×

An effective integration of methods for second-order three-dimensional multi-material ALE method on unstructured hexahedral meshes using MOF interface reconstruction. (English) Zbl 1286.65036

Summary: This paper presents an effective second-order three-dimensional unstructured multi-material arbitrary Lagrangian-Eulerian (MMALE) method for compressible fluid dynamics. This is an integration work. The MMALE method utilizes Moment of Fluid (MOF) capability with interface reconstruction for multi-material modeling of immiscible fluids. It is of the explicit time-marching Lagrange plus remap type. In the Lagrangian phase, the staggered compatible discretization for Lagrangian gas dynamics is used also with Tipton’s pressure relaxation model for the closure of mixed cells. For the remapping phase, an improved second-order cell-intersection-based method for three-dimensional unstructured mesh is presented. It is conservative for remapping cell-centered variables such as density and internal energy. It is suitable for remapping between two meshes with different topology. By using this remapping method, the new material centroid position in the rezoned cells can be geometrically computed. This enables it to be combined with the MOF algorithm for constructing a second-order MMALE method. The MMALE method can be implemented on three-dimensional unstructured hexahedral meshes. Numerical results have proved the accuracy and robustness of the MMALE method.

MSC:

65D30 Numerical integration
65Y05 Parallel numerical computation
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76N99 Compressible fluids and gas dynamics

Software:

CHIC; GTEngine; ReALE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahn, H. T.; Shashkov, M., Multi-material interface reconstruction on generalized polyhedral meshes, J. Comput. Phys., 226, 2096-2132 (2007) · Zbl 1388.76232
[2] Anbarlooei, H. R.; Mazaheri, K., Moment of fluid interface reconstruction method in multi-material arbitrary Lagrangian-Eulerian (MMALE) algorithms, Comput. Methods Appl. Mech. Eng., 198, 3782-3794 (2009) · Zbl 1230.76038
[3] Aulisa, E.; Manservisi, S.; Scardovelli, R.; Zaleski, S., Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry, J. Comput. Phys., 225, 2301-2319 (2007) · Zbl 1118.76048
[4] Ball, G. J.; Howell, B. P.; Leighton, T. G.; Schofield, M. J., Shock-induced collapse of a cylindrical air cavity in water: a free-Lagrange simulation, Shock Waves, 10, 265-276 (2000) · Zbl 0980.76090
[5] Barlow, A. J., A compatible finite element multi-material ALE hydrodynamics algorithm, Int. J. Numer. Methods Fluids, 56, 8, 953-964 (2008) · Zbl 1169.76030
[8] Benson, D. J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Eng., 99, 235-394 (1992) · Zbl 0763.73052
[9] Benson, D. J., An efficient, accurate, simple ALE method for nonlinear finite element programs, Comput. Methods Appl. Mech. Eng., 72, 305-350 (1989) · Zbl 0675.73037
[10] Benson, D. J., A mixture theory for contact in multi-material Eulerian formulations, Comput. Methods Appl. Mech. Eng., 140, 59-86 (1997) · Zbl 0892.73048
[11] Benson, D. J., Momentum advection on a staggered mesh, J. Comput. Phys., 100, 143-162 (1992) · Zbl 0758.76038
[12] Benson, D. J.; Okazawa, S., Contact in a multi-material Eulerian finite element formulation, Comput. Methods Appl. Mech. Eng., 193, 4277-4298 (2004) · Zbl 1068.74069
[13] Berndt, M.; Breil, J.; Galera, S.; Kucharik, M.; Maire, P.-H.; Shashkov, M., Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods, J. Comput. Phys., 230, 6664-6687 (2011) · Zbl 1408.65077
[14] Bondarenko, Yu.; Yanilkin, Yu., Computation of the thermodynamic parameters in the mixed cells in gas dynamics, Math. Model., 14, 63-81 (2002) · Zbl 1018.76518
[15] Breil, J.; Galera, S.; Maire, P.-H., Multi-material ALE computation in inertial confinement fussion code CHIC, Comput. Fluids, 46, 161-167 (2011) · Zbl 1433.76190
[16] Campbell, J. C.; Shashkov, M. J., A tensor artificial viscosity using a mimetic finite difference algorithm, J. Comput. Phys., 172, 739-765 (2001) · Zbl 1002.76082
[17] Caramana, E. J.; Burton, D. E.; Shashkov, M. J.; Whalen, P. P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. Comput. Phys., 146, 227-262 (1998) · Zbl 0931.76080
[18] Caramana, E. J.; Rousculp, C. L.; Burton, D. E., A compatible, energy and symmetry preserving Lagrangian hydrodynamics algorithm in three-dimensional Cartesian geometry, J. Comput. Phys., 157, 89-119 (2000) · Zbl 0961.76049
[19] Caramana, E. J.; Shashkov, M. J.; Whalen, P. P., Formulations of artificial viscosity for multidimensional shock wave computations, J. Comput. Phys., 144, 70-97 (1998) · Zbl 1392.76041
[20] Caramana, E. J.; Shashkov, M. J., Elimination of artificial grid distortion and hourglass-type motions by means of Lagrangian subzonal masses and pressures, J. Comput. Phys., 142, 521-561 (1998) · Zbl 0932.76068
[22] Delov, V. I.; Sadchikov, V. V., Comparison of several models for computation of thermo-dynamical parameters for heterogeneous Lagrangian cells VANT, Math. Model. Phys. Process., 1, 57-70 (2005), (in Russian)
[23] Després, B.; Lagoutiere, F., Numerical resolution of a two-component compressible fluid model with interfaces, Prog. Comput. Fluid Dyn., 7, 295-310 (2007) · Zbl 1152.76443
[24] Donea, J.; Giuliani, S.; Halleux, J. P., An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Comput. Methods Appl. Mech. Eng., 33, 689-723 (1982) · Zbl 0508.73063
[25] Dukowicz, J. K.; Meltz, B. J.A., Vorticity errors in multi-dimensional Lagrangian codes, J. Comput. Phys., 99, 115-134 (1992) · Zbl 0743.76058
[26] Dukowicz, J. K.; Cline, M. C.; Addessio, F. S., A general topology Godunov method, J. Comput. Phys., 82, 29-63 (1989) · Zbl 0665.76032
[27] Dukowicz, J. K.; Baumgardner, J., Incremental remapping as a transport/advection algorithm, J. Comput. Phys., 160, 318-335 (2000) · Zbl 0972.76079
[28] Dukowicz, J. K.; Kodis, J. W., Accurate conservative remapping (rezoning) for arbitrary-Lagrangian-Eulerian computations, SIAM J. Stat. Comput., 8, 305-321 (1987) · Zbl 0644.76085
[29] Dyadechko, V.; Shashkov, M., Reconstruction of multi-material interfaces from moment data, J. Comput. Phys., 227, 5361-5384 (2008) · Zbl 1220.76048
[30] Fressmann, D.; Wriggers, P., Advection approaches for single- and multi-material arbitrary Lagrangian-Eulerian finite element procedures, Comput. Mech., 39, 153-190 (2007) · Zbl 1168.74451
[31] Galera, S.; Maire, P.-H.; Breil, J., A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction, J. Comput. Phys., 229, 5755-5787 (2010) · Zbl 1346.76105
[32] Galera, S.; Breil, J.; Maire, P.-H., A 2D unstructured multi-material cell-centered Arbitrary Lagrangian-Eulerian (CCALE) scheme using MOF interface reconstruction, Comput. Fluids, 229, 5755-5787 (2010) · Zbl 1346.76105
[33] Garimella, R.; Kucharik, M.; Shashkov, M., An efficient linearity and bound preserving conservative interpolation (remapping) on polyhedral meshes, Comput. Fluids, 36, 2, 224-237 (2007) · Zbl 1177.76346
[34] Goncharov, E. A.; Yanilkin, Y. V., New method for computations of thermodynamical states of the materials in the mixed cells, VANT, Math. Model. Phys. Process., 3, 16-30 (2004), (in Russian)
[35] Grandy, J., Conservative remapping and region overlays by intersecting arbitrary polyhedra, J. Comput. Phys., 148, 433-466 (1999) · Zbl 0932.76073
[36] Haas, J. F.; Sturtevant, B., Interaction of weak-shock waves, J. Fluid Mech., 181, 41-76 (1987)
[37] Hansen, G.; Zardecki, A.; Greening, D.; Bos, R., A finite element method for unstructured grid smoothing, J. Comput. Phys., 194, 611-631 (2004) · Zbl 1039.65086
[38] Hansen, G.; Zardecki, A.; Greening, D.; Bos, R., A finite element method for three-dimensional unstructured grid smoothing, J. Comput. Phys., 202, 281-297 (2005) · Zbl 1061.65133
[39] Hernández, J.; López, J.; Gómez, P.; Zanzi, C.; Faura, F., A new volume of fluid method in three dimensions. Part I: Multidimensional advection method with face-matched flux polyhedra, Int. J. Numer. Methods Fluids, 58, 897-921 (2008) · Zbl 1151.76552
[40] Hirt, C.; Amsden, A.; Cook, J., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 227-253 (1974) · Zbl 0292.76018
[41] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201-225 (1981) · Zbl 0462.76020
[42] Hui, W. H.; Li, P. Y.; Li, Z. W., A unified coordinate system for solving the two-dimensional Euler equations, J. Comput. Phys., 153, 596-637 (1999) · Zbl 0969.76061
[43] Kamm, J. R.; Shashkov, M. J., A pressure relaxation closure model for one-dimensional, two-material Lagrangian hydrodynamics based on the Riemann problem, Commun. Comput. Phys., 7, 5, 927-976 (2010) · Zbl 1364.76134
[44] Karypis, G.; Kumar, V., Multilevel K-way partitioning scheme for irregular graphs, J. Parallel Distrib. Comput., 48, 96-129 (1998)
[45] Kershaw, D. S.; Prasad, M. K.; Shaw, M. J.; Milovich, J. L., 3D unstructured mesh ALE hydrodynamics with the upwind discontinuous finite element method, Comput. Methods Appl. Mech. Eng., 158, 81-116 (1998) · Zbl 0954.76045
[46] Knupp, P.; Margolin, L. G.; Shashkov, M. J., Reference Jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods, J. Comput. Phys., 176, 93-128 (2002) · Zbl 1120.76340
[47] Knupp, P.; Steinberg, S., Fundamentals of Grid Generation (1993), CRC Press: CRC Press Boca Raton · Zbl 0855.65123
[48] Knupp, P., Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part I - A framework for surface mesh optimization, Int. J. Numer. Methods Eng., 48, 3, 401-420 (2000) · Zbl 0964.65140
[49] Kucharik, M.; Garimella, R. V.; Schofield, S. P.; Shashkov, M., A comparative study of interface reconstruction methods for multi-material ALE simulations, J. Comput. Phys., 229, 2432-2452 (2010) · Zbl 1423.76343
[51] Kucharik, M.; Shashkov, M.; Wendroff, B., An efficient linearity-and-bound-preserving remapping method, J. Comput. Phys, 188, 462-471 (2003) · Zbl 1022.65009
[52] Kucharik, M.; Shashkov, M., Extention of efficient, swept-integration-based conservative remapping method for meshes with changing connectivity, Int. J. Numer. Methods Fluids, 56, 8, 1359-1365 (2007) · Zbl 1384.65018
[53] Loubère, R.; Shashkov, M., A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods, J. Comput. Phys., 204, 23, 155-160 (2004)
[54] Loubère, R.; Maire, P.-H.; Shashkov, M.; Breil, J.; Galera, S., ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method, J. Comput. Phys., 229, 4724-4761 (2010) · Zbl 1305.76067
[55] Liovic, P.; Rudman, M.; Liow, J-L.; Lakehal, D.; Kothe, D., A 3D unsplit-advection volume tracking algorithm with planarity-preserving interface reconstruction, Comput. Fluids, 35, 1011-1032 (2006) · Zbl 1177.76292
[56] López, J.; Zanzi, C.; Gómez, P.; Faura, F.; Hernández, J., A new volume of fluid method in three dimensions. Part II: Piecewise-planar interface reconstruction with cubic-Bézier fit, Int. J. Numer. Methods Fluids, 58, 923-944 (2008) · Zbl 1151.76556
[57] Luo, H.; Baum, J. D.; Löhner, R., On the computation of multi-material flows using ALE formulation, J. Comput. Phys., 194, 304-328 (2004) · Zbl 1136.76401
[58] Maire, P.-H.; Breil, J.; Galera, S., A cell-centered arbitrary Lagrangian-Eulerian (ALE) method, Int. J. Numer. Methods Fluids, 56, 1161-1166 (2008) · Zbl 1384.76044
[59] Maire, P.-H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM J. Sci. Comput., 29, 1781-1824 (2007) · Zbl 1251.76028
[60] Maire, P.-H.; Breil, J., A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems, Int. J. Numer. Methods Fluids, 56, 1417-1423 (2007) · Zbl 1151.76021
[61] Maire, P.-H., A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J. Comput. Phys., 228, 2391-2425 (2009) · Zbl 1156.76434
[62] Maire, P.-H., A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry, J. Comput. Phys., 228, 18, 6882-6915 (2009) · Zbl 1261.76021
[63] Maire, P.-H.; Nkonga, B., Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics, J. Comput. Phys., 228, 3, 799-821 (2009) · Zbl 1156.76039
[64] Maire, P.-H., A unified sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Int. J. Numer. Methods Fluids, 65, 1281-1294 (2011) · Zbl 1429.76089
[65] Maire, P.-H., A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Comput. Fluids, 46, 341-347 (2011) · Zbl 1433.76137
[66] Margolin, L. G., Introduction to An Arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 135, 198-202 (1997) · Zbl 0938.76067
[67] Margolin, L.; Shashkov, M., Second-order sign-preserving remapping on general grids, J. Comput. Phys, 184, 266-298 (2003) · Zbl 1016.65004
[69] Menon, S.; Schmidt, D., Conservative interpolation on unstructured polyhedral meshes: an extension of the supermesh approach to cell-centered finite-volume variables, Comput. Methods Appl. Mech. Eng., 200, 41-44, 2797-2804 (2011) · Zbl 1230.76034
[72] Noh, W. F., Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux, J. Comput. Phys., 72, 78-120 (1987) · Zbl 0619.76091
[73] Peery, J. S.; Carroll, D. E., Multi-material ALE methods in unstructured grids, Comput. Methods Appl. Mech. Eng., 187, 591-619 (2000) · Zbl 0980.74068
[74] Quirk, J. J.; Karni, S., On the dynamics of a shock-bubble interaction, J. Fluid Mech., 318, 129-163 (1996) · Zbl 0877.76046
[75] Rider, W. J.; Kothe, D. B., Reconstructing volume tracking, J. Comput. Phys., 141, 112-152 (1998) · Zbl 0933.76069
[78] Sedov, L. I., Similarity and Dimensional Methods in Mechanics (1959), Academic Press: Academic Press New York · Zbl 0121.18504
[79] Shashkov, M. J., Closure models for multimaterial cells in arbitrary Lagrangian-Eulerian hydrocodes, Int. J. Numer. Methods Fluids, 56, 1497-1504 (2007) · Zbl 1151.76026
[81] Sod, G. A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 1-31 (1978) · Zbl 0387.76063
[83] Vartziotis, D.; Wipper, J., A dual element based geometric element transformation method for all-hexahedral mesh smoothing, Comput. Methods Appl. Mech. Eng., 200, 1186-1203 (2011) · Zbl 1225.74111
[84] Waltz, J., Derived data structure algorithms for unstructured finite element meshes, Int. J. Numer. Methods Eng., 54, 7, 945-963 (2002) · Zbl 1098.76578
[86] Winslow, A. M., Numerical solution of the quasilinear poisson equation in a nonuniform triangle mesh, J. Comput. Phys., 1, 2, 149-172 (1996), (Reprinted in 135(2) (1997) 128-138) · Zbl 0254.65069
[87] Li, X. L.; Jin, B. X.; Glimm, J., Numerical study for the three-dimensinal Rayleigh-Taylor instability through the TVD/AC scheme and parallel computation, J. Comput. Phys., 126, 343-355 (1996) · Zbl 0858.76055
[88] He, Xiaoyi; Zhang, Raoyang; Chen, Shiyi; Doolen, Gary D., On the three-dimensional Rayleigh-Taylor instability, Phys. Fluids, 11, 5, 1143-1152 (1999) · Zbl 1147.76410
[90] Zhong, Zhi-hua; Nilsson, Larsgunnar, A unified contact algorithm based on the territory concept, Comput. Methods Appl. Mech. Eng, 130, 1-16 (1996) · Zbl 0860.73062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.