Settati, Adel; Hamdoune, Said; Imlahi, Abdelouahid; Akharif, Abdelhadi Extinction and persistence of a stochastic Gilpin-Ayala model under regime switching on patches. (English) Zbl 1426.60105 Appl. Math. Lett. 90, 110-117 (2019). MSC: 60J28 60J70 92D25 PDF BibTeX XML Cite \textit{A. Settati} et al., Appl. Math. Lett. 90, 110--117 (2019; Zbl 1426.60105) Full Text: DOI
Zhao, Kaihong Global exponential stability of positive periodic solution of the \(n\)-species impulsive Gilpin-Ayala competition model with discrete and distributed time delays. (English) Zbl 1448.92263 J. Biol. Dyn. 12, No. 1, 433-454 (2018). MSC: 92D25 34K13 34K45 34K20 PDF BibTeX XML Cite \textit{K. Zhao}, J. Biol. Dyn. 12, No. 1, 433--454 (2018; Zbl 1448.92263) Full Text: DOI
Zhao, Kaihong Global exponential stability of positive almost periodic solutions for a class of two-layer Gilpin-Ayala predator-prey model with time delays. (English) Zbl 1445.34102 Adv. Difference Equ. 2018, Paper No. 129, 23 p. (2018). MSC: 34K14 34D23 37N25 92D25 PDF BibTeX XML Cite \textit{K. Zhao}, Adv. Difference Equ. 2018, Paper No. 129, 23 p. (2018; Zbl 1445.34102) Full Text: DOI
Zhang, Yanhua Asymptotic behavior of non-autonomous stochastic Gilpin-Ayala predator-prey model with jumps. (English) Zbl 1412.60087 J. Nonlinear Sci. Appl. 10, No. 4, 2079-2093 (2017). MSC: 60H10 92D25 34F05 PDF BibTeX XML Cite \textit{Y. Zhang}, J. Nonlinear Sci. Appl. 10, No. 4, 2079--2093 (2017; Zbl 1412.60087) Full Text: DOI
Wu, Ruihua Dynamics of stochastic hybrid Gilpin-Ayala system with impulsive perturbations. (English) Zbl 1412.34185 J. Nonlinear Sci. Appl. 10, No. 2, 436-450 (2017). MSC: 34F05 34D05 PDF BibTeX XML Cite \textit{R. Wu}, J. Nonlinear Sci. Appl. 10, No. 2, 436--450 (2017; Zbl 1412.34185) Full Text: DOI
Zhao, Kaihong; Ren, Yaping Existence of positive periodic solutions for a class of Gilpin-Ayala ecological models with discrete and distributed time delays. (English) Zbl 1444.37089 Adv. Difference Equ. 2017, Paper No. 331, 13 p. (2017). MSC: 37N25 34K13 92D40 PDF BibTeX XML Cite \textit{K. Zhao} and \textit{Y. Ren}, Adv. Difference Equ. 2017, Paper No. 331, 13 p. (2017; Zbl 1444.37089) Full Text: DOI
Wu, Yanmei; Dou, Jiawei; Ma, Li The maximum harvesting yield of non-autonomous Gilpin-Ayala model with impulsive harvests. (Chinese. English summary) Zbl 1399.92038 J. Yunnan Univ., Nat. Sci. 39, No. 3, 340-349 (2017). MSC: 92D25 34H05 92D40 PDF BibTeX XML Cite \textit{Y. Wu} et al., J. Yunnan Univ., Nat. Sci. 39, No. 3, 340--349 (2017; Zbl 1399.92038) Full Text: DOI
Settati, Adel; Lahrouz, Aadil Stability and ergodicity of a stochastic Gilpin-Ayala model under regime switching on patches. (English) Zbl 1376.92050 Int. J. Biomath. 10, No. 6, Article ID 1750090, 16 p. (2017). MSC: 92D25 60H10 60J20 PDF BibTeX XML Cite \textit{A. Settati} and \textit{A. Lahrouz}, Int. J. Biomath. 10, No. 6, Article ID 1750090, 16 p. (2017; Zbl 1376.92050) Full Text: DOI
Yang, Hongfu; Li, Xiaoyue; Yin, George Permanence and ergodicity of stochastic Gilpin-Ayala population model with regime switching. (English) Zbl 1354.60076 Discrete Contin. Dyn. Syst., Ser. B 21, No. 10, 3743-3766 (2016). MSC: 60H30 60H10 60J10 92D25 PDF BibTeX XML Cite \textit{H. Yang} et al., Discrete Contin. Dyn. Syst., Ser. B 21, No. 10, 3743--3766 (2016; Zbl 1354.60076) Full Text: DOI
Liu, Qun Asymptotic properties of a stochastic \(n\)-species Gilpin-Ayala competitive model with Lévy jumps and Markovian switching. (English) Zbl 1440.92055 Commun. Nonlinear Sci. Numer. Simul. 26, No. 1-3, 1-10 (2015). MSC: 92D25 34F05 60H10 PDF BibTeX XML Cite \textit{Q. Liu}, Commun. Nonlinear Sci. Numer. Simul. 26, No. 1--3, 1--10 (2015; Zbl 1440.92055) Full Text: DOI
Lu, Hongying; Yu, Gang Permanence of a Gilpin-Ayala predator-prey system with time-dependent delay. (English) Zbl 1422.92123 Adv. Difference Equ. 2015, Paper No. 109, 15 p. (2015). MSC: 92D25 34K20 37N25 34K13 92D40 PDF BibTeX XML Cite \textit{H. Lu} and \textit{G. Yu}, Adv. Difference Equ. 2015, Paper No. 109, 15 p. (2015; Zbl 1422.92123) Full Text: DOI
Zhang, Xinhong; Wang, Ke Asymptotic behavior of non-autonomous stochastic Gilpin-Ayala competition model with jumps. (English) Zbl 1333.34083 Appl. Anal. 94, No. 12, 2588-2604 (2015). Reviewer: Aleksandr D. Borisenko (Kyïv) MSC: 34C60 34F05 92D25 60H10 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{K. Wang}, Appl. Anal. 94, No. 12, 2588--2604 (2015; Zbl 1333.34083) Full Text: DOI
Lu, Chun; Ding, Xiaohua Persistence and extinction of a stochastic Gilpin-Ayala model with jumps. (English) Zbl 1329.60188 Math. Methods Appl. Sci. 38, No. 6, 1200-1211 (2015). MSC: 60H10 60J75 60J65 60G22 92D25 65C30 PDF BibTeX XML Cite \textit{C. Lu} and \textit{X. Ding}, Math. Methods Appl. Sci. 38, No. 6, 1200--1211 (2015; Zbl 1329.60188) Full Text: DOI
Zhang, Xinhong; Wang, Ke Stability analysis of a stochastic Gilpin-Ayala model driven by Lévy noise. (English) Zbl 07172507 Commun. Nonlinear Sci. Numer. Simul. 19, No. 5, 1391-1399 (2014). MSC: 60 93 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{K. Wang}, Commun. Nonlinear Sci. Numer. Simul. 19, No. 5, 1391--1399 (2014; Zbl 07172507) Full Text: DOI
Wu, Ruihua; Zou, Xiaoling; Wang, Ke Asymptotic properties of stochastic hybrid Gilpin-Ayala system with jumps. (English) Zbl 1338.60210 Appl. Math. Comput. 249, 53-66 (2014). MSC: 60J75 34D05 34F05 60J27 92D25 PDF BibTeX XML Cite \textit{R. Wu} et al., Appl. Math. Comput. 249, 53--66 (2014; Zbl 1338.60210) Full Text: DOI
Vasilova, Maja Asymptotic behavior of a stochastic Gilpin-Ayala predator-prey system with time-dependent delay. (English) Zbl 1305.34122 Math. Comput. Modelling 57, No. 3-4, 764-781 (2013). MSC: 34K12 92D25 34K50 60H10 PDF BibTeX XML Cite \textit{M. Vasilova}, Math. Comput. Modelling 57, No. 3--4, 764--781 (2013; Zbl 1305.34122) Full Text: DOI
Liu, Meng; Wang, Ke Dynamics of a non-autonomous stochastic Gilpin-Ayala model. (English) Zbl 1302.60098 J. Appl. Math. Comput. 43, No. 1-2, 351-368 (2013). Reviewer: Andrew Dale (Durban) MSC: 60H30 60H10 92D25 PDF BibTeX XML Cite \textit{M. Liu} and \textit{K. Wang}, J. Appl. Math. Comput. 43, No. 1--2, 351--368 (2013; Zbl 1302.60098) Full Text: DOI
Zhang, Xinhong; Wang, Ke Asymptotic behavior of stochastic Gilpin-Ayala mutualism model with jumps. (English) Zbl 1292.34045 Electron. J. Differ. Equ. 2013, Paper No. 162, 17 p. (2013). MSC: 34C60 34D05 34F05 92D25 60H10 60H20 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{K. Wang}, Electron. J. Differ. Equ. 2013, Paper No. 162, 17 p. (2013; Zbl 1292.34045) Full Text: EMIS
Jovanović, Miljana; Vasilova, Maja Dynamics of non-autonomous stochastic Gilpin-Ayala competition model with time-varying delays. (English) Zbl 1302.34122 Appl. Math. Comput. 219, No. 12, 6946-6964 (2013). Reviewer: Alexandra Rodkina (Kingston/Jamaica) MSC: 34K60 34K50 92D25 60H10 34F05 34K12 PDF BibTeX XML Cite \textit{M. Jovanović} and \textit{M. Vasilova}, Appl. Math. Comput. 219, No. 12, 6946--6964 (2013; Zbl 1302.34122) Full Text: DOI
Li, Zhong; Chen, Fengde Extinction and almost periodic solutions of a discrete Gilpin-Ayala type population model. (English) Zbl 1337.39001 J. Difference Equ. Appl. 19, No. 5, 719-737 (2013). MSC: 39A12 39A24 92D10 PDF BibTeX XML Cite \textit{Z. Li} and \textit{F. Chen}, J. Difference Equ. Appl. 19, No. 5, 719--737 (2013; Zbl 1337.39001) Full Text: DOI
Ai, Xiaohui; Sun, Yang An optimal stopping problem in the stochastic Gilpin-Ayala population model. (English) Zbl 1384.60077 Adv. Difference Equ. 2012, Paper No. 210, 8 p. (2012). MSC: 60G40 60J60 92D25 PDF BibTeX XML Cite \textit{X. Ai} and \textit{Y. Sun}, Adv. Difference Equ. 2012, Paper No. 210, 8 p. (2012; Zbl 1384.60077) Full Text: DOI
Chen, Fengde; Wu, Liping; Li, Zhong Permanence and global attractivity of the discrete Gilpin-Ayala type population model. (English) Zbl 1127.92038 Comput. Math. Appl. 53, No. 8, 1214-1227 (2007). MSC: 92D40 39A11 92D25 PDF BibTeX XML Cite \textit{F. Chen} et al., Comput. Math. Appl. 53, No. 8, 1214--1227 (2007; Zbl 1127.92038) Full Text: DOI