zbMATH — the first resource for mathematics

The asymptotic efficacies and relative efficiencies of various linear rank tests for independence. (English) Zbl 1232.62069
Summary: We consider eight general models of independence, the Hájek-Šidák model, the Janssen-Mason model, Konijn’s model, Steffensen’s model, the Farlie model, the bivariate Gamma distribution, the Mardia model and the Fréchet model. The asymptotic efficacies and relative efficiencies of various linear rank tests are computed. It turns out that the asymptotic power depends heavily on the underlying model. However, for the vast majority of the considered models, the Spearman test is, asymptotically, a good choice.

62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI
[1] Bateman H, Erdélyi A (1953) Higher transcendental functions, vol 2. Mc Graw-Hill,New York · Zbl 0143.29202
[2] Bathke A (2005)Testing monotone effects of covariates in nonparametric mixed models. Journal Nonparamet Stat 17:423–439 · Zbl 1061.62068
[3] Behnen K (1971) Asymptotic optimality and ARE of certain rank-order tests under contiguity. Ann Math Stat 41:325–329 · Zbl 0224.62019
[4] Behnen K (1972) A characterisation of certain rank-order tests with bounds for the asymptotic relative efficiency. Ann Math Stat 43:1839–1851 · Zbl 0255.62042
[5] Behnen K, Neuhaus G (1989) Rank tests with estimated scores and their application. Teubner, Stuttgart · Zbl 0692.62041
[6] Behnen K, Neuhaus G, Ruymgaart FH (1983) Two-sample rank estimators of optimal nonparametric score-functions and corresponding adaptive rank statistics. Ann Stat 11:1175–1189 · Zbl 0548.62029
[7] Behnen K, Hušková M, Neuhaus G (1985) Rank estimators of scores for testing independence. Stat Decis pp 239–262 · Zbl 0606.62045
[8] Bhuchongkul S (1964) A class of nonparametric tests for independence in bivariate populations. Ann Math Stat 35:138–149 · Zbl 0126.15003
[9] Blum JR, Kiefer J, Rosenblatt M (1961) Distribution free tests of independence based on the sample distribution function. Ann Math Stat 12:485–498 · Zbl 0139.36301
[10] Brunner E, Domhof S, Langer F (2002) Nonparametric analysis of longitudinal data in factorial experiments. Wiley, New York · Zbl 0984.62052
[11] Farlie DJG (1960) The performance of some correlation coefficients for a general bivariate distribution. Biometrika 47:307–323 · Zbl 0102.14903
[12] Fréchet M (1951) Sur less tableaux de correlation dont les marges sont donees. Ann. de l’Universite de Lyon, Section A, 3e Serie, Fasc. 14, Paris, pp 53–77
[13] Hájek J (1968) Asymptotic normality of simple linear rank statistics under alternatives. Ann Math Stat 39:325–346 · Zbl 0187.16401
[14] Hájek J, Šidák Ž (1967). Theory of rank tests. Academia, Prague · Zbl 0161.38102
[15] Hájek J, Šidák Ž, Sen PK (1999) Theory of rank tests. Academic, San Diego
[16] Janssen A, Mason DM (1990) Non-standard rank tests. Lecture notes in statistics 65. Springer, Berlin Heidelberg New York
[17] Kallenberg WCM, Ledwina T (1999) Data-driven rank tests for independence. J Am Stat Assoc 94:285–301 · Zbl 1072.62574
[18] Kibble WF (1941) A two-variate gamma type distribution. Sankyã 5:137–150 · Zbl 0063.03231
[19] Konijn HS (1956) On the power of certain tests for independence in bivariate populations. Ann Math Stat 27:300–323 · Zbl 0075.29302
[20] Koziol JA, Nemec AF (1979) On a Cramer-von-Mises type statistic for testing bivariate independence. Can J Stat 7:43–52 · Zbl 0424.62027
[21] Lancaster HO (1958) The structure of bivariate distributions. Ann Math Stat 29:719–736 · Zbl 0086.35102
[22] Mardia KV (1970) Families of bivariate distributions. Griffin, London · Zbl 0223.62062
[23] Moran PAP (1967) Testing for correlation between non-negative variates. Biometrika 54:385–394 · Zbl 0166.15101
[24] Munzel U (1999) Linear rank score tests when ties are present. Stat Proba Lett 41:389–395 · Zbl 0931.62041
[25] Puri M L, Sen PK (1971) Nonparametric methods in multivariate analysis. Wiley, New York · Zbl 0237.62033
[26] Ramberg JS, Schmeiser BW (1974) An approximate method for generating asymmetric random variables. Commun ACM 17:78–82 · Zbl 0273.65004
[27] Rödel, E. (1984) Tests of independence in the family of continuous distributions with finite contingency. In: Rasch D, Tiku M.L, (eds) Robustness of statistical methods and statistics Paper Conference, Schwerin/Mecklenb 1983, Theory Decis. Libr., Ser. B 1, pp 125–127
[28] Rödel E (1989) Linear rank statistics with estimated scores for Testing Independence. Statistics 20:423–438 · Zbl 0731.62095
[29] Rödel E, Kössler W (2004) Linear rank tests for independence in bivariate distributions-power comparisons by simulation. Comput Stat Data Analy 46:645–660 · Zbl 1429.62212
[30] Ruymgaart FH (1974) Asymptotic normality of nonparametric tests for independence. Ann stat 2:892–910 · Zbl 0303.62040
[31] Ruymgaart FH (1980). A unified approach to the asymptotic distribution theory of certain midrank statistics. In: Raoult JP (eds). Statistique nonparametrique asymptotique. Lecture notes on Mathematics 821. Springer, Berlin Heidelberg New York, pp 1–18
[32] Ruymgaart FH, Shorack GR, van Zwet WR (1972) Asymptotic normality of nonparametric tests for independence. Ann Math Stat 43:1122–1135 · Zbl 0254.62025
[33] Shirahata S (1974) Locally most powerful rank tests for independence. Bull Math Stat 16:11–21 · Zbl 0292.62034
[34] Vorlíčková D (1970) Asymptotic properties of rank tests under discrete distributions Z. Wahrscheinlichkeitstheorie verw Geb 14:275–289 · Zbl 0193.17303
[35] Witting H, Nölle G (1970) Angewandte Mathematische Statistik. Teubner, Leipzing, Leipzig · Zbl 0212.20901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.