×

A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric. (English) Zbl 0948.74009

The article presents a new formulation of isotropic elastoplasticity at large strains in both Lagrangian and Eulerian geometric setting, and addresses aspects of its numerical implementation. The key ingredients on the theoretical side are the introduction of a plastic metric for the description of the local history-dependent inelastic material response, the definition of a convex elastic domain in the space of the local stress-like variables conjugate to the plastic metric, denoted as the plastic forces, and a fully equivalent Lagrangian and Eulerian representation of all constitutive functions in spectral form for general non-Cartesian coordinate charts in terms of dual co- and contra-variant eigenvector trials which are normalized with respect to the plastic metric.
On the numerical side, the author proposes a stress update algorithm for general non-associative isotropic elasto(visco)plastic response with an arbitrary number of scalar internal variables. The algorithm is based on an exponential map integrator and is recast into a general return mapping scheme, methodically organized with tensorial pre- and postprocessing and a constitutive box in the eigenvalue space. A new perturbation stabilization technique is proposed which dramatically enhances the convergence of general return algorithm. The theoretical and numerical developments are applied to a constitutive model with large elastic and large plastic strains: the von Mises-/Tresca-type associative plastic flow in Ogden-type large-strain elastic materials.

MSC:

74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74S05 Finite element methods applied to problems in solid mechanics

Software:

Nike2D
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Green, A. E.; Naghdi, P. M., A general theory of an elasto-plastic continuum, Archive Rat. Mech. Anal., 18, 251-281 (1965) · Zbl 0133.17701
[2] Lee, E. H., Elastic-plastic deformation at finite strains, ASME J. Appl. Mech., 36, 1-6 (1969) · Zbl 0179.55603
[3] Rice, J. R., Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity, J. Mech. Phys. Solids, 19, 433-455 (1971) · Zbl 0235.73002
[4] Mandel, J., Plasticité Classique et Viscoplasticité, (CISM Courses and Lectures No. 97 (1972), Springer-Verlag: Springer-Verlag Wien) · Zbl 0285.73018
[5] Hill, R., Aspects of invariance in solid mechanics, (Advances in Applied Mechanics, Vol. 18 (1978), Academic Press: Academic Press New York), 1-75 · Zbl 0475.73026
[6] Havner, K. S., Finite Plastic Deformation of Crystalline Solids (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0774.73001
[7] Asaro, R., Micromechanics of crystals and polycrystals, (Wu, T. Y.; Hutchinson, J. W., Advances in Applied Mechanics, 23 (1983)), 1-115
[8] Krawietz, A., Materialtheorie. Mathematische Beschreibung des phänomenologischen thermomechanischen Verhaltens (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0593.73001
[9] Lubliner, J., Plasticity Theory (1990), Macmillan Publishing Company: Macmillan Publishing Company New York · Zbl 0745.73006
[10] Cuitiño, A. M.; Ortiz, M., Computational Modeling of Single Crystals, Model. Simul. Mater. Sci. Engrg., 1, 225-263 (1992)
[11] Steinmann, P.; Stein, E., On the numerical treatment and analysis of finite deformation single crystal plasticity, Comput. Methods Appl. Mech. Engrg., 129, 235-254 (1996) · Zbl 0860.73020
[12] Anand, L.; Kothari, M., A computational procedure for rate-independent crystal plasticity, J. Mech. Phys. Solids, 44, 525-558 (1996) · Zbl 1054.74549
[13] Miehe, C., Multisurface thermoplasticity for single crystals at large strains in terms of Eulerian vector updates, Int. J. Solids Struct., 33, 3103-3130 (1996) · Zbl 0929.74019
[14] Naghdi, P. M., A critical review of the state of finite plasticity, Zeitschrift für Angewandte Mathematik und Physik, 41, 315-387 (1990) · Zbl 0712.73032
[15] McMeeking, R. M.; Rice, J. R., Finite-element formulations for problems with large elastic-plastic deformations, Int. J. Solids Struct., 11, 601-616 (1975) · Zbl 0303.73062
[16] Argyris, J. H.; Doltsinis, J. St., On the large strain inelastic analysis in natural approach, Part I: Quasistatic problems, Comput. Methods Appl. Mech. Engrg., 20, 213-251 (1979) · Zbl 0437.73065
[17] Argyris, J. H.; Doltsinis, J. St., On the natural formulation and analysis of large deformation coupled thermomechanical problems, Comput. Methods Appl. Mech. Engrg., 25, 195-253 (1981) · Zbl 0489.73126
[18] Simó, J. C.; Ortiz, M., A unified approach to finite deformation plasticity based on the use of hyperelastic constitutive equations, Comput. Methods Appl. Mech. Engrg., 49, 221-245 (1985) · Zbl 0566.73035
[19] Moran, B.; Ortiz, M.; Shih, C. F., Formulation of implicit finite element methods for multiplicative finite deformation plasticity, Int. J. Numer. Methods Engrg., 29, 483-514 (1990) · Zbl 0724.73221
[20] Simó, J. C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and multiplicative decomposition. PartII: Computational aspects, Comput. Methods Appl. Mech. Engrg., 68, 1-31 (1988) · Zbl 0644.73043
[21] Simó, J. C., Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Comput. Methods Appl. Mech. Engrg., 99, 61-112 (1992) · Zbl 0764.73089
[22] Simó, J. C.; Miehe, C., Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation, Comput. Methods Appl. Mech. Engrg., 98, 41-104 (1992) · Zbl 0764.73088
[23] Weber, G.; Anand, L., Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids, Comput. Methods Appl. Mech. Engrg., 79, 173-202 (1990) · Zbl 0731.73031
[24] Perić, D.; Owen, D. R.J.; Honnor, M. E., A model for finite strain elasto-plasticity based on logarithic strains: Computational issues, Comput. Methods Appl. Mech. Engrg., 94, 35-61 (1992) · Zbl 0747.73020
[25] Cuitiño, A. M.; Ortiz, M., A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics, Engrg. Comput., 9, 437-451 (1992)
[26] Ibrahimbegović, A., Equivalent spatial and material descriptions of finite deformation elastoplasticity in principal axes, Int. J. Solids Struct., 31, 3027-3040 (1994) · Zbl 0944.74522
[27] Ibrahimbegović, A., Finite elastoplastic deformations of space-curved membranes, Comput. Methods Appl. Mech. Engrg., 119, 371-394 (1994) · Zbl 0853.73032
[28] Miehe, C., A theory of large-strain isotropic thermoplasticity based on metric transformation tensors, Archive Appl. Mech., 66, 45-64 (1995) · Zbl 0844.73027
[29] de Souza Neto, E. A.; Perić, D., A computational framework for a class of fully coupled models for elastoplastic damage at finite strains with reference to linearization aspects, Comput. Methods Appl. Mech. Engrg., 130, 179-193 (1996) · Zbl 0860.73066
[30] C. Miehe, A constitutive frame of elastoplasticity at large strains based on the notion of a plastic metric, Int. J. Solids Struct., in press.; C. Miehe, A constitutive frame of elastoplasticity at large strains based on the notion of a plastic metric, Int. J. Solids Struct., in press. · Zbl 0935.74022
[31] Lehmann, T., Einige Bemerkungen zu einer Klasse von Stoffgesetzen für groβe Elasto-Plastische Formänderungen, Ingenieur Archiv., 41, 297-310 (1972) · Zbl 0241.73006
[32] Miehe, C., Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation, Comput. Methods Appl. Mech. Engrg., 120, 243-269 (1995) · Zbl 0851.73012
[33] Doyle, T. C.; Ericksen, J. L., Nonlinear elasticity, (Advances in Applied Mechanics, Vol. 4 (1956), Academic Press: Academic Press New York), 53-116
[34] Truesdell, C.; Noll, W., The nonlinear field theories of mechanics, (Flügge, S., Handbuch der Physik, Bd. III/3 (1965), Springer-Verlag: Springer-Verlag New York) · Zbl 0779.73004
[35] Marsden, J. E.; Hughes, T. J.R., Mathematical Foundations of Elasticity (1983), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0545.73031
[36] Coleman, B. D.; Gurtin, M. E., Thermodynamics with internal state variables, J. Chem. Phys., 47, 597-613 (1967)
[37] Drucker, D. C., A more fundamental approach to plastic stress-strain relations, (Sternberg, E., Proceedings of the first U.S. National Congress of Applied Mechanics (1951)), 487-491
[38] Perzyna, P., Thermodynamics of rheological materials with internal changes, J. de Méchanique, 10, 391-408 (1971) · Zbl 0239.73008
[39] Miehe, C., On the representation of Prandtl-Reuss tensors within the framework of multiplicative elasto-plasticity, Int. J. Plasticity, 10, 609-621 (1994) · Zbl 0810.73016
[40] Ortiz, M.; Simó, J. C., An analysis of a new class of integration algorithms for elastoplastic constitutive relations, Int. J. Numer. Methods Engrg., 23, 353-366 (1986) · Zbl 0585.73058
[41] Dennis, J. E.; Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1983), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0579.65058
[42] Luenberger, D. G., Linear and Nonlinear Programming (1984), Addison Wesley Publishing Company, Inc · Zbl 0241.90052
[43] Miehe, C., Aspects of the formulation and finite element implementation of large strain isotropic elasticity, Int. J. Numer. Methods Engrg., 37, 1981-2004 (1994) · Zbl 0804.73067
[44] Ogden, R. W., Non-linear Elastic Deformations (1984), Ellis Horwood: Ellis Horwood Chichester · Zbl 0541.73044
[45] C. Miehe, Comparison of two algorithms for the computation of fourth-order isotropic tensor functions, Comput. Struct., in press.; C. Miehe, Comparison of two algorithms for the computation of fourth-order isotropic tensor functions, Comput. Struct., in press. · Zbl 0929.74128
[46] Simó, J. C.; Taylor, R. L.; Pister, K. S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 51, 177-208 (1985) · Zbl 0554.73036
[47] Simó, J. C.; Armero, F.; Taylor, R. L., Improved versions of assumed enhances strain tri-linear elements for 3D finite deformation problems, Comput. Methods Appl. Mech. Engrg., 110, 359-386 (1993) · Zbl 0846.73068
[48] Zienkiewicz, O. C.; Taylor, R. L., (The Finite Element Method, Vol. 1 (1989), McGraw-Hill: McGraw-Hill London)
[49] Karafillis, A. P.; Boyce, M. C., A general anisotropic yield criterion using bounds and a transformation weighting tensor, J. Mech. Phys. Solids, 41, 1859-1886 (1993) · Zbl 0792.73029
[50] Hallquist, J. O., NIKE2D—A vectorized implicit, finite deformation code for analyzing the static and dynamic response of 2-D solids, Lawrence Livermore National Laboratory, Report No. UCID-19677 (1986), Rev. 1
[51] Antman, S. S., Nonlinear Problems of Elasticity (1995), Springer Verlag: Springer Verlag New York · Zbl 0820.73002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.