×

FORCE schemes on unstructured meshes. I: Conservative hyperbolic systems. (English) Zbl 1168.65377

Summary: This paper is about the construction of numerical fluxes of the centred type for one-step schemes in conservative form for solving general systems of conservation laws in multiple space dimensions on structured and unstructured meshes. The work is a multi-dimensional extension of the one-dimensional FORCE flux and is closely related to the work of Nessyahu-Tadmor and Arminjon [P. Arminjon and A. St-Cyr, Appl. Numer. Math. 46, No. 2, 135–155 (2003; Zbl 1025.65048); H. Nessyahu and E. Tadmore, J. Comput. Phys. 87, No. 2, 408–463 (1990; Zbl 0697.65068)]. The resulting basic flux is first-order accurate and monotone; it is then extended to arbitrary order of accuracy in space and time on unstructured meshes in the framework of finite volume and discontinuous Galerkin methods. The performance of the schemes is assessed on a suite of test problems for the multi-dimensional Euler and magneto-hydrodynamics equations on unstructured meshes.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abgrall, R., On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation, Journal of Computational Physics, 144, 45-58 (1994) · Zbl 0822.65062
[2] Arminjon, P.; St-Cyr, A., Nessyahu-Tadmor-type central finite volume methods without predictor for 3D Cartesian and unstructured tetrahedral grids, Applied Numerical Mathematics, 46, 135-155 (2003) · Zbl 1025.65048
[3] Balsara, D., Total variation diminishing scheme for relativistic magnetohydrodynamics, The Astrophysical Journal Supplement Series, 132, 83-101 (2001)
[4] Balsara, D.; Shu, C. W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, Journal of Computational Physics, 160, 405-452 (2000) · Zbl 0961.65078
[5] Bianco, F.; Puppo, G.; Russo, G., High order central schemes for hyperbolic systems of conservation laws, SIAM Journal on Scientific Computing, 21, 294-322 (1999) · Zbl 0940.65093
[6] Chen, G. Q.; Toro, E. F., Centred difference schemes for nonlinear hyperbolic equations, Journal of Hyperbolic Differential Equations, 1, 531-566 (2004) · Zbl 1063.65076
[7] Cockburn, B.; Hou, S.; Shu, C. W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Mathematics of Computation, 54, 545-581 (1990) · Zbl 0695.65066
[8] Cockburn, B.; Karniadakis, G. E.; Shu, C. W., Discontinuous Galerkin Methods. Discontinuous Galerkin Methods, Lecture Notes in Computational Science and Engineering (2000), Springer · Zbl 0989.76045
[9] Cockburn, B.; Shu, C. W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, Journal of Computational Physics, 141, 199-224 (1998) · Zbl 0920.65059
[10] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, Journal of Computational Physics, 175, 645-673 (2002) · Zbl 1059.76040
[11] Dumbser, M.; Balsara, D.; Toro, E. F.; Munz, C. D., A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes, Journal of Computational Physics, 227, 8209-8253 (2008) · Zbl 1147.65075
[12] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, Journal of Computational Physics, 221, 693-723 (2007) · Zbl 1110.65077
[13] Dumbser, M.; Käser, M.; A Titarev, V.; Toro, E. F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, Journal of Computational Physics, 226, 204-243 (2007) · Zbl 1124.65074
[14] Dumbser, M.; Käser, M.; Toro, E. F., An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes V: Local time stepping and p-adaptivity, Geophysical Journal International, 171, 695-717 (2007)
[15] Giacomazzo, B.; Rezzolla, L., The exact solution of the Riemann problem in relativistic magnetohydrodynamics, Journal of Fluid Mechanics, 562, 223-259 (2006) · Zbl 1097.76073
[16] Glimm, J., Solution in the large for nonlinear hyperbolic systems of equations, Communications on Pure Applied Mathmatics, 18, 697-715 (1965) · Zbl 0141.28902
[17] Godlewski, E.; Raviart, P. A., Numerical Approximation of Hyperbolic Systems of Conservation Laws (1996), Springer · Zbl 0860.65075
[18] Godunov, S. K.; Zabrodin, A. V.; Prokopov, G. P., A difference scheme for two-dimensional unsteady aerodynamics, Journal of Computational Mathematics and Mathematical Physics USSR, 2, 6, 1020-1050 (1961) · Zbl 0146.23004
[19] Godunov, S. K., Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics, Mathematics of the USSR-Sbornik, 47, 271-306 (1959) · Zbl 0171.46204
[20] Gottlieb, S.; Shu, C. W., Total variation diminishing Runge-Kutta schemes, Mathematics of Computation, 67, 73-85 (1998) · Zbl 0897.65058
[21] Haasdonk, B.; Kröner, D.; Rohde, C., Convergence of a staggered-Lax-Friedrichs-scheme on unstructured grids in 2d, Numerische Mathematik, 88, 459-484 (2001) · Zbl 1001.65102
[22] Harten, A., High resolution schemes for hyperbolic conservation laws, Journal of Computational Physics, 49, 357-393 (1983) · Zbl 0565.65050
[23] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S. R., Uniformly high order accurate essentially non-oscillatory schemes III, Journal of Computational Physics, 71, 231-303 (1987) · Zbl 0652.65067
[24] Honkkila, V.; Janhunen, P., HLLC solver for ideal relativistic MHD, Journal of Computational Physics, 223, 643-656 (2007) · Zbl 1111.76036
[25] Hou, T. Y.; LeFloch, P. G., Why nonconservative schemes converge to wrong solutions: error analysis, Mathematics of Computation, 62, 497-530 (1994) · Zbl 0809.65102
[26] Hu, C.; Shu, C. W., Weighted essentially non-oscillatory schemes on triangular meshes, Journal of Computational Physics, 150, 97-127 (1999) · Zbl 0926.65090
[27] Jiang, G.-S.; Shu, C. W., Efficient implementation of weighted ENO schemes, Journal of Computational Physics, 202-228 (1996) · Zbl 0877.65065
[28] Jiang, G. S.; Tadmor, E., Non-oscillatory central schemes for multidimensional hyperbolic conservation laws, SIAM Journal on Scientific Computing, 19, 1892-1917 (1998) · Zbl 0914.65095
[29] Lax, P. D., Weak solutions of nonlinear hyperbolic equations and their numerical approximation, Communications on Pure Applied Mathmatics, 7, 159-193 (1954) · Zbl 0055.19404
[30] Lax, P. D.; Wendroff, B., Systems of conservation laws, Communications in Pure and Applied Mathematics, 13, 217-237 (1960) · Zbl 0152.44802
[31] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems (2002), Cambridge University Press · Zbl 1010.65040
[32] Levy, D.; Puppo, G.; Russo, G., Central WENO schemes for hyperbolic systems of conservation laws, Mathematical Models and Numerical Analysis, 33, 547-571 (1999) · Zbl 0938.65110
[33] Levy, D.; Puppo, G.; Russo, G., A fourth order central WENO scheme for multidimensional hyperbolic systems of conservation laws, SIAM Journal on Scientific Computing, 24, 480-506 (2002) · Zbl 1014.65079
[34] Moschetta, J. M.; Gressier, J., A cure for the sonic point glitch, International Journal of Computational Fluids Dynamics, 13, 143-159 (2000) · Zbl 0983.76060
[35] Nessyahu, H.; Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws, Journal of Computational Physics, 87, 408-463 (1990) · Zbl 0697.65068
[36] Rezzolla, L.; Zanotti, O., An improved exact riemann solver for relativistic hydrodynamics, Journal of Fluid Mechanics, 449, 395-411 (2001) · Zbl 1009.76101
[37] Rusanov, V. V., Calculation of interaction of non-steady shock waves with obstacles, Journal of Computational Mathematical Physics USSR, 1, 267-279 (1961)
[38] Sebastian, K.; Shu, C. W., Multidomain WENO finite difference method with interpolation at subdomain interfaces, Journal of Scientific Computing, 19, 405-438 (2003) · Zbl 1081.76577
[39] Shi, J.; Hu, C.; Shu, C. W., A technique of treating negative weights in WENO schemes, Journal of Computational Physics, 175, 108-127 (2002) · Zbl 0992.65094
[40] Titarev, V. A.; Toro, E. F., ADER schemes for three-dimensional nonlinear hyperbolic systems, Journal of Computational Physics, 204, 715-736 (2005) · Zbl 1060.65641
[41] E.F. Toro, On Glimm-related Schemes for Conservation Laws. Technical Report MMU-9602, Department of Mathematics and Physics, Manchester Metropolitan University, UK, 1996.; E.F. Toro, On Glimm-related Schemes for Conservation Laws. Technical Report MMU-9602, Department of Mathematics and Physics, Manchester Metropolitan University, UK, 1996.
[42] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (1999), Springer · Zbl 0923.76004
[43] Toro, E. F.; Billet, S. J., Centered TVD schemes for hyperbolic conservation laws, IMA Journal of Numerical Analysis, 20, 44-79 (2000) · Zbl 0943.65100
[44] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of Computational Physics, 54, 115-173 (1984) · Zbl 0573.76057
[45] Del Zanna, L.; Bucciantini, N.; Londrillo, P., An efficient shock-capturing central-type scheme for multidimensional relativistic flows II. Magnetohydrodynamics, Astronomy and Astrophysics, 400, 397-413 (2003) · Zbl 1222.76122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.