×

A program to generate a basis set adaptive radial quadrature grid for density functional theory. (English) Zbl 1198.65047

Summary: We present an automatic quadrature routine (AQR) which generates an atomic basis set adaptive radial quadrature grid for the numerical evaluation of molecular integrands in density functional theory. Unlike the popular radial grids that are tuned to a particular class of integrands and rely on a fixed selection of points, our grid adapts itself automatically to the atomic shell structure of any radial integrand and determines the best number of quadrature points that provides user specified accuracy. We evaluate the performance of our radial grid on various tight, diffuse, and noble gas atom radial integrands. We conclude that the radial quadrature grid generated by our AQR is generally comparable to and sometimes better than the best ranked popular radial grids in efficiency and reliability.

MSC:

65D30 Numerical integration
81V55 Molecular physics

Software:

QUADPACK; BRENT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] te Velde, G.; Baerends, E. J., J. Comp. Phys., 99, 84 (1992)
[2] Becke, A. D., J. Chem. Phys., 88, 2547 (1988)
[3] Delley, B., J. Chem. Phys., 92, 508 (1990)
[4] Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J., Chem. Phys. Lett., 257, 213 (1996)
[5] Lin, Z.; Jaffe, J. E.; Hess, A. C., J. Phys. Chem. A, 103, 2117 (1999)
[6] Gill, P. M.W.; Chien, S.-H., J. Comp. Chem., 24, 732 (2003)
[7] Gill, P. M.W.; Johnson, B. G.; Pople, J. A., Chem. Phys. Lett., 209, 506 (1993)
[8] Köster, A. M.; Flores-Moreno, R.; Reveles, J. U., J. Chem. Phys., 121, 681 (2004)
[9] Krack, M.; Köster, A. M., J. Chem. Phys., 108, 3226 (1998)
[10] Challacombe, M., J. Chem. Phys., 113, 10037 (2000)
[11] Lebedev, V. I., Comp. Math. and Math. Phys., 16, 10 (1976)
[12] Lebedev, V. I., Sib. Math. J., 18, 99 (1977)
[13] Lebedev, V. I., Russ. Acad. Sci. Dokl. Math., 50, 283 (1995)
[14] Lebedev, V. I.; Laikov, D. N., Dokl. Math., 59, 477 (1999)
[15] Lebedev, V. I.; Skorokhodov, A. L., Russ. Acad. Sci. Dokl. Math., 45, 587 (1992)
[16] Murray, C. W.; Handy, N. C.; Laming, G. J., Mol. Phys., 78, 997 (1993)
[17] Treutler, O.; Ahlrichs, R., J. Chem. Phys., 102, 346 (1995)
[18] Mura, M. E.; Knowles, P. J., J. Chem. Phys., 104, 9848 (1996)
[19] Lindh, R.; Malmqvist, P.-A.; Gagliardi, L., Theor. Chem. Acc., 106, 178 (2001)
[20] Gräfenstein, J.; Cremer, D., J. Chem. Phys., 127, 164113 (2007)
[21] El-Sherbiny, A.; Poirier, R. A., J. Comp. Chem., 25, 1378 (2004)
[22] Brown, S. T.; Kong, J., Chem. Phys. Lett., 408, 395 (2005)
[23] Brown, S. T.; Fusti-Molnar, L.; Kong, J., Chem. Phys. Lett., 418, 490 (2006)
[24] Chien, S.-H.; Gill, P. M.W., J. Comp. Chem., 27, 730 (2006)
[25] Johnson, E. R.; Wolkow, R. A.; DiLabio, G. A., Chem. Phys. Lett., 394, 334 (2004)
[26] Termath, V.; Sauer, J., Chem. Phys. Lett., 255, 187 (1996)
[27] Tsereteli, K.; Yan, Y.-a.; Morales, J. A., Chem. Phys. Lett., 420, 54 (2006)
[28] Davis, P. J.; Rabinowitz, P., Methods of Numerical Integration (1984), Academic: Academic San Diego · Zbl 0154.17802
[29] Andzelm, J.; Wimmer, E., J. Chem. Phys., 96, 1280 (1992)
[30] Pérez-Jordà, J. M.; Becke, A. D.; San-Fabiàn, E., J. Chem. Phys., 100, 6520 (1994)
[31] Pérez-Jordà, J. M.; Yang, W., Chem. Phys. Lett., 241, 469 (1995)
[32] Pérez-Jordà, J. M.; San-Fabiàn, E.; Moscardò, F., Comput. Phys. Comm., 70, 271 (1992)
[33] Yamamoto, K.; Ishikawa, H.; Fujima, K.; Iwasawa, M., J. Chem. Phys., 106, 8769 (1997)
[34] Weber, V.; Daul, C.; Baltensperger, R., Comput. Phys. Comm., 163, 133 (2004)
[35] Lyness, J. N., SIAM Rev., 25, 63 (1983)
[36] Boyd, R. J., J. Phys. B, 9, 69 (1976)
[37] Bartell, L. S.; Gavin, R. M., J. Am. Chem. Soc., 86, 3493 (1964)
[38] Baker, J.; Andzelm, J.; Scheiner, A.; Delley, B., J. Chem. Phys., 101, 8894 (1994)
[39] Martin, J. M.L.; Bauschlicher, C. W.; Ricca, A., Comput. Phys. Comm., 133, 189 (2001)
[40] Papas, B. N.; Schaefer, H. F., J. Mol. Struct. THEOCHEM, 768, 175 (2006)
[41] Pérez-Jordà, J. M.; San-Fabiàn, E., Comput. Phys. Comm., 77, 46 (1993)
[42] Dressler, S.; Thiel, W., Chem. Phys. Lett., 273, 71 (1997)
[43] Geerlings, P.; De Proft, F.; Langenaeker, W., Chem. Rev., 103, 1793 (2003)
[44] Bader, R. W.F.; MacDougall, P. J.; Lau, C. D.H., J. Am. Chem. Soc., 106, 1549 (1984)
[45] Bader, R. W.F.; Essén, H., J. Chem. Phys., 80, 1943 (1984)
[46] Stroud, A. H.; Secrest, D., Gaussian Quadrature Formulas (1966), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0156.17002
[47] Piessens, R.; De Doncker-Kapenga, E.; Überhuber, C. W.; Kahaner, D. K., QUADPACK: A Subroutine Package for Automatic Integration (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0508.65005
[48] Netlib Repository at UTK and ORNL
[49] EMSL Gaussian Basis Set Order Form
[50] Brent, R. P., Algorithms for Minimization without Derivatives (1973), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ, (Chapter 4) · Zbl 0245.65032
[51] Hirshfeld, F. L., Theor. Chim. Acta, 44, 129 (1977)
[52] Mitchell, A. S.; Sparckam, M. A., J. Comp. Chem., 21, 933 (2000)
[53] Sparckam, M. A., Chem. Phys. Lett., 301, 425 (1999)
[54] Peirce, W. H., Math. Tables Aids Comput., 11, 244 (1957)
[55] Kohout, M.; Savin, A.; Preuss, H., J. Chem. Phys., 95, 1928 (1991)
[56] Politzer, P.; Parr, R. G., J. Chem. Phys., 64, 4634 (1976)
[57] K. Tsereteli, J.A. Morales, in preparation; K. Tsereteli, J.A. Morales, in preparation
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.