zbMATH — the first resource for mathematics

Mathematics and German politics: the national socialist experience. (English) Zbl 0629.01023
This article gives and account of a movement in Nazi-Germany called “Deutsche Mathematik”, its content and effects. This movement was carried mainly by the mathematicians L. Bieberbach and Th. Vahlen. After short biographies of them the author reports about two articles by Bieberbach dealing mainly with assumed differences in mathematical style between Jewish (e. g. Landau, Jacobi) and non-Jewish (Gauß, F. Klein) mathematicians with respect to pedagogy and creation, whereby the non-Jewish were estimated higher (“more insight” compared with the “sterile intellectualism” of the Jewish).
In the following the author refers to a psychological background developed by the psychologists E. R. Jaensch and his student F. Althoff. It consists of a typology which was brought into correspondence with racial differences between Arians and Jews. Famous mathematicians were classified according to this typology. Further it is reported that this kind of discussion in Nazi-Germany was embedded in a more general discussion of racial and sociopolitical typologies which took place in other countries too (e. g. the U.S.A.).
The rest of the paper gives some remarks about the roles of mathematicians like F. Klein, K. Weierstraß, W. Blaschke in this kind of discussion. Finally the conflict about the constitution of the “Deutsche Mathematiker-Vereinigung” (1934) is considered.
Reviewer: Roland Fischer

01A80 Sociology (and profession) of mathematics
01A60 History of mathematics in the 20th century
Full Text: DOI
[1] (), 2 vols.
[2] Behnke, H., Semesterberichte, (1978), Vandenhoeck & Ruprecht Göttingen
[3] Bekenntnis der professoren an den deutschen universitaten und hochschulen zu Adolf hitler und dem nationalsozialistischen staat, (1934), National-Sozialistischer Lehrerbund, (editors anonymous)
[4] Bieberbach, L., Stilarten mathematischen schaffens, (), 351-360, (Sitzung of 5 July) · JFM 60.0027.02
[5] Bieberbach, L., Persönlichkeitsstruktur und mathematisches schaffen, (), 236-243 · JFM 60.0027.03
[6] Bieberbach, L., Die kunst des zitierens, Jahresbericht der deutschen mathematiker-vereinigung, 44, 1-3, (1934), (2. Abteilung) · JFM 60.0033.05
[7] Bieberbach, L., Letter to the präsidium der notgemeinschaft der deutschen wissenschaft, (1934), October 14, 1934. Bundesarchiv Koblenz R 73, 15934
[8] Bieberbach, L., Die völkische verwurzelung der wissenschaft (typen mathematischen schaffens), (), 3-31, (Submitted, Sitzung of 1 March 1940, address delivered at the University of Heidelberg, June 19, 1939) · JFM 66.0024.02
[9] Blaschke, W., (), 20-31, (2. Abteilung)
[10] Brauer, R., Emil Artin, Bulletin of the American mathematical society, 23, 27-43, (1967) · Zbl 0147.00509
[11] Cauchy, A., Cours d’analyse de L’école royale polytechnique, première partie, chapitre VII. paragraphe 1, (), 153, II^{c} Série, Tome III
[12] Deutsche Mathematik, (1936-1943), S. Hirzel Leipzig
[13] Deutsche zukunft, Neue Mathematik, No. 14, (1934), (April 8, 1934), 15; signed P.S
[14] Fraenkel, A.A., Lebenskreise, (1967), Deutsche Verlagsanstalt Stuttgart
[15] Gay, P., Freud, jews, and other germans, (1978), Oxford Univ. Press New York
[16] Hume, D., Of the rise and progress of the arts and sciences, (), (Essay No. 14 in the 1777 and succeeding editions)
[17] Jaensch, E.R., Der gegentypus, (1937), Johann Ambrosius Barth Leipzig
[18] Jaensch, E.R.; Althoff, F., Mathematisches denken und seelenform, (1938), Johann Ambrosius Barth Leipzig · JFM 65.1093.01
[19] Kimberling, C., Emmy Noether and her influence, (), 3-61
[20] Klein, F., On the mathematical character of space intuition and the relation of pure mathematics to the applied sciences, (), 225-231
[21] Lenard, P., Deutsche physik, (1936), J. S. Lehmanns Verlag München, (2 Auflage)
[22] Lindner, H., “deutsche“ und “gegentypische” Mathematik, (), 88-115
[23] Manger, E., Felix Klein in semi-kurschner, Jahresbericht der deutschen mathematiker-vereinigung, 44, 4-11, (1934), (2. Abteilung) · JFM 60.0028.02
[24] Mehrtens, H., Die “gleichschaltung” der mathematischen gesellschaften im nationalsozialistischen deutschland, (), 83-103 · Zbl 0565.01016
[25] Mitgliederversammlung der Deutschen Mathematiker-Vereinigung 11 bis 13 September 1934 in Bad Pyrmont. Jahresbericht der Deutschen Mathematiker-Vereinigung{\bf44} (2. Abteilung), 86-88.
[26] Reid, C., Courant in Göttingen and New York, (1976), Springer-Verlag New York · Zbl 0353.01010
[27] Roback, A.A.; Roback, A.A., Race and mode of expression, Character and personality, Time magazine, 4, 35-60, (1935), September 30, 1935
[28] Schappacher, N., Das mathematische institut 1929-1950, (), (to appear)
[29] Segal, S.L., Helmut Hasse in 1934, Historia Mathematica, 7, 45-56, (1980) · Zbl 0429.01010
[30] Siegmund-Schulze, R., Theodor vahlen-zum schuldanteil eines deutschen mathematikers am faschistischen missbrauch der wissenschaft, Schriftenreihe zur geschichte der naturwissenschaft, technik, und medizin, Leipzig, 21, 17-32, (1984) · Zbl 0568.01025
[31] Vahlen, T., Wert und wesen der Mathematik, Greifswalder universitätsreden nr. 9, (1923), Greifswald
[32] Vahlen, T., “antrittsrede“ (”erwiderung” by MAX Planck), (), (Sitzung of 30 June.)
[33] Veblen, O. Unpublished papers in the Library of Congress Manuscript Collection, Washington, D.C.
[34] Weierstrass, K.; Mittag-Leffler, G., Weierstrass et sonya kowalewskaya, Acta Mathematica, 39, 190-191, (1923), as cited by
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.