zbMATH — the first resource for mathematics

A computational multi-scale model for the stiffness degradation of short-fiber reinforced plastics subjected to fatigue loading. (English) Zbl 07337801
Summary: In this work, we investigate a model for the anisotropic and loading-direction dependent stiffness degradation of short-fiber reinforced thermoplastics subjected to high-cycle fatigue loading. Based upon the variational setting of generalized standard materials, we model the stiffness degradation of the matrix in cycle space by a simple isotropic fatigue-damage model with minimum number of model parameters, and consider the fibers to be linear elastic. The stiffness degradation upon cyclic loading is determined, for fixed damage state, by standard linear elastic homogenization. We thoroughly investigate the influence of the involved numerical and material parameters on the effective stiffness degradation of short-fiber reinforced volume elements, and also pay close attention on the dependence on geometric parameters of the composite like fiber-volume fraction and the fiber-orientation state. To enable component-scale simulations, we use a model-order reduction strategy for identifying a suitable macroscopic model. This reduction is possible because our free energy involves polynomial powers in the fields not exceeding two, and our dissipation potential is assumed quadratic. For resolving the balance of linear momentum on the microscopic scale, we rely upon a fast Fourier transform based non-local micromechanics solver. We investigate the clever identification of the modes and demonstrate the capabilities of our model on the microscopic and on the component scale by pertinent numerical examples.
74-XX Mechanics of deformable solids
76-XX Fluid mechanics
GeoDict; Julia
Full Text: DOI
[1] Wöhler, A., Über die festigkeits-versuche mit eisen und stahl, Z. Bauwes., 20, 73-106 (1870)
[2] Griffith, A. A., The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. Lond., 163-198 (1921)
[3] Paris, P. C.; Gomez, M. P.; Anderson, W. E., A rational analytic theory of fatigue, Trend Eng., 9-14 (1961)
[4] Newmann, J. C., The merging of fatigue and fracture mechanics concepts: a historical perspective, Prog. Aerosp. Sci., 34, 347-390 (1998)
[5] Head, A. K., The mechanism of fatigue of metals, J. Mech. Phys. Solids, 1, 134-141 (1958)
[6] McDowell, D., Basic issues in the mechanics of high cycle metal fatigue, Int. J. Fract., 80, 103-145 (1996)
[7] Paluszyński, B.; Böhlke, T., Aspects of the modeling of high-cycle fatigue, Key Eng. Mater., 348-349, 121-124 (2007)
[8] Rabinowitz, S.; Beardmore, P., Cyclic deformation and fracture of polymers, J. Math. Sci., 9, 81-99 (1974)
[9] Sauer, J. A.; Richardson, G. C., Fatigue of polymers, Int. J. Fract., 16, 499-532 (1980)
[10] Riddell, M. N.; Koo, G. P.; O’Toole, J. L., Fatigue mechanisms of thermoplastics, Polym. Eng. Sci., 363-368 (1966)
[11] Chebbi, E.; Mars, J.; Wali, M.; Dammak, F., Fatigue behavior of short glass fiber reinforced polyamide 66: Experimental study and fatigue damage modelling, Period. Polytech. Mech. Eng., 60, 4, 247-255 (2016)
[12] Rolland, H.; Saintier, N.; Lenoir, N.; King, A.; Robert, G., Fatigue mechanisms description in short glass fibre reinforced thermoplastic by microtomographic observations, Procedia Struct. Integr., 2, 301-308 (2016)
[13] Horst, J. J.; Spoormaker, J. L., Fatigue fracture mechanisms and fractography of short-glass fibre-reinforced polyamide 6, J. Mater. Sci., 32, 3641-3651 (1997)
[14] Schaaf, A.; Hoffman, C.; de Monte, M.; Quaresimin, M., Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading, (AIP Conference Proceedings, Vol. 1593 (2014)), 600
[15] Tanaka, K.; Mura, T., A theory of fatigue crack initiation at inclusions, Metall. Trans. A, 13A, 117-123 (1982)
[16] Musinski, W. D.; McDowell, D. L., Simulating the effect of grain boundaries on microstructurally small fatigue crack growth from a focused ion beam notch through a three-dimensional array of grains, Acta Mater., 112, 20-39 (2016)
[17] Sahputra, I. H.; Echtermeyer, A. T., Molecular dynamics simulations of strain-controlled fatigue behaviour of amorphous polyethylene, J. Polym. Res., 21, 11 (2014)
[18] Sahputra, I. H.; Echtermeyer, A. T., Creep-fatigue relationship in polymer: Molecular dynamics simulations approach, Macromol. Theory Simul., 24, 1, 65-73 (2015)
[19] Park, J. M.; Park, S. J., Modeling and simulation of fiber orientation in injection molding of polymer composites, Math. Probl. Eng., 2011, 1-14 (2011) · Zbl 1235.74306
[20] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Internat. J. Numer. Methods Engrg., 45, 601-620 (1999) · Zbl 0943.74061
[21] Fries, T.-P.; Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Internat. J. Numer. Methods Engrg., 253-304 (2010) · Zbl 1202.74169
[22] Aliabadi, M. H., A new generation of boundary element methods in fracture mechanics, Int. J. Fract., 86, 91-125 (1997)
[23] Song, C., The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation (2018), John Wiley & Sons, Ltd
[24] Kachanov, L. M., Rupture time under creep conditions, Int. J. Fract., 97, 6-18 (1999)
[25] Lemaitre, J., A continuous damage mechanics model for ductile fracture, J. Eng. Mater. Technol., 107, 1, 83-89 (1985)
[26] Lemaitre, J., A Course on Damage Mechanics (1996), Springer: Springer Berlin · Zbl 0852.73003
[27] Gurson, A. L., Continuum Theory of Ductile Rupture By Void Nucleation and Growth: Part I - Yield Criteria and Flow Rules for Porous Ductile Media (1975), Brown University: Brown University Providence
[28] Fremond, M.; Nedjar, B., Damage, gradient of damage, and principle of virtual power, Int. J. Solids Struct., 33, 1083-1103 (1996) · Zbl 0910.73051
[29] Forest, S.; Lorentz, E., Localization phenomena and regularization methods, (Besson, J., Local Approach to Fracture (2004), Ecole des Mines de Paris/Les Presses: Ecole des Mines de Paris/Les Presses Paris), 311-373
[30] de Borst, R., Damage, material instabilities, and failure, (Stein, E.; de Borst, R.; Hughes, T. J.R., Encyclopedia of Computational Mechanics, Vol. 2 (2004)), 335-373
[31] Peerlings, R. H.J.; de Borst, R.; Brekelmans, W. A.M.; de Vree, J. H.P.; Spee, I., Some observations on localisation in non-local and gradient damage models, Eur. J. Mech. A, 15, 937-953 (1996) · Zbl 0891.73055
[32] Peerlings, R. H.J.; de Borst, R.; Brekelmans, W. A.M.; Geers, M. G.D., Gradient-enhanced damage modelling of concrete fracture, (Mechanics of Cohesive-Frictional Materials, Vol. 3 (1998)), 323-342
[33] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 10, 1273-1311 (2010) · Zbl 1202.74014
[34] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 2765-2778 (2010) · Zbl 1231.74022
[35] Carrara, P.; Ambati, M.; Alessi, R.; De Lorenzis, L., A novel framework to model the fatigue behavior of brittle materials based on a variational phase-field approach, Comput. Methods Appl. Mech. Engrg., 361, Article 112731 pp. (2020) · Zbl 1442.74195
[36] Alessi, R.; Vidoli, S.; De Lorenzis, L., A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case, Eng. Fract. Mech., 190, 53-73 (2018)
[37] Seiler, M.; Linse, T.; Hantschke, P.; Kästner, M., An efficient phase-field model for fatigue fracture in ductile materials, Eng. Fract. Mech., 224, Article 106807 pp. (2020)
[38] Nouri, H.; Meraghni, F.; Lory, P., Fatigue damage model for injection-molded short glass fibre reinforced thermoplastics, Int. J. Fatigue, 31, 5, 934-942 (2009)
[39] Meraghni, F.; Nouri, H.; Bourgeois, N.; Czarnota, C.; Lory, P., Parameters identification of fatigue damage model for short glass fiber reinforced polyamide (PA6-GF30) using digital image correlation, Procedia Eng., 10, 2110-2116 (2011)
[40] Launay, A.; Maitournam, M. H.; Marco, Y.; Raoult, I., Multiaxial fatigue models for short glass fibre reinforced polyamide. Part I: Nonlinear anisotropic constitutive behavior for cyclic response, Int. J. Fatigue, 47, 382-389 (2013)
[41] Launay, A.; Maitournam, M. H.; Marco, Y.; Raoult, I., Multiaxial fatigue models for short glass fibre reinforced polyamide. Part II: Fatigue life estimation, Int. J. Fatigue, 47, 390-406 (2013)
[42] Leveuf, L.; Navrátil, L.; Le Saux, V.; Marco, Y.; Olhagaray, J.; Leclercq, S., Constitutive equations for the cyclic behaviour of short carbon fibre-reinforced thermoplastics and identification on a uniaxial database, Contin. Mech. Thermodyn., 32, 2, 403-420 (2020)
[43] Geers, M. G.D.; Kouznetsova, V. G.; Matouš, K.; Yvonnet, J., Homogenization methods and multiscale modeling: Nonlinear problems, (Stein, E.; de Borst, R.; Hughes, T. J.R., Encyclopedia of Comput. Mech. (2017), John Wiley & Sons, Ltd: John Wiley & Sons, Ltd Chichester, UK), 1-34
[44] Kammoun, S.; Doghri, I.; Brassart, L.; Delannay, L., Micromechanical modeling of the progressive failure in short glass-fiber reinforced thermoplastics – first Pseudo-Grain damage model, Composites A, 73, 166-175 (2015)
[45] Krairi, A.; Doghri, I.; Robert, G., Multiscale high cycle fatigue models for neat and short fiber reinforced thermoplastic polymers, Int. J. Fatigue, 92, 1, 179-192 (2016)
[46] Feyel, F., Multiscale non linear FE 2 analysis of composite structures: Fiber size effects, J. Phys. IV, 11, 195-202 (2001)
[47] Feyel, F., A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua, Comput. Methods Appl. Mech. Engrg., 192, 28-30, 3233-3244 (2003) · Zbl 1054.74727
[48] Moulinec, H.; Suquet, P., A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Engrg., 157, 69-94 (1998) · Zbl 0954.74079
[49] Spahn, J.; Andrä, H.; Kabel, M.; Müller, R., A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms, Comput. Methods Appl. Mech. Engrg., 268, 871-883 (2014) · Zbl 1295.74006
[50] Kochmann, J.; Wulfinghoff, S.; Ehle, L.; Mayer, J.; Svendsen, B.; Reese, S., Efficient and accurate two-scale FE-FFT-based prediction of the effective material behavior of elasto-viscoplastic polycrystals, Comput. Mech., 61, 6, 751-764 (2018) · Zbl 1446.74103
[51] Dvorak, G. J., Transformation field analysis of inelastic composite materials, Proc. Math. Phys. Sci., 437, 1900, 311-327 (1992) · Zbl 0748.73007
[52] Michel, J.-C.; Suquet, P., Nonuniform transformation field analysis, Int. J. Solids Struct., 40, 25, 6937-6955 (2003) · Zbl 1057.74031
[53] Fritzen, F.; Leuschner, M., Reduced basis hybrid computational homogenization based on a mixed incremental formulation, Comput. Methods Appl. Mech. Engrg., 260, 143-154 (2013) · Zbl 1286.74081
[54] Furukawa, T.; Genki, Y., Implicit constitutive modelling for viscoplasticity using neural networks, Internat. J. Numer. Methods Engrg., 43, 195-219 (1998) · Zbl 0926.74020
[55] Haj-Ali, R.; Pecknold, D. A.; Ghaboussi, J.; Voyiadjis, G. Z., Simulated micromechanical models using artificial neural networks, J. Eng. Mech., 127, 7, 730-738 (2001)
[56] Liu, Z.; Wu, C. T., Exploring the 3D architectures of deep material network in data-driven multiscale mechanics, J. Mech. Phys. Solids, 127, 20-46 (2019)
[57] Halphen, B.; Nguyen, Q. S., Sur les matériaux standards généralisés, J. Mec., 14, 1 (1975) · Zbl 0308.73017
[58] Teichtmeister, S.; Kienle, D.; Aldakheel, F.; Keip, M.-A., Phase field modeling of fracture in anisotropic brittle solids, Int. J. Non-Linear Mech., 97, 1-21 (2017)
[59] Schneider, M., An FFT-based method for computing weighted minimal surfaces in microstructures with applications to the computational homogenization of brittle fracture, Internat. J. Numer. Methods Engrg., 121, 7, 1367-1387 (2020)
[60] Guennouni, T., Sur une méthode de calcul de structures soumises à des chargements cycliques: l’homogénéisation en temps, Model. Math. Anal. Number, 22, 417-455 (1988) · Zbl 0652.73023
[61] Haouala, S.; Doghri, I., Modeling and algorithms for two-scale time homogenization of viscoelastic-viscoplastic solids under large number of cycles, Int. J. Plast., 70, 98-125 (2015)
[62] Gajek, S.; Schneider, M.; Böhlke, T., On the micromechanics of deep material networks, J. Phys. Solids, 142, Article 103984 pp. (2020)
[63] Suquet, P., Elements of homogenization for inelastic solid mechanics, (Sanchez-Palancia, E.; Zaoui, A., Homogenization Techniques for Composite Media, Vol. 4 (1985), Springer: Springer New York), 193-278
[64] de Borst, R.; Pamin, J.; Peerlings, R. H.J.; Sluys, L. J., On gradient-enhanced damage and plasticity models for failure in quasi-brittle and frictional materials, Comput. Mech., 17, 130-141 (1995) · Zbl 0840.73047
[65] Svendsen, B., Continuum thermodynamic and rate variational formulation of models for extended continua, (Markert, B., Advances in Extended and Multifield Theories for Continua (2011), Springer: Springer Berlin), 1-18
[66] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solid, 48, 797-826 (2000) · Zbl 0995.74057
[67] Bourdin, B., Numerical implementation of the variational formulation for quasi-static brittle fracture, Interfaces Free Bound., 9, 411-430 (2007) · Zbl 1130.74040
[68] Schlüter, A.; Willenbücher, A.; Kuhn, C.; Müller, R., Phase field approximation of dynamic brittle fracture, Comput. Mech., 54, 5, 1-21 (2014)
[69] Ernesti, F.; Schneider, M.; Böhlke, T., Fast implicit solvers for phase-field fracture problems on heterogeneous microstructures, Comput. Methods Appl. Mech. Engrg., 363, Article 112793 pp. (2020) · Zbl 1436.74062
[70] Wulfinghoff, S.; Fassin, M.; Reese, S., A damage growth criterion for anisotropic damage models motivated from micromechanics, Int. J. Solids Struct., 121, 21-32 (2017)
[71] Ponte Castañeda, P.; Suquet, P., Nonlinear composites, Adv. Appl. Mech., 34, 171-302 (2017) · Zbl 0889.73049
[72] Schneider, M.; Ospald, F.; Kabel, M., Computational homogenization of elasticity on a staggered grid, Internat. J. Numer. Methods Engrg., 105, 9, 693-720 (2016)
[73] Dorn, C.; Schneider, M., Lippmann-Schwinger solvers for the explicit jump discretization for thermal computational homogenization problems, Internat. J. Numer. Methods Engrg., 118, 11, 631-653 (2019)
[74] Burke, S.; Ortmer, C.; Sueli, E., An adaptive finite element approximation of a generalized Ambrosio-Tortorelli functional, Math. Models Methods Appl. Sci., 23, 09, 1663-1697 (2013) · Zbl 1266.74044
[75] Zeman, J.; Vondřejc, J.; Novak, J.; Marek, I., Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients, J. Comput. Phys., 229, 21, 8065-8071 (2010) · Zbl 1197.65191
[76] Brisard, S.; Dormieux, L., FFT-based methods for the mechanics of composites: A general variational framework, Comput. Mater. Sci., 49, 3, 663-671 (2010)
[77] Brisard, S.; Dormieux, L., Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites, Comput. Methods Appl. Mech. Engrg., 217-220, 197-212 (2012) · Zbl 1253.74101
[78] Kabel, M.; Fliegener, S.; Schneider, M., Mixed boundary conditions for FFT-based homogenization at finite strains, Comput. Mech., 57, 2, 193-210 (2016) · Zbl 1359.74356
[79] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), Johns Hopkins University Press · Zbl 0865.65009
[80] Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V. B., Julia: A fresh approach to numerical computing, SIAM Rev., 59, 1, 65-98 (2017) · Zbl 1356.68030
[81] Advani, S. G.; Tucker, C. L., The use of tensors to describe and predict fiber orientation in short fiber composites, J. Rheol., 31, 8, 751-784 (1987)
[82] Müller, V.; Böhlke, T., Prediction of effective elastic properties of fiber reinforced composites using fiber orientation tensors, Compos. Sci. Technol., 130, 36-45 (2016)
[83] Kennedy, P.; Zheng, R., Flow Analysis of Injection Molds (2003), Hanser Verlag
[84] Köbler, J.; Schneider, M.; Ospald, F.; Andrä, H.; Müller, R., Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts, Comput. Mech., 61, 6, 729-750 (2018) · Zbl 1446.74024
[85] GeoDict, Math2Market GmbH, http://www.geodict.de, Kaiserslautern, Germany. Accessed: 2020-06-09.
[86] Schneider, M., The sequential addition and migration method to generate representative volume elements for the homogenization of short fiber reinforced plastics, Comput. Mech., 59, 247-263 (2017)
[87] Müller, V.; Kabel, M.; Andrä, H.; Böhlke, T., Homogenization of linear elastic properties of short fiber reinforced composites - A comparison of mean field and voxel-based methods, Int. J. Solids Struct., 67-68, 56-70 (2015)
[88] Böhlke, T.; Brüggemann, C., Graphical representation of the generalized Hooke’s law, Technol. Mech., 21, 2, 145-158 (2001)
[89] Kanit, T.; Forst, S.; Galliet, I.; Mounoury, V.; Jeulin, D., Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids Struct., 40, 3647-3679 (2003) · Zbl 1038.74605
[90] Gitman, I. M.; Askes, H.; Sluys, L., Representative volume: Existence and size determination, Eng. Fract. Mech., 74, 2518-2534 (2007)
[91] Schneider, M., A dynamical view of nonlinear conjugate gradient methods with applications to FFT-based computational micromechanics, Comput. Mech., 66, 239-257 (2020) · Zbl 1464.74376
[92] Carmeliet, J., Optimal estimation of gradient damage parameters from localization phenomena in quasi-brittle materials, Mech. Cohes.-frict. Mater., 4, 1, 1-16 (1999)
[93] Geers, M.; de Borst, R.; Brekelmans, W.; Peerlings, R., Validation and internal length scale determination for a gradient damage model: application to short glass-fibre-reinforced polypropylene, Int. J. Solids Struct., 36, 17, 2557-2583 (1999) · Zbl 0963.74502
[94] Pham, K.; Amor, H.; Marigo, J.-J.; Maurini, C., Gradient damage models and their use to approximate brittle fracture, Int. J. Dam. Mech., 20, 4, 618-652 (2011)
[95] Kuhn, C.; Müller, R., Simulation of size effects by a phase field model for fracture, Theor. Appl. Mech. Lett., 4, 5, Article 051008 pp. (2014)
[96] Crank, J.; Nicolson, P., A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type, Proc. Cambridge Philos. Soc., 43, 1, 50-67 (1947) · Zbl 0029.05901
[97] Milton, G. W., The Theory of Composites (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0993.74002
[98] Pietrogrande, R., Multiscale Modeling of Short Fiber-reinforced Thermoplastics Under Fatigue Loading (2018), University of Padova, (Ph.D. thesis)
[99] Michel, J.-C.; Suquet, P., Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis, Comput. Methods Appl. Mech. Engrg., 193, 5477-5502 (2004) · Zbl 1112.74471
[100] Michel, J.-C.; Suquet, P., A model-reduction approach in micromechanics of materials preserving the variational structure of constitutive relations, J. Mech. Phys. Solids, 90, 254-285 (2016)
[101] Michel, J.-C.; Suquet, P., A model-reduction approach to the micromechanical analysis of polycristalline materisl, Comput. Mech., 57, 3, 483-508 (2016)
[102] Mujica, J., (Complex Analysis in Banach Spaces. Complex Analysis in Banach Spaces, Dover Books on Mathematics (2010), Dover Publications: Dover Publications Mineola (NY))
[103] Michel, J.-C.; Suquet, P., Effective potentials in nonlinear polycrystals and quadrature formulae, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 473, Article 20170213 pp. (2017) · Zbl 1404.74143
[104] Carlberg, K.; Farhat, C., A low-cost goal-oriented ’compact proper orthogonal decomposition’ bases for model reduction of static systems, Internat. J. Numer. Methods Engrg., 86, 381-402 (2011) · Zbl 1235.74352
[105] Abaqus/Standard (2020), Dassault Systèmes Simulia, https://www.3ds.com/products-services/simulia/products/abaqus/. Accessed: 2020-05-17
[106] Latz, A.; Strautins, U.; Niedziela, D., Comparative numerical study of two concentrated fiber suspension models, J. Non-Newton. Fluid Mech., 165, 13-14, 764-781 (2010) · Zbl 1274.76346
[107] Niedziela, D.; Strautins, U.; Hosdez, V.; Kech, A.; Latz, A., Improved multiscale fiber orientation modeling in injection molding of short fiber reinforced thermoplastics: simulation and experiment, Int. J. Multiphys. Spec. Ed.: Multiphys. Simul. Adv. Methods Ind. Eng., 357-366 (2011)
[108] FLUID Simulation Software for Complex Fluids (2020), Fraunhofer ITWM: Fraunhofer ITWM Kaiserslautern, Germany, https://www.itwm.fraunhofer.de/en/departments/sms/products-services/fluid-simulation-software-complex-fluids.html. Accessed: 2020-06-10
[109] Folgar, F.; Tucker, C., Orientation behavior of fibers in concentrated suspensions, J. Reinf. Plast. Compos., 3, 98-119 (1984)
[110] Verweyst, B. E.; Tucker, C. L., Fiber suspensions in complex geometries: Flow/orientation coupling, Can. J. Chem. Eng., 80, 6, 1093-1106 (2002)
[111] Gross, D.; Seelig, T., Bruchmechanik (2011), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin
[112] Cojocaru, D.; Karlsson, A. M., A simple numerical method of cycle jumps for cyclically loaded structures, Int. J. Fatigue, 28, 3, 1677-1689 (2006)
[113] Lüders, C.; Sinapius, M.; Krause, D., Adaptive cycle jump and limits of degradation in micromechanical fatigue simulations of fibre-reinforced plastics, Int. J. Damage Mech., 28, 10, 1523-1555 (2019)
[114] Puel, G.; Aubry, D., Material fatigue simulation using a periodic time-homogenisation method, Eur. J. Comput. Mech., 21, 3-6, 312-324 (2012) · Zbl 1348.74290
[115] Fritzen, F.; Hassani, M., Space-time model order reduction for nonlinear viscoelastic systems subjected to long-term loading, Meccanica, 53, 1333-1355 (2018)
[116] Amor, H.; Marigo, J.-J.; Maurini, C., Regularization formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J. Mech. Phys. Solids, 57, 8, 1209-1229 (2009) · Zbl 1426.74257
[117] Kuhn, C., Numerical and Analytical Investigation of a Phase Field Model for Fracture (2013), TU Kaiserslautern, (Ph.D. thesis)
[118] Liu, Z.; Bessa, M. A.; Liu, W. K., Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 306, 319-341 (2016) · Zbl 1436.74070
[119] Schneider, M., On the mathematical foundations of the self-consistent clustering analysis for non-linear materials at small strains, Comput. Methods Appl. Mech. Engrg., 354, 783-801 (2019) · Zbl 1441.74043
[120] Liu, Z.; Wu, C. T.; Koishi, M., A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 345, 1138-1168 (2019) · Zbl 1440.74340
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.