974)
[32] Kidder, R., Laser-driven compression of hollow shells: power requirements and stability limitations, Nucl. Fusion, 16, 3-14 (1976)
[33] Kucharik, M.; Garimella, R.; Schofield, S.; Shashkov, M., A comparative study of interface reconstruction methods for multi-material ale simulations, J. Comput. Phys., 229, 2432-2452 (2010) · Zbl 1423.76343
[34] Loubère, R., Validation test case suite for compressible hydrodynamics computation (2005), Los Alamos National Laboratory, Technical Report
[35] Loubère, R.; Maire, P.-H.; Shashkov, M.; Breil, J.; Galera, S., ReALE: a reconnection-based arbitrary Lagrangian Eulerian method, J. Comput. Phys., 229, 4724-4761 (2010) · Zbl 1305.76067
[36] Loubère, R.; Maire, P.-H.; Váchal, P., Formulation of a staggered two-dimensional Lagrangian scheme by means of cell-centered approximately Riemann solver, Numer. Math. Adv. Appl., 617-625 (2009) · Zbl 1432.76206
[37] Loubère, R.; Maire, P.-H.; Váchal, P., A second-order compatible staggered Lagrangian hydrodynamics scheme using a cell-centered multidirectional Riemann solver, Proc. Comput. Sci., 1, 1925-1933 (2010) · Zbl 1432.76206
[38] Loubère, R.; Maire, P.-H.; Váchal, P., 3D staggered Lagrangian hydrodynamics with cell-centered Riemann solver-based artificial viscosity, Int. J. Numer. Methods Fluids, 72, 22-42 (2013) · Zbl 1455.76164
[39] Maire, P.-H., A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured mesh, J. Comput. Phys., 228, 2391-2425 (2009) · Zbl 1156.76434
[40] Maire, P.-H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM J. Sci. Comput., 29, 1781-1824 (2007) · Zbl 1251.76028
[41] Maire, P.-H.; Loubère, R.; Vachal, P., Staggered Lagrangian discretization based on cell-centered Riemann solver and associated hydrodynamics scheme, Commun. Comput. Phys., 10, 940-978 (2011) · Zbl 1373.76138
[42] Margolin, L., A centered artificial viscosity for cells with large aspect ratios (1988), Los Alamos National Laboratory, Technical Report UCRL-S3882
[43] Marsh, S., LASL Shock Hugoniot Data (1980), University of California Press
[44] Morgan, N.; Kenamond, M.; Burton, D.; Carney, T.; Ingraham, D., A contact surface algorithm for cell-centered Lagrangian hydrodynamics, J. Comput. Phys., 250, 527-554 (2013)
[45] Morgan, N.; Lipnikov, K.; Burton, D.; Kenamond, M., A Lagrangian staggered grid Godunov-like approach for hydrodynamics, J. Comput. Phys., 259, 568-597 (2014) · Zbl 1349.76365
[46] Morgan, N.; Waltz, J.; Burton, D.; Charest, M.; Canfield, T.; Wohlbier, J., A Godunov-like point-centered essentially Lagrangian hydrodynamic approach, J. Comput. Phys., 281, 614-652 (2014) · Zbl 1351.76071
[47] Murman, S.; Aftosmis, M.; Berger, M., Simulations of 6-dof Motion with a Cartesian Method (2003), in: 41st AIAA Aerospace Sciences Meeting, AIAA-2003-1246, Reno, NV
[48] Nguyen, V.-T., An arbitrary Lagrangian-Eulerian discontinuous Galerkin method for simulations of flows over variable geometries, J. Fluids Struct., 26, 312-329 (2010)
[49] Nkonga, B.; Guillard, H., Godunov type method on non-structured meshes for three-dimensional moving boundary problem, Comput. Methods Appl. Mech. Eng., 113, 183-204 (1994) · Zbl 0846.76060
[50] Ramsey, S., A class of self-similar hydrodynamic test problems (2010), Los Alamos National Laboratory, Technical Report LA-UR-10-08184
[51] Rausch, R.; Batina, J.; Yang, H., Three-dimensional time-marching aeroelastic analyses using an unstructured-grid Euler method, AIAA J., 31, 1626-1633 (1993)
[52] Sahota, M., An explicit-implicit solution of the hydrodynamic and radiation equations, (Proceedings of the Advances in the Free-Lagrange Method Conference (1990), Springer-Verlag), 28-36
[53] Scovazzi, G., Lagrangian shock hydrodynamics on tetrahedral meshes: a stable and accurate variational multi scale approach, J. Comput. Phys., 231, 8029-8069 (2013)
[54] Scovazzi, G.; Shadid, J.; Love, E.; Rider, W., A conservative nodal variational multiscale method for Lagrangian shock hydrodynamics, Comput. Methods Appl. Mech. Eng., 199, 3059-3100 (2010) · Zbl 1225.76204
[55] Sedov, L., Similarity and Dimensional Methods in Mechanics, 146 (1959), Academic Press · Zbl 0121.18504
[56] Shashkov, M.; Solovjov, A., Numerical simulation of two-dimensional flows by the free-Lagrangian method (1991), Technische Universität München, Technical Report TUM-M9105
[57] Sod, G., A survey of several finite difference methods for systems of non-linear hyperbolic conservation laws, J. Comput. Phys., 27, 1-31 (1978) · Zbl 0387.76063
[58] Sofonov, I.; Rasskazova, V.; Nexterenko, L., The use of nonregular nets for solving tow-dimensional non-stationary problems in gas dynamics, (Yanenko, N.; Shokin, Yu., Numerical Methods in Fluid Dynamics (1984), Mir: Mir Moscow), 82-121
[59] Thomas, P. D.; Lombard, C. K., Geometric conservation law and its application to flow computations on moving grids, AIAA J., 17, 1030-1037 (1979) · Zbl 0436.76025
[60] Venkatakrishnan, V., Convergence to steady state solutions of the Euler equations on unstructured grids with limiters, J. Comput. Phys., 118, 120-130 (1995) · Zbl 0858.76058
[61] Vilar, F.; Maire, P.-H.; Abgrall, R., A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids, J. Comput. Phys., 276, 188-234 (2014) · Zbl 1349.76278
[62] von Neumann, J.; Richtmyer, R., A method for the calculation of hydrodynamics shocks, J. Appl. Phys., 21, 232-237 (1950) · Zbl 0037.12002
[63] Waltz, J., Derived data structure algorithms for unstructured finite element meshes, Int. J. Numer. Methods Eng., 54, 945-963 (2002) · Zbl 1098.76578
[64] Waltz, J., Microfluidics simulation using adaptive unstructured grids, Int. J. Numer. Methods Fluids, 46, 939-960 (2004) · Zbl 1060.76580
[65] Waltz, J., Operator splitting and time accuracy in Lagrange plus remap solution methods, J. Comput. Phys., 253, 247-258 (2013) · Zbl 1349.65176
[66] Waltz, J.; Canfield, T.; Morgan, N.; Risinger, L.; Wohlbier, J., Verification of a three-dimensional unstructured finite element method using analytic and manufactured solutions, Comput. Fluids, 81, 57-67 (2013)
[67] Waltz, J.; Morgan, N.; Canfield, T.; Charest, M.; Wohlbier, J., A three-dimensional finite element arbitrary Lagrangian-Eulerian method for shock hydrodynamics on unstructured grids, Comput. Fluids, 92, 172-187 (2013) · Zbl 1391.76364
[68] Waltz, J.; Morgan, N.; Canfield, T.; Charest, M.; Wohlbier, J., A nodal Godunov method for Lagrangian shock hydrodynamics on unstructured tetrahedral grids, Int. J. Numer. Methods Fluids (2014), in press · Zbl 1391.76364
[69] Waltz, J.; Wohlbier, J.; Risinger, L.; Canfield, T.; Charest, M.; Long, A.; Morgan, N., Performance analysis of a 3D unstructured hydrodynamics code on multi-core and many-core architectures, Int. J. Numer. Methods Fluids (2014), in press · Zbl 1391.76364
[70] Wilkins, M., Use of artificial viscosity in multidimensional shock wave problems, J. Comput. Phys., 36, 281-303 (1980) · Zbl 0436.76040
[71] Zhang, H.; Reggio, M.; Trepánier, J. Y.; Camareo, R., Discrete forms of the GCL for moving meshes and its implementation in CFD schemes, Comput. Fluids, 22, 9-23 (1993) · Zbl 0767.76061
[72] Zukas, J.; Walters, W., Explosive Effects and Applications, 105 (1998), Springer
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.