Avesani, Diego; Dumbser, Michael; Vacondio, Renato; Righetti, Maurizio An alternative SPH formulation: ADER-WENO-SPH. (English) Zbl 07415027 Comput. Methods Appl. Mech. Eng. 382, Article ID 113871, 25 p. (2021). MSC: 76-XX 65-XX PDF BibTeX XML Cite \textit{D. Avesani} et al., Comput. Methods Appl. Mech. Eng. 382, Article ID 113871, 25 p. (2021; Zbl 07415027) Full Text: DOI OpenURL
Liu, Yangyang; Yang, Liming; Shu, Chang; Zhang, Huangwei A multi-dimensional shock-capturing limiter for high-order least square-based finite difference-finite volume method on unstructured grids. (English) Zbl 07409133 Adv. Appl. Math. Mech. 13, No. 3, 671-700 (2021). MSC: 65M08 65M06 65N08 76M12 76L05 76N06 35Q31 PDF BibTeX XML Cite \textit{Y. Liu} et al., Adv. Appl. Math. Mech. 13, No. 3, 671--700 (2021; Zbl 07409133) Full Text: DOI OpenURL
Giuliani, Andrew; Krivodonova, Lilia A moment limiter for the discontinuous Galerkin method on unstructured tetrahedral meshes. (English) Zbl 1453.65318 J. Comput. Phys. 404, Article ID 109106, 20 p. (2020). MSC: 65M60 65M50 76M10 35L65 76L05 PDF BibTeX XML Cite \textit{A. Giuliani} and \textit{L. Krivodonova}, J. Comput. Phys. 404, Article ID 109106, 20 p. (2020; Zbl 1453.65318) Full Text: DOI OpenURL
Ioriatti, Matteo; Dumbser, Michael; Loubère, Raphaël A staggered semi-implicit discontinuous Galerkin scheme with a posteriori subcell finite volume limiter for the Euler equations of gasdynamics. (English) Zbl 1434.76068 J. Sci. Comput. 83, No. 2, Paper No. 27, 58 p. (2020). MSC: 76M10 35Q31 76N10 PDF BibTeX XML Cite \textit{M. Ioriatti} et al., J. Sci. Comput. 83, No. 2, Paper No. 27, 58 p. (2020; Zbl 1434.76068) Full Text: DOI OpenURL
Boscheri, Walter; Semplice, Matteo; Dumbser, Michael Central WENO subcell finite volume limiters for ADER discontinuous Galerkin schemes on fixed and moving unstructured meshes. (English) Zbl 1474.65307 Commun. Comput. Phys. 25, No. 2, 311-346 (2019). MSC: 65M08 65M60 PDF BibTeX XML Cite \textit{W. Boscheri} et al., Commun. Comput. Phys. 25, No. 2, 311--346 (2019; Zbl 1474.65307) Full Text: DOI OpenURL
Hajduk, Hennes; Kuzmin, Dmitri; Aizinger, Vadym New directional vector limiters for discontinuous Galerkin methods. (English) Zbl 1451.76069 J. Comput. Phys. 384, 308-325 (2019). MSC: 76M10 65M60 76N15 76L05 PDF BibTeX XML Cite \textit{H. Hajduk} et al., J. Comput. Phys. 384, 308--325 (2019; Zbl 1451.76069) Full Text: DOI OpenURL
Gastaldo, Laura; Herbin, Raphaèle; Latché, Jean-Claude; Therme, Nicolas A MUSCL-type segregated – explicit staggered scheme for the Euler equations. (English) Zbl 1410.76226 Comput. Fluids 175, 91-110 (2018). MSC: 76M12 65M08 35Q31 76Nxx PDF BibTeX XML Cite \textit{L. Gastaldo} et al., Comput. Fluids 175, 91--110 (2018; Zbl 1410.76226) Full Text: DOI HAL OpenURL
Boscheri, Walter; Dumbser, Michael Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes. (English) Zbl 1378.76044 J. Comput. Phys. 346, 449-479 (2017). MSC: 76M10 65M60 35L65 76W05 PDF BibTeX XML Cite \textit{W. Boscheri} and \textit{M. Dumbser}, J. Comput. Phys. 346, 449--479 (2017; Zbl 1378.76044) Full Text: DOI arXiv OpenURL
Costa, Ricardo; Clain, Stéphane; Machado, Gaspar J.; Loubère, Raphaël A very high-order accurate staggered finite volume scheme for the stationary incompressible Navier-Stokes and Euler equations on unstructured meshes. (English) Zbl 1432.76174 J. Sci. Comput. 71, No. 3, 1375-1411 (2017). MSC: 76M12 65N08 76B99 76D05 PDF BibTeX XML Cite \textit{R. Costa} et al., J. Sci. Comput. 71, No. 3, 1375--1411 (2017; Zbl 1432.76174) Full Text: DOI OpenURL
Jiang, Zhen-Hua; Yan, Chao; Yu, Jian; Li, Yansu Hybrid central-upwind finite volume schemes for solving the Euler and Navier-Stokes equations. (English) Zbl 1368.76041 Comput. Math. Appl. 72, No. 9, 2241-2258 (2016). MSC: 76M12 65M08 76D05 35Q30 35Q31 PDF BibTeX XML Cite \textit{Z.-H. Jiang} et al., Comput. Math. Appl. 72, No. 9, 2241--2258 (2016; Zbl 1368.76041) Full Text: DOI OpenURL
Boscheri, Walter; Dumbser, Michael; Zanotti, Olindo High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes. (English) Zbl 1349.76311 J. Comput. Phys. 291, 120-150 (2015). MSC: 76M12 65M08 76N15 76W05 76Y05 PDF BibTeX XML Cite \textit{W. Boscheri} et al., J. Comput. Phys. 291, 120--150 (2015; Zbl 1349.76311) Full Text: DOI arXiv OpenURL
Boscheri, Walter; Dumbser, Michael A direct arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D. (English) Zbl 1349.76310 J. Comput. Phys. 275, 484-523 (2014). MSC: 76M12 65M08 76N15 PDF BibTeX XML Cite \textit{W. Boscheri} and \textit{M. Dumbser}, J. Comput. Phys. 275, 484--523 (2014; Zbl 1349.76310) Full Text: DOI arXiv OpenURL
Boscheri, Walter; Balsara, Dinshaw S.; Dumbser, Michael Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers. (English) Zbl 1349.76309 J. Comput. Phys. 267, 112-138 (2014). MSC: 76M12 65M08 76W05 PDF BibTeX XML Cite \textit{W. Boscheri} et al., J. Comput. Phys. 267, 112--138 (2014; Zbl 1349.76309) Full Text: DOI arXiv OpenURL
Dimarco, Giacomo; Loubere, Raphaël Towards an ultra efficient kinetic scheme. II: The high order case. (English) Zbl 1349.76675 J. Comput. Phys. 255, 699-719 (2013). MSC: 76M28 65M75 76P05 82C40 PDF BibTeX XML Cite \textit{G. Dimarco} and \textit{R. Loubere}, J. Comput. Phys. 255, 699--719 (2013; Zbl 1349.76675) Full Text: DOI arXiv OpenURL
Dumbser, Michael; Zanotti, Olindo; Hidalgo, Arturo; Balsara, Dinshaw S. ADER-WENO finite volume schemes with space-time adaptive mesh refinement. (English) Zbl 1349.76325 J. Comput. Phys. 248, 257-286 (2013). MSC: 76M12 65M08 76W05 35Q31 PDF BibTeX XML Cite \textit{M. Dumbser} et al., J. Comput. Phys. 248, 257--286 (2013; Zbl 1349.76325) Full Text: DOI arXiv OpenURL
Hu, Xiangyu Y.; Adams, Nikolaus A.; Shu, Chi-Wang Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. (English) Zbl 1311.76088 J. Comput. Phys. 242, 169-180 (2013). MSC: 76M20 65M06 35Q31 76N15 PDF BibTeX XML Cite \textit{X. Y. Hu} et al., J. Comput. Phys. 242, 169--180 (2013; Zbl 1311.76088) Full Text: DOI arXiv OpenURL
Clain, S.; Diot, S.; Loubère, R. Multi-dimensional optimal order detection (MOOD) - a very high-order finite volume scheme for conservation laws on unstructured meshes. (English) Zbl 1246.76073 Fořt, Jaroslav (ed.) et al., Finite volumes for complex applications VI: Problems and perspectives. FVCA 6, international symposium, Prague, Czech Republich, June 6–10, 2011. Vol. 1 and 2. Berlin: Springer (ISBN 978-3-642-20670-2/hbk; 978-3-642-20671-9/ebook). Springer Proceedings in Mathematics 4, 263-271 (2011). MSC: 76M12 35Q31 65M08 65Z05 PDF BibTeX XML Cite \textit{S. Clain} et al., Springer Proc. Math. 4, 263--271 (2011; Zbl 1246.76073) Full Text: DOI HAL OpenURL