Di Fiore, Carmine; Tudisco, Francesco; Zellini, Paolo Lower triangular Toeplitz-Ramanujan systems whose solution yields the Bernoulli numbers. (English) Zbl 1382.11024 Linear Algebra Appl. 496, 510-526 (2016). MSC: 11B68 11Y55 15B05 15A06 15A09 15A24 PDF BibTeX XML Cite \textit{C. Di Fiore} et al., Linear Algebra Appl. 496, 510--526 (2016; Zbl 1382.11024) Full Text: DOI OpenURL
Mirzaee, Farshid; Bimesl, Saeed Numerical solutions of systems of high-order Fredholm integro-differential equations using Euler polynomials. (English) Zbl 1443.65109 Appl. Math. Modelling 39, No. 22, 6767-6779 (2015). MSC: 65L60 45J05 PDF BibTeX XML Cite \textit{F. Mirzaee} and \textit{S. Bimesl}, Appl. Math. Modelling 39, No. 22, 6767--6779 (2015; Zbl 1443.65109) Full Text: DOI OpenURL
Griffiths, David F.; Higham, Desmond J. Numerical methods for ordinary differential equations. Initial value problems. (English) Zbl 1209.65070 Springer Undergraduate Mathematics Series. London: Springer (ISBN 978-0-85729-147-9/pbk; 978-0-85729-148-6/ebook). xiv, 271 p. (2010). Reviewer: Rolf Dieter Grigorieff (Berlin) MSC: 65L05 65-01 65L06 65L07 65C30 34A12 60H10 34F05 65L50 34A26 PDF BibTeX XML Cite \textit{D. F. Griffiths} and \textit{D. J. Higham}, Numerical methods for ordinary differential equations. Initial value problems. London: Springer (2010; Zbl 1209.65070) Full Text: DOI OpenURL
Jackiewicz, Z.; Rahman, M. Mahbubur; Welfert, B. D. Numerical solution of a Fredholm integro-differential equation modelling neural networks. (English) Zbl 1089.65136 Appl. Numer. Math. 56, No. 3-4, 423-432 (2006). MSC: 65R20 45J05 45G10 PDF BibTeX XML Cite \textit{Z. Jackiewicz} et al., Appl. Numer. Math. 56, No. 3--4, 423--432 (2006; Zbl 1089.65136) Full Text: DOI OpenURL
Higham, Desmond J. Trust region algorithms and timestep selection. (English) Zbl 0945.65068 SIAM J. Numer. Anal. 37, No. 1, 194-210 (1999). Reviewer: N.Djuranović-Miličić (Beograd) MSC: 65K05 65L06 90C30 65L70 65L50 34A34 65L05 PDF BibTeX XML Cite \textit{D. J. Higham}, SIAM J. Numer. Anal. 37, No. 1, 194--210 (1999; Zbl 0945.65068) Full Text: DOI OpenURL