×

zbMATH — the first resource for mathematics

On congruence lattices of some p-algebras and double p-algebras. (English) Zbl 0475.06003

MSC:
06D15 Pseudocomplemented lattices
06B10 Lattice ideals, congruence relations
08A30 Subalgebras, congruence relations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Beazer,The determination congruence on double p-algebras, Algebra Univ.6 (1976), 121–129. · Zbl 0353.06002 · doi:10.1007/BF02485824
[2] R. Beazer,Subdirectly irreducible double Heyting algebras, Algebra Univ. (to appear). · Zbl 0431.06014
[3] R. Beazer,Subdirectly irreducibles for various pseudocomplemented algebras, Algebra Univ. (to appear). · Zbl 0431.06012
[4] J. Berman,Congruence relations of pseudocomplemented distributive lattices, Algebra Univ.3 (1973), 288–293. · Zbl 0288.06014 · doi:10.1007/BF02945130
[5] R. Freese andA. Romanowska,Subdirectly irreducible modular double p-algebras, Houston J. Math.3 (1977), 109–112. · Zbl 0354.08010
[6] G. Grätzer,Lattice Theory: First concepts and distributive lattices. Freeman, San Francisco, Cal., (1971). · Zbl 0232.06001
[7] G. Grätzer,General Lattice Theory, Birkhäuser Verlag, Basel, (1978). · Zbl 0436.06001
[8] T. Katriňák,Subdirectly irreducible modular p-algebras, Algebra Univ.2 (1972), 166–173. · Zbl 0258.06005 · doi:10.1007/BF02945024
[9] T. Katriňák,The structure of distributive double p-algebras. Regularity and congruences, Algebra Univ.3 (1973), 238–246. · Zbl 0276.08005 · doi:10.1007/BF02945123
[10] T. Katriňák,The congruence lattice of distributive p-algebras, Algebra Univ.7 (1977), 265–271. · Zbl 0358.06026 · doi:10.1007/BF02485436
[11] T. Katriňák,Subdirectly irreducible distributive double p-algebras (preprint).
[12] T. Katriňák,Subdirectly irreducible p-algebras, Algebra Univ.9 (1979), 116–126. · Zbl 0402.06003 · doi:10.1007/BF02488020
[13] T. Katriňák,Subdirectly irreducible double p-algebras of finite length (preprint).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.