×

Some properties and results involving the zeta and associated functions. (English) Zbl 1383.11104

Summary: In this research-cum-expository article, we aim at presenting a systematic account of some recent developments involving the Riemann zeta function \(\zeta(s)\), the Hurwitz (or generalized) zeta function\(\zeta(s,a)\), and the Hurwitz-Lerch zeta function \(\Phi(z,s,a)\) as well as its various interesting extensions and generalizations. In particular, we begin by looking into the problems associated with the evaluations and representations of \(\zeta(s)\) when \(s \in \mathbb N \backslash \{1\}\), \(\mathbb N\) being the set of natural numbers, emphasizing upon various potentially useful and computationally friendly classes of rapidly convergent series representations for \(\zeta(2n+1)\) (\(n \in \mathbb N\)) which have been developed in recent years. We then turn toward some other investigations involving certain general classes of Goldbach-Euler type sums. Finally, we present a systematic investigation of various properties and results involving several families of generating functions and their partial sums which are associated with the aforementioned general classes of the extended Hurwitz-Lerch zeta functions. References to some of latest developments in the theory and applications of several families of the extended Hurwitz-Lerch zeta functions are also provided for the interested researchers on these and other related topics in analytic number theory, geometric function theory of complex analysis, and so on.

MSC:

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11M35 Hurwitz and Lerch zeta functions
33E20 Other functions defined by series and integrals
33E30 Other functions coming from differential, difference and integral equations
11B68 Bernoulli and Euler numbers and polynomials

Software:

DLMF
PDFBibTeX XMLCite
Full Text: Link

References:

[1] M. Abramowitz and I. A. Stegun (Editors), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series 55, National Bureau of Standards, Washington, D.C., 1964; Reprinted by Dover Publications, New York, 1965 (see also [61]).
[2] A. Al-Zamel, On a generalized gamma-type distribution with {\(\tau\)} -confluent hypergeometric function, Kuwait J. Sci. Engrg. 28 (2001), 25–36.
[3] I. Ali, S. L. Kalla and H. G. Khajah, A generalized inverse Gaussian distribution with {\(\tau\)} -confluent hypergeometric function, Integral Transforms Spec. Funct. 12 (2001), 101–114. · Zbl 1016.62007
[4] H. Alzer, D. Karayannakis and H. M. Srivastava, Series representations for some mathematical constants, J. Math. Anal. Appl. 320 (2006), 145–162. · Zbl 1093.33010
[5] R. Ap’ery, Irrationalit’e de {\(\zeta\)} (2) et {\(\zeta\)} (3), in Journ’ees Arithm’etiques de Luminy (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978), pp. 11–13, Ast’erisque 61, Soc. Math. France, Paris, 1979.
[6] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, Heidelberg and Berlin, 1976.
[7] R. Ayoub, Euler and the Zeta function, Amer. Math. Monthly 81 (1974), 1067–1086. · Zbl 0293.10001
[8] A. Bayad and J. Chikhi, Reduction and duality of the generalized Hurwitz-Lerch zetas, Fixed Point Theory Appl. 2013 (2013), Article ID 82, 1–14. · Zbl 1293.11091
[9] A. Bayad and S. Gaboury, Generalized Dirichlet L-function of arbitrary order with applications, Adv. Stud. J. Phys. A: Math. Gen. 23 (1990) 4707–4710.
[10] M. A. Chaudhry and S. M. Zubair, On a Class of Incomplete Gamma Functions with Applications, Chapman and Hall (CRC Press Company), Boca Raton, London, New York and Washington, D.C., 2001. · Zbl 0977.33001
[11] M.-P. Chen and H. M. Srivastava, Some families of series representations for the Riemann {\(\zeta\)} (3), Resultate Math. 33 (1998), 179–197. · Zbl 0908.11039
[12] J. Choi, Y. J. Cho and H. M. Srivastava, Series involving the Zeta and multiple Gamma functions, Appl. Math. Comput. 159 (2004), 509–537. · Zbl 1061.33001
[13] J. Choi, D. S. Jang and H. M. Srivastava, A generalization of the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 19 (2008), 65–79. · Zbl 1145.11068
[14] J. Choi and H. M. Srivastava, Certain families of series associated with the Hurwitz-Lerch Zeta function, Appl. Math. Comput. 170 (2005), 399–409. · Zbl 1082.11052
[15] J. Choi and H. M. Srivastava, Explicit evaluation of Euler and related sums, Ramanujan J. 10 (2005), 51–70. · Zbl 1115.11052
[16] J. Choi and H. M. Srivastava, Series involving the Zeta functions and a family of generalized Goldbach-Euler series, Amer. Math. Monthly 121 (2014), 229–236. · Zbl 1325.11085
[17] J. Choi, H. M. Srivastava and V. S. Adamchik, Multiple Gamma and related functions, Appl. Math. Comput. 134 (2003), 515–533. · Zbl 1026.33003
[18] D. Cvijovi’c and J. Klinowski, New rapidly convergent series representations for {\(\zeta\)} (2n + 1), Proc. Amer. Math. Soc. 125 (1997), 1263–1271. · Zbl 0863.11055
[19] D. Cvijovi’c and H. M. Srivastava, Limit representations of Riemann’s Zeta function, Amer. Math. Monthly 119 (2012), 324–330. · Zbl 1294.11141
[20] A. D\c{}abrowski, A note on the values of the Riemann Zeta function at positive odd integers, Nieuw Arch. Wisk. (Ser. 4) 14 (1996), 199–207.
[21] A. Erd’elyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. I, McGrawHill Book Company, New York, Toronto and London, 1953. · Zbl 0051.30303
[22] A. Erd’elyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms, Vol. II, McGrawHill Book Company, New York, Toronto and London, 1954. · Zbl 0055.36401
[23] J. A. Ewell, A new series representation for {\(\zeta\)} (3), Amer. Math. Monthly 97 (1990), 219–220.
[24] J. A. Ewell, On the Zeta function values {\(\zeta\)}(2k + 1), k = 1, 2, {\(\cdot\)} {\(\cdot\)} {\(\cdot\)} , Rocky Mountain J. Math. 25 (1995), 1003– 1012. · Zbl 0851.11049
[25] S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and Its Applications, vol. 94, Cambridge University Press, Cambridge, New York, Port Melbourne, Madrid and Cape Town, 2003.
[26] S. Gaboury and A. Bayad, Series representations at special values of generalized Hurwitz-Lerch zeta function, Abstr. Appl. Anal. 2013 (2013), Article ID 975615, 1–8.
[27] M. Garg, K. Jain and S. L. Kalla, A further study of general Hurwitz-Lerch zeta function, Algebras Groups Geom. 25 (2008), 311–319. · Zbl 1210.11096
[28] M. Garg, K. Jain and H. M. Srivastava, Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions, Integral Transforms Spec. Funct. 17 (2006), 803–815. · Zbl 1184.11005
[29] J. W. L. Glaisher, On the history of Euler’s constant, Messenger Math. 1 (1872) 25–30.
[30] M. L. Glasser, Some integrals of the arctangent function, Math. Comput. 22 (1968), 445–447. · Zbl 0207.15805
[31] R. W. Gosper Jr., A calculus of series rearrangements, in Algorithms and Complexity: New Directions and Recent Results (J. F. Traub, Editor), pp. 121–151, Academic Press, New York, London and Toronto, 1976.
[32] S. P. Goyal and R. K. Laddha, On the generalized Zeta function and the generalized Lambert function, Gan. ita Sandesh 11 (1997), 99–108. · Zbl 1186.11056
[33] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Corrected and Enlarged edition prepared by A. Jeffrey), Academic Press, New York, 1980; sixth edition, 2000. · Zbl 0521.33001
[34] P. L. Gupta, R. C. Gupta, S.-H. Ong and H. M. Srivastava, A class of Hurwitz-Lerch Zeta distributions and their applications in reliability, Appl. Math. Comput. 196 (2008), 521–531. · Zbl 1131.62093
[35] R. K. Gupta and M. Kumari, Some results on a {\(\tau\)} -generalized Riemann Zeta function, Jn\={}an\={}abha 41 (2011), 63–68. · Zbl 1269.11090
[36] E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, New Jersey, 1975.
[37] M. M. Hjortnaes, OverfØring av rekken k=1(1/k3)til et bestemt integral, Proceedings of the Twelfth Scandanavian Mathematical Congress (Lund; August 10-15, 1953), pp. 211–213, Scandanavian Mathematical Society, Lund, 1954.
[38] A. A. Inayat-Hussain, New properties of hypergeometric series derivable from Feynman integrals. I: Transformation and reduction formulae, J. Phys. A: Math. Gen. 20 (1987), 4109–4117. · Zbl 0634.33005
[39] A. A. Inayat-Hussain, New properties of hypergeometric series derivable from Feynman integrals. II: A generalization of the H-function, J. Phys. A: Math. Gen. 20 (1987), 4119–4128. · Zbl 0634.33006
[40] D. Jankov, T. K. Pog’any and R. K. Saxena, An extended general Hurwitz-Lerch Zeta function as a Mathieu (a, {\(\lambda\)})-series, Appl. Math. Lett. 24 (2011), 1473–1476. associated with the Hurwitz Zeta function, Appl. Math. Comput. 154 (2004), 641–664. · Zbl 1228.11135
[41] M. Katsurada, On Mellin-Barnes type of integrals and sums associated with the Riemann Zeta-function, Publ. Inst. Math. (Beograd) (Nouvelle Ser.) 62 (76) (1997), 13–25.
[42] M. Katsurada, Rapidly convergent series representations for {\(\zeta\)}(2n + 1) and their {\(\chi\)}-analogue, Acta Arith. 90 (1999), 79–89.
[43] A. A. Kilbas, M. Saigo and J. J. Trujillo, On the generalized Wright functions, Fract. Calc. Appl. Anal. 5 (2002), 437–466. · Zbl 1027.33015
[44] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006.
[45] N. Koblitz, p-Adic Numbers, p-Adic Analysis, and Zeta-Functions, Graduate Texts in Mathematics, Vol. 58, Springer-Verlag, New York, Heidelberg and Berlin, 1977. · Zbl 0364.12015
[46] S.-D. Lin and H. M. Srivastava, Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154 (2004), 725–733. · Zbl 1078.11054
[47] S.-D. Lin, H. M. Srivastava and P.-Y. Wang, Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, Integral Transforms Spec. Funct. 17 (2006), 817–827.
[48] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and Theorems for the Special Functions of Math- ematical Physics, Third Enlarged Edition, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Ber”ucksichtingung der Anwendungsgebiete, Bd. 52, Springer-Verlag, New York, 1966. · Zbl 0143.08502
[49] A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Function: Theory and Applications, Springer, New York, Dordrecht, Heidelberg and London, 2010.
[50] Z. A. Melzak, Companion to Concrete Mathematics, Vol. I: Mathematical Techniques and Various Applications, John Wiley and Sons, New York, London, Sydney and Toronto, 1973. · Zbl 0254.26003
[51] C. Nash and D. O’Connor, Ray-Singer torsion, topological field theories and the Riemann Zeta function at s = 3, in Low-Dimensional Topology and Quantum Field Theory (Proceedings of a NATO Advanced Research Workshop held at the Isaac Newton Institute at Cambridge, U.K.; September 6-12, 1992) (H. Osborn, Editor), pp. 279–288, Plenum Press, New York and London, 1993.
[52] C. Nash and D. O’Connor, Determinants of Laplacians, the Ray-Singer torsion on lens spaces and the Riemann Zeta function, J. Math. Phys. 36 (1995), 1462–1505. · Zbl 0842.58075
[53] N. Nielsen, Handbuch der Theorie der Gammafunktion, Druck und Verlag von B. G. Teubner, Leipzig, 1906; Reprinted by Chelsea Publishing Company, New York, 1965.
[54] K. Nishimoto, C.-E Yen and M.-L. Lin, Some integral forms for a generalized Zeta function, J. Fract. Calc. 22 (2002), 91–97. · Zbl 1018.11043
[55] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (Editors), NIST Handbook of Mathematical Functions [With 1 CD-ROM (Windows, Macintosh and UNIX)], U. S. Department of Commerce, National Institute of Standards and Technology, Washington, D. C., 2010; Cambridge University Press, Cambridge, London and New York, 2010 (see also [1]).
[56] D. Raducanu and H. M. Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 18 (2007), 933–943.
[57] R. K. Raina and P. K. Chhajed, Certain results involving a class of functions associated with the Hurwitz zeta function, Acta Math. Univ. Comenianae 73 (2004), 89–100. · Zbl 1098.11045
[58] V. Ramaswami, Notes on Riemann’s {\(\zeta\)}-function, J. London Math. Soc. 9 (1934), 165–169. · Zbl 0009.34801
[59] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Translated from the Russian: Integrals and Derivatives of Fractional Order and Some of Their Applications (”Nauka i Tekhnika”, Minsk, 1987), Gordon and Breach Science Publishers, Reading, Tokyo, Paris, Berlin and Langhorne (Pennsylvania), 1993.
[60] R. K. Saxana, A remark on a paper on M -series [MR2401326 (2009b:26008)]. With an editorial note, Fract. Calc. Appl. Anal. 12 (2009), 109–110.
[61] R. K. Saxena, R. K. Gupta and M. Kumari, Integrals and series expansions of the {\(\tau\)} -generalized Riemann Zeta function, J. Indian Acad. Math. 33 (2011), 309–320. · Zbl 1269.11088
[62] R. K. Saxena, T. K. Pog’any, R. Saxena and D. Jankov, On generalized Hurwitz-Lerch Zeta distributions occurring in statistical inference, Acta Univ. Sapientiae Math. 3 (2011), 43–59. · Zbl 1268.11127
[63] M. Sharma, Fractional integration and fractional differentiation of the M -series, Fract. Calc. Appl. Anal. 11 (2008), 187–191. · Zbl 1153.26303
[64] M. Sharma and R. Jain, A note on a generalzed M -series as a special function of fractional calculus, Fract. Calc. Appl. Anal. 12 (2009), 449–452.
[65] H. M. Srivastava, A unified presentation of certain classes of series of the Riemann Zeta function, Riv. Mat. Univ. Parma (Ser. 4) 14 (1988), 1–23. · Zbl 0659.10047
[66] H. M. Srivastava, Some rapidly converging series for {\(\zeta\)} (2n + 1), Proc. Amer. Math. Soc. 127 (1999), 385–396.
[67] H. M. Srivastava, Some simple algorithms for the evaluations and representations of the Riemann Zeta function at positive integer arguments, J. Math. Anal. Appl. 246 (2000), 331-351. · Zbl 0957.11036
[68] H. M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000), 77–84. · Zbl 0978.11004
[69] H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci. 5 (2011), 390–444.
[70] H. M. Srivastava, A new family of the {\(\lambda\)}-generalized Hurwitz-Lerch zeta functions with applications, Appl. Math. Inform. Sci. 8 (2014), 1485-1500.
[71] H. M. Srivastava, Riemann, Hurwitz and Hurwitz-Lerch Zeta functions and associated series and integrals, in Essays in Mathematics and Its Applications (In Honor of Stephen Smale’s 80th Birthday) (Panos M. Pardalos and Th. M. Rassias, Editors), Springer-Verlag, Berlin, Heidelberg and New York, 2012, pp. 431-461.
[72] H. M. Srivastava, Generating relations and other results associated with some families of the extended HurwitzLerch Zeta functions, SpringerPlus 2 (2013), Article ID 2:67, 1–14.
[73] H. M. Srivastava, Some {\(\tau\)} -extensions of higher transcendental functions, J. Indian Acad. Math. 35 (2013), 165–176. · Zbl 1311.11086
[74] H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.
[75] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012. · Zbl 1239.33002
[76] H. M. Srivastava and S. Gaboury, New expansion formulas for a family of the lambda-generalized Hurwitz-Lerch zeta functions, Internat. J. Math. Math. Sci. 2014 (2014), Article ID 131067, 1–13.
[77] H. M. Srivastava, S. Gaboury and B.-J. Fug‘ere, Further results involving a class of generalized Hurwitz-Lerch Zeta functions, Russian J. Math. Phys. 21 (2014), 521-537. · Zbl 1352.11084
[78] H. M. Srivastava, S. Gaboury and A. Bayad, Expansion formulas for an extended Hurwitz-Lerch zeta function obtained via fracional calculus, Adv. Difference Equations 2014 (2014), Article ID 169, 1–17. · Zbl 1343.11078
[79] H. M. Srivastava, S. Gaboury and R. Tremblay, New relations involving an extended multiparameter HurwitzLerch zeta function with applications, Internat. J. Anal. 2014 (2014), Article ID 680850, 1–14.
[80] H. M. Srivastava, M. Garg and S. Choudhary, A new generalization of the Bernoulli and related polynomials, Russian J. Math. Phys. 17 (2010), 251–261. · Zbl 1259.11032
[81] H. M. Srivastava, M. Garg and S. Choudhary, Some new families of generalized Euler and Genocchi polynomials, Taiwanese J. Math. 15 (2011), 283–305. · Zbl 1262.11040
[82] H. M. Srivastava, M. L. Glasser and V. S. Adamchik, Some definite integrals associated with the Riemann Zeta function, Z. Anal. Anwendungen 19 (2000), 831–846. · Zbl 0979.11042
[83] H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-Functions of One and Two Variables with Applications, South Asian Publishers, New Delhi and Madras, 1982. · Zbl 0506.33007
[84] H. M. Srivastava, D. Jankov, T. K. Pog’any and R. K. Saxena, Two-sided inequalities for the extended HurwitzLerch Zeta function, Comput. Math. Appl. 62 (2011), 516–522. · Zbl 1228.11137
[85] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
[86] H. M. Srivastava, S.-D. Lin and P.-Y. Wang, Some fractional-calculus results for the H-function associated with a class of Feynman integrals, Russian J. Math. Phys. 13 (2006), 94–100. · Zbl 1223.33027
[87] H. M. Srivastava, M.-J. Luo and R. K. Raina, New results involving a class of generalized Hurwitz-Lerch zeta functions and their applications, Turkish J. Anal. Number Theory 1 (2013), 26–35.
[88] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
[89] H. M. Srivastava, R. K. Saxena, T. K. Pog’any and R. Saxena, Integral and computational representations of the extended Hurwitz–Lerch Zeta function, Integral Transforms Spec. Funct. 22 (2011), 487–506. · Zbl 1242.11065
[90] H. M. Srivastava, R. K. Saxena, T. K. Pog’any and R. Saxena, Integral and computational representations of the extended Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 22 (2011), 487–506. · Zbl 1242.11065
[91] H. M. Srivastava and H. Tsumura, A certain class of rapidly convergent series representations for {\(\zeta\)} (2n + 1), J. Comput. Appl. Math. 118 (2000), 323–335. · Zbl 0979.11041
[92] H. M. Srivastava and H. Tsumura, New rapidly convergent series representations for {\(\zeta\)} (2n + 1), L (2n, {\(\chi\)}) and L (2n + 1, {\(\chi\)}), Math. Sci. Res. Hot-Line 4(7) (2000), 17–24 (Research Announcement). · Zbl 1161.11378
[93] H. M. Srivastava and H. Tsumura, Certain classes of rapidly convergent series representations for L(2n, {\(\chi\)}) and L(2n + 1, {\(\chi\)}), Acta Arith. 100 (2001), 195–201.
[94] H. M. Srivastava and H. Tsumura, Inductive construction of rapidly convergent series representations for {\(\zeta\)} (2n + 1), Internat. J. Comput. Math. 80 (2003), 1161–1173. · Zbl 1067.11054
[95] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford University (Clarendon) Press, Oxford
[96] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, Fourth Edition, Cambridge University Press, Cambridge, London and New York, 1927.
[97] J. R. Wilton, A proof of Burnside’s formula for log {\(\Gamma\)} (x + 1) and certain allied properties of Riemann’s {\(\zeta\)}function, Messenger Math. 52 (1922–1923), 90–93.
[98] E. Witten, On quantum gauge theories in two dimensions, Comm. Math. Phys. 141 (1991), 153–209. · Zbl 0762.53063
[99] N. O. Virchenko, S. L. Kalla and A. Al-Zamel, Some results on a generalized hypergeometric function, Integral Transforms Spec. Funct. 12 (2001), 89?–100.
[100] C.-E Yen, M.-L. Lin and K. Nishimoto, An integral form for a generalized Zeta function, J. Fract. Calc. 22 (2002), 99–102. · Zbl 1018.11044
[101] N.-Y. Zhang and K. S. Williams, Some series representations of {\(\zeta\)} (2n + 1), Rocky Mountain J. Math. 23 (1993), 1581–1592. · Zbl 0808.11053
[102] N.-Y. Zhang and K. S. Williams, Some infinite series involving the Riemann Zeta function, in Analysis, Geometry and Groups: A Riemann Legacy Volume, Parts I and II (H. M. Srivastava and Th. M. Rassias, Editors), Part II, pp. 691–712, Hadronic Press, Palm Harbor, Florida, 1993.
[103] N.-Y. Zhang and K. S. Williams, Values of the Riemann Zeta function and integrals involving log(2 sinh {\(\theta\)}) 2 and log(2 sin {\(\theta\)}2), Pacific J. Math. 168 (1995), 271–289. · Zbl 0828.11041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.