# zbMATH — the first resource for mathematics

Active stress vs. active strain in mechanobiology: constitutive issues. (English) Zbl 1312.74015
Summary: Many biological tissues exhibit a non-standard continuum mechanics behavior: they are able to modify their placement in absence of external loads. The activity of the muscles is usually represented in solid mechanics in terms of an active stress, to be added to the standard one. A less popular approach is to introduce a multiplicative decomposition of the tensor gradient of deformation in two factors: the passive and the active one. Both approaches should satisfy due mathematical properties, namely frame indifference and ellipticity of the total stress. At the same time, the constitutive laws should reproduce the observed physiological behavior of the specific living tissue. In this paper we focus on cardiac contractility. We review some constitutive examples of active stress and active strain taken from the literature and we discuss them in terms of precise mathematical and physiological properties. These arguments naturally suggest new possible models.

##### MSC:
 74L15 Biomechanical solid mechanics 74B20 Nonlinear elasticity 92C10 Biomechanics
##### Keywords:
rank-one convexity; cardiac mechanics; Frank-Starling law
Full Text:
##### References:
 [1] Ambrosi, D., Arioli, G., Nobile, F., Quarteroni, A.: Electromechanical coupling in cardiac dynamics: the active strain approach. SIAM J. Appl. Math. 71, 605–621 (2011) · Zbl 1419.74174 · doi:10.1137/100788379 [2] Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (2005) · Zbl 1098.74001 [3] Böl, M., Abilez, O.J., Assar, A.N., Zarins, C.K., Kuhl, E.: Computational modeling of muscular thin films for cardiac repair. Comp. Mech. 43, 535–544 (2009) · doi:10.1007/s00466-008-0328-5 [4] Campbell, K.B., Simpson, A.M., Campbell, S.G., Granzier, H.L., Slinker, B.K.: Dynamic left ventricular elastance: a model for integrating cardiac muscle contraction into ventricular pressure-volume relationships. J. Appl. Phys. 104, 958–975 (2008) [5] Cherubini, C., Filippi, S., Nardinocchi, P., Teresi, L.: An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects. Prog. Biophys. Mol. Biol. 97, 562–573 (2008) · doi:10.1016/j.pbiomolbio.2008.02.001 [6] DiCarlo, A., Quiligotti, S.: Growth and balance. Mech. Res. Commun. 29, 449–456 (2002) · Zbl 1056.74005 · doi:10.1016/S0093-6413(02)00297-5 [7] Downey, J.M.: The mechanical activity of the heart. In: Johnson, L.R. (ed.) Essential Medical Physiology, 3rd edn., pp. 201–213. Elsevier, Amsterdam (2003) [8] Göktepe, S., Kuhl, E.: Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem. Comput. Mech. 45, 227–243 (2010) · Zbl 1183.78031 · doi:10.1007/s00466-009-0434-z [9] Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 367, 3445–3475 (2009) · Zbl 1185.74060 · doi:10.1098/rsta.2009.0091 [10] Iribe, G., Helmes, M., Kohl, P.: Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. Am. J. Physiol., Heart Circ. Physiol. 292, H1487–H1497 (2007) · doi:10.1152/ajpheart.00909.2006 [11] Liu, I.-S.: Continuum Mechanics. Springer, New York (2002) · Zbl 1058.74004 [12] Merodio, J., Ogden, R.W.: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Non-Linear Mech. 40, 213–227 (2005) · Zbl 1349.74057 · doi:10.1016/j.ijnonlinmec.2004.05.003 [13] Murtada, S., Kroon, M., Holzapfel, G.A.: A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomech. Model. Mechanobiol. 9, 749–762 (2010) · doi:10.1007/s10237-010-0211-0 [14] Nardinocchi, P., Teresi, L.: On the active response of soft living tissues. J. Elast. 88, 27–39 (2007) · Zbl 1115.74349 · doi:10.1007/s10659-007-9111-7 [15] Nardinocchi, P., Teresi, L., Varano, V.: Myocardial contractions and the ventricular pressure-volume relationship. arXiv:1005.5292v1 [q-bio.TO] (2010) · Zbl 1272.74477 [16] Niederer, S.A., Smith, N.P.: An improved numerical method for strong coupling of excitation and contraction models in the heart. Prog. Biophys. Mol. Biol. 96, 90–111 (2008) · doi:10.1016/j.pbiomolbio.2007.08.001 [17] Panfilov, A.V., Keldermann, R.H., Nash, M.P.: Self-organized pacemakers in a coupled reaction–diffusion-mechanics system. Phys. Rev. Lett. 95, 258104 (2005) · Zbl 1115.92004 · doi:10.1103/PhysRevLett.95.258104 [18] Pathmanathan, P., Chapman, S.J., Gavaghan, D.J., Whiteley, J.P.: Cardiac electromechanics: the effect of contraction model on the mathematical problem and accuracy of the numerical scheme. Q. J. Mech. Appl. Math. 63, 375–399 (2010) · Zbl 1250.74019 · doi:10.1093/qjmam/hbq014 [19] Redaelli, A., Pietrabissa, R.: A structural model of the left venricle including muscle fibres and coronary vessels: mechanical behaviour in normal conditions. Meccanica 32, 53–70 (1997) · Zbl 0874.92007 · doi:10.1023/A:1004229015882 [20] Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455–467 (1994) · doi:10.1016/0021-9290(94)90021-3 [21] Smith, N.P., Nickerson, D.P., Crampin, E.J., Hunter, P.J.: Multiscale computational modelling of the heart. Acta Numer. 13, 371–431 (2004) · Zbl 1112.92021 · doi:10.1017/S0962492904000200 [22] Stålhand, J., Klarbring, A., Holzapfel, G.A.: Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains. Prog. Biophys. Mol. Biol. 96, 465–481 (2008) · doi:10.1016/j.pbiomolbio.2007.07.025 [23] Taber, L.A.: Towards a unified theory for morphomechanics. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 367, 3555–3583 (2009) · Zbl 1185.74067 · doi:10.1098/rsta.2009.0100 [24] Taber, L.A., Perucchio, R.: Modeling Heart Development. J. Elast. 61, 165–197 (2000) · Zbl 0987.74049 · doi:10.1023/A:1011082712497 [25] Whiteley, J., Bishop, M., Gavaghan, D.: Soft tissue modelling of cardiac fibres for use in coupled mechano-electric simulations. Bull. Sci. Math. 69, 2199–2225 (2007) · Zbl 1296.92120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.