×

A three-dimensional finite volume method based on radial basis functions for the accurate computational modelling of nonlinear diffusion equations. (English) Zbl 1122.65113

Summary: We investigate the effectiveness of a finite volume method incorporating radial basis functions for simulating nonlinear diffusion processes. Past work conducted in two dimensions is extended to produce a three-dimensional discretisation that employs radial basis functions (RBFs) as a means of local interpolation. When combined with Gaussian quadrature integration methods, the resulting finite volume discretisation leads to accurate numerical solutions without the need for very fine meshes, and the additional overheads they entail.
The resulting nonlinear, algebraic system is solved efficiently using a Jacobian-free Newton-Krylov method. By employing the method as an extension of existing shape function-based approaches, the number of nonlinear iterations required to achieve convergence can be reduced while also permitting an effective preconditioning technique.
Results highlight the improved accuracy offered by the new method when applied to three test problems. By successively refining the meshes, we are also able to demonstrate the increased order of the new method, when compared to a traditional shape function-based method. Comparing the resources required for both methods reveals that the new approach can be many times more efficient at producing a solution of a given accuracy.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J65 Nonlinear boundary value problems for linear elliptic equations
65H10 Numerical computation of solutions to systems of equations

Software:

Gmsh; KELLEY; NITSOL; DistMesh
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bailey, C.; Taylor, G. A.; Cross, M.; Chow, P., Discretisation procedures for multi-physics phenomena, J. Comput. Appl. Math., 103, 3-17 (1999) · Zbl 0962.76057
[2] T. Barth, Aspects of unstructured grids and finite volume solvers for the Euler and Navier-Stokes equations, 1994.; T. Barth, Aspects of unstructured grids and finite volume solvers for the Euler and Navier-Stokes equations, 1994.
[3] Bellavia, S.; Morini, B., A globally convergent Newton-GMRES subspace method for systems of nonlinear equations, SIAM J. Sci. Comput., 23, 2, 940-960 (2001) · Zbl 0998.65053
[4] Brown, P. N.; Saad, Y., Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Statist. Comput., 11, 3, 450-481 (1990) · Zbl 0708.65049
[5] Chow, P.; Cross, M.; Pericleous, K., A natural extension of the conventional finite volume method into polygonal unstructured meshes for CFD application, Appl. Math. Model., 20, 170-183 (1996) · Zbl 0869.76061
[6] N. Croft, Unstructured mesh – finite volume algorithms for swirling, turbulent, reacting flows, PhD Thesis, University of Greenwish, London, UK, 1998.; N. Croft, Unstructured mesh – finite volume algorithms for swirling, turbulent, reacting flows, PhD Thesis, University of Greenwish, London, UK, 1998.
[7] Dhatt, G.; Touzot, G., The finite element method displayed translation of: une présentation de la méthode des éléments finis (1984), Wiley-Inerscience
[8] Eisenstat, S. C.; Walker, H. F., Globally convergent inexact Newton methods, SIAM J. Optim., 4, 2, 393-422 (1994) · Zbl 0814.65049
[9] Eisenstat, S. C.; Walker, H. F., Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput., 17, 1, 16-32 (1996) · Zbl 0845.65021
[10] Fornberg, B.; Driscoll, T. A.; Wright, G.; Charles, R., Observations on the behavior of radial basis function approximations near boundaries, Comput. Math. Appl., 43, 3-5, 473-490 (2002) · Zbl 0999.65005
[11] Franke, R., Scattered data interpolation: tests of some methods, Math. Comput., 38, 181-200 (1982) · Zbl 0476.65005
[12] Franke, C.; Schaback, R., Solving partial differential equations by collocation using radial basis functions, Appl. Math. Comput., 93, 1, 73-82 (1998) · Zbl 0943.65133
[13] Christophe Geuzaine, Jean-François Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities.; Christophe Geuzaine, Jean-François Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. · Zbl 1176.74181
[14] Carl, F.; Gooch, Ollivier; Van Altena, Michael, A high-order accurate unstructured mesh finite-volume scheme for the advection-diffusion equation, J. Comput. Phys., 181, 2, 729-752 (2002) · Zbl 1178.76251
[15] Hansen, Per Christian, Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank, SIAM J. Sci. Statist. Comput., 11, 3, 503-518 (1990) · Zbl 0699.65029
[16] Hardy, R. L., Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res., 76, 1905-1915 (1971)
[17] Hardy, R. L., Theory and applications of the multiquadric-biharmonic method. 20 years of discovery 1968-1988, Comput. Math. Appl., 19, 8-9, 105-210 (1990) · Zbl 0692.65003
[18] Hermeline, F., A finite volume method for the approximation of diffusion operators on distorted meshes, J. Comput. Phys., 160, 481-499 (2000) · Zbl 0949.65101
[19] Hon, Y. C.; Cheung, K. F.; Mao, X. Z.; Kansa, E. J., A multiquadric solution for shallow water equation, ASCE J. Hydraul. Eng., 125, 5, 524-533 (1999)
[20] Jasak, H.; Gosman, A. D., Automatic resolution control for the finite-volume method, part 1: a-posteriori error estimates, Numer. Heat Transf. Part B: Fund., 38, 237-256 (2000)
[21] Jayantha, P. A.; Turner, I. W., A second order finite volume technique for simulating transport in anisotropic media, Int. J. Numer. Methods Head Fluid Flow, 13, 1, 31-56 (2003) · Zbl 1123.76345
[22] Jayantha, P. A.; Turner, I. W., A second order control-volume finite-element least-squares strategy for simulating diffusion in strongly anisotropic media, J. Comput. Math., 13, 1, 31-56 (2005)
[23] Kansa, E. J., Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics, Comput. Math. Appl., 19, 8/9, 127-161 (1990) · Zbl 0692.76003
[24] Kelly, C. T., Iterative Methods for Linear and Nonlinear Equations (1995), SIAM
[25] Kelly, C. T., Solving Nonlinear Equations with Newton’s Method (2003), SIAM · Zbl 1031.65069
[26] Knoll, D. A.; Keyes, D. E., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comp. Phys., 193, 357-397 (2004) · Zbl 1036.65045
[27] Li, J.; Chen, Y.; Pepper, D., Radial basis function method for 1-D and 2-D groundwater contaminant transport modeling, Comput. Mech., 32, 1-2, 10-15 (2003) · Zbl 1045.76548
[28] Liu, F.; Turner, I. W.; Anh, V.; Su, N., A two-dimensional finite volume method for transient simulation of time- and scale-dependent transport in heterogeneous aquifer systems, J. Appl. Math. Comput., 11, 1-2, 215-241 (2003) · Zbl 1145.76407
[29] Moroney, T. J.; Turner, I. W., A finite volume method based on radial basis functions for two-dimensional nonlinear diffusion equations, Appl. Math. Modell., 30, 10, 1118-1133 (2006) · Zbl 1099.65114
[30] T.J. Moroney, An investigation of a finite volume method incorporating radial basis functions for simulating nonlinear transport, PhD Thesis, School of Mathematical Sciences, Queensland University of Technology, 2006.; T.J. Moroney, An investigation of a finite volume method incorporating radial basis functions for simulating nonlinear transport, PhD Thesis, School of Mathematical Sciences, Queensland University of Technology, 2006.
[31] Murthy, J. Y.; Mathur, S. R., Computation of anisotropic conduction using unstructured meshes, J. Heat Transf., 120, 583-591 (1998)
[32] Özişik, M. N., Heat Conduction (1980), Wiley · Zbl 0625.76091
[33] Patankar, S. V., Numerical Heat Transfer and Fluid Flow (1980), Hemisphere Publishing Corporation · Zbl 0595.76001
[34] Pernice, M.; Walker, H. F., NITSOL: A Newton iterative solver for nonlinear systems, SIAM J. Sci. Comput., 19, 1, 302-318 (1998) · Zbl 0916.65049
[35] Perré, P.; Turner, I. W., A heterogeneous wood drying computational model that accounts for material property variation across growth rings, Chem. Eng. J., 86, 117-131 (2002)
[36] Persson, P.-O.; Strang, G., A simple mesh generator in MATLAB, SIAM Rev., 46, 2, 329-345 (2004) · Zbl 1061.65134
[37] Powell, M. J.D., The theory of radial basis function approximations in 1990, (Advances in Numerical Analysis. Advances in Numerical Analysis, Wavelets, Subdicision Algorithms and Radial Basis Functions, vol. II (1990), Oxford University Press), 105-210 · Zbl 0787.65005
[38] Prakash, C.; Patankar, S. V., A control volume-based finite-element method for solving the Navier-Stokes equations using equal-order velocity-pressure interpolation, Numer. Heat Transf., 8, 259-280 (1985) · Zbl 0576.76029
[39] Saad, Y., Iterative Methods for Sparse Linear Systems (1996), PWS · Zbl 1002.65042
[40] Saad, Y.; Shultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7, 3, 856-869 (1996) · Zbl 0599.65018
[41] Saad, Yousef; van der Vorst, Henk A., Iterative solution of linear systems in the 20th century, J. Comput. Appl. Math., 123, 1-2, 1-33 (2000) · Zbl 0965.65051
[42] Song, S.; Chen, M., Third order accurate large-particle finite volume method on unstructured triangular meshes, SIAM J. Sci. Comput., 23, 5, 1456-1463 (2002) · Zbl 1008.76053
[43] Teskeredžić, A.; Demirdžić, I.; Muzaferija, S., Numerical method for heat transfer, fluid flow and stress analysis in phase-change problems, Numer. Heat Transf. Part B, 42, 5, 437-459 (2002)
[44] Truscott, S. L.; Turner, I. W., An investigation of the accuracy of the control volume finite element method based on triangular prismatic elements for simulating diffusion in anisotropic media, Numer. Heat Transf., Part B: Fund., 46, 3, 243-268 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.