×

A low-Mach correction for multi-dimensional finite volume shock capturing schemes with application in Lagrangian frame. (English) Zbl 1411.76090

Summary: We propose a low-Mach correction for cell-centered schemes in Lagrangian frame. After transposing some classical results from the Eulerian frame to the Lagrangian frame, we show why classical cell-centered Lagrangian schemes are not able to capture the low-Mach regime except by using unreasonably fine meshes. Consequently, we propose a slight modification of the original scheme, which is easy to implement in any scheme using an acoustic Godunov solver on unstructured mesh, and has a negligible cost in term of CPU time. We demonstrate that this modification cures this flaw. The properties of the original semi-discrete scheme (consistency, conservation) are preserved. Particular attention is paid to the entropy condition, proving its compatibility with the proposed modification. We assess this new scheme on several low and high-Mach problems, to demonstrate its good behavior in all regimes. Our last test problem is devoted to the study of the growth rate of instability in convergent configurations. It shows that even if the problem is globally very compressible, the low-Mach correction can have a significant impact on the solution.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76L05 Shock waves and blast waves in fluid mechanics

Software:

CAVEAT; AUSM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Addessio, F.; Baumgardner, J.; Dukowicz, J.; Johnson, N.; Kashiwa, B.; Rauenzahn, R., CAVEAT: A Computer Code for Fluid Dynamics Problems with Large Distortion and Internal Slip, Tech. Rep (1990), Los Alamos National Laboratory LA-10613
[2] Aguilera, D.; Carrard, T.; Guilbaud, C.; Schneider, J.; Sorbet, S., Visualization and post-processing for high performance computing, Chocs, 41, 57-67 (2012)
[3] Barlow, A.; Maire, P.-H.; Rider, W.; Rieben, R.; Shashkov, M., Arbitrary lagrangian eulerian methods for modeling high-speed compressible multimaterial flows, J Comput Phys, 322, 603-665 (2016) · Zbl 1351.76093
[4] Barth, T.; Jespersen, D., The design and application of upwind schemes on unstructured meshes. In AIAA paper 89-0366, 27th Aerospace Sciences Meeting. Reno, Nevada (1989)
[5] Ben-Artzi, M.; Falcovitz, J., Generalized riemann problems in computational fluid dynamics, J Fluid Mech, 497, 440-441 (2003)
[6] Benson, D., Computational methods in lagrangian and eulerian hydrocodes, Comp Meth Appl Mech Eng, 99, 235-394 (1992) · Zbl 0763.73052
[7] Boniface, J.-C., Rescaling of the roe scheme in low mach-number flow regions, J Comput Phys, 328, 177-199 (2017) · Zbl 1406.76076
[8] Braeunig, J.-P., Reducing the entropy production in a collocated lagrange-remap scheme, J Comput Phys, 314, 127-144 (2016) · Zbl 1349.76564
[9] Burton, D.; Carney, T.; Morgan, N.; Sambasivan, S.; Shashkov, M., A cell-centered lagrangian godunov-like method for solid dynamics, Comput Fluids, 83, 33-47 (2013) · Zbl 1290.76095
[10] Carré, G.; Del Pino, S.; Després, B.; Labourasse, E., A cell-centered lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, J Comput Phys, 228, 5160-5183 (2009) · Zbl 1168.76029
[11] Chalons, C.; Girardin, M.; Kokh, S., An all-Regime lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes, Commun Comput Phys, 20, 188-233 (2016) · Zbl 1373.76120
[12] Chalons, C.; Girardin, M.; Kokh, S., An all-regime lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes, J Comput Phys, 335, 885-904 (2017) · Zbl 1375.76192
[13] Chandrasekhar, S., Radiative transfer (1950), (International Series of Monographs on Physics) Oxford: Clarendon Press; London: Oxford University Press. XIV, 394 p. · Zbl 0037.43201
[14] Cheng, J.; Shu, C.-W., Positivity-preserving lagrangian scheme for multi-material compressible flow, J Comput Phys, 257, PA, 143-168 (2014) · Zbl 1349.76439
[15] Clarisse, J.-M.; Jaouen, S.; Raviart, P.-A., A godunov-type method in lagrangian coordinates for computing linearly-perturbed planar-symmetric flows of gas dynamics, J Comput Phys, 198, 1, 80-105 (2004) · Zbl 1107.76367
[16] Colella, P.; Pao, K., A projection method for low speed flows, J Comput Phys, 142, 245-269 (1999) · Zbl 0935.76056
[17] Cordier, F.; Degond, P.; Kumbaro, A., An asymptotic-Preserving all-speed scheme for the euler and navier-Stokes equations, J Comput Phys, 231, 5685-5704 (2012) · Zbl 1277.76090
[18] Corot, T.; Mercier, B., A new nodal solver for the two dimensional lagrangian hydrodynamics, J Comput Phys, 353, 1-25 (2018) · Zbl 1380.76055
[19] Degond, P.; Jin, S.; Yuming, J., Mach-number uniform asymptotic-preserving gauge schemes for compressible flows, Bull-Inst Math Acad Sinica, 2, 4, 851 (2007) · Zbl 1210.76135
[20] Dellacherie, S., Analysis of godunov type schemes applied to the compressible euler system at low mach number, J Comput Phys, 229, 978-1016 (2010) · Zbl 1329.76228
[21] Dellacherie, S.; Jung, J.; Omnes, P.; Raviart, P.-A., Construction of modified godunov-type schemes accurate at any mach number for the compressible euler system, Math Models Methods Appl Sci, 26, 13, 2525-2615 (2016) · Zbl 1382.76183
[22] Després, B., Weak consistency of the cell-centered GLACE scheme on general meshes in any dimension, Comp Meth Appl Mech Eng, 199, 2669-2679 (2010) · Zbl 1231.76177
[23] Després, B.; Labourasse, E., Stabilization of cell-centered compressible lagrangian methods using subzonal entropy, J Comp Phys, 231, 20, 6559-6595 (2012) · Zbl 1284.76287
[24] Després, B.; Mazeran, C., Lagrangian gas dynamics in 2D and lagrangian systems, Arch Rat Mech Anal, 178, 327-372 (2005) · Zbl 1096.76046
[25] Ge, Q.-W., High-order lagrangian cell-centered conservative scheme on unstructured meshes, Appl Math Mech (English Edition), 35, 9, 1203-1222 (2014) · Zbl 1298.76138
[26] Grospellier, G.; Lelandais, B., The Arcane Development Framework, Proceedings of the 8th Workshop on Parallel/High-Performance Object-Oriented Scientific Computing, 4-1-4-11 (2009), ACM: ACM New York, NY, USA
[27] Guillard, H., On the behavior of upwind schemes in the low mach number limit. iv: P0 approximation on triangular and tetrahedral cells, Comput Fluids, 38, 10, 1969-1972 (2009) · Zbl 1242.76165
[28] Guillard, H.; Murrone, A., On the behavior of the upwind scheme in low mach number limit, II, Comput Fluids, 33, 655-675 (2004) · Zbl 1049.76040
[29] Guillard, H.; Viozat, C., On the behaviour of upwind schemes in the low mach number limit, Comput Fluids, 28, 1, 63-86 (1999) · Zbl 0963.76062
[30] Haan, S., Onset of nonlinear saturation for rayleigh-Taylor growth in the presence of a full spectrum of modes, Phys Rev A, 39, 11, 5812-5824 (1988)
[31] Hoch, P.; Labourasse, E., A frame invariant and maximum principle enforcing second-order extension for cell-centered ALE schemes based on local convex-hull preservation, Int J Numer Meth Fluids, 76, 1043-1063 (2014)
[32] Klainerman, S.; Majda, A., Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm Pure Appl Math, 34, 4, 481-524 (1981) · Zbl 0476.76068
[33] Klainerman, S.; Majda, A., Compressible and incompressible fluids, Comm Pure Appl Math, 35, 5, 629-651 (1982) · Zbl 0478.76091
[34] Klein, R., Semi-implicit extension of a godunov-type scheme based on low mach number asymptotics i: one-dimensional flow, J Comput Phys, 121, 2, 213-237 (1995) · Zbl 0842.76053
[35] Li, X.; Gu, C., An all-speed roe-type scheme and its asymptotic analysis of low-mach number behaviour, J Comput Phys, 227, 5144-5159 (2008) · Zbl 1388.76207
[36] Liou, M.-S., A sequel to AUSM, part II: AUSM \({}^+\)-up for all speeds, J Comput Phys, 214, 137-170 (2006) · Zbl 1137.76344
[37] Liu, Y.; Shen, W.; Tian, B.; Mao, D.-K., A two dimensional nodal riemann solver based on one dimensional riemann solver for a cell-centered lagrangian scheme, J Comput Phys, 284, 566-594 (2015) · Zbl 1351.76220
[38] Loubère, R.; Maire, P.-H.; Rebourcet, B., Chapter 13 - Staggered and colocated finite volume schemes for lagrangian hydrodynamics, (Abgrall, R.; Shu, C.-W., Handbook of Numerical Methods for Hyperbolic Problems Basic and Fundamental Issues. Handbook of Numerical Methods for Hyperbolic Problems Basic and Fundamental Issues, Handbook of Numerical Analysis, 17 (2016), Elsevier), 319-352
[39] Luttwak, G.; Falcovitz, J., Slope limiting for vectors: a novel vector limiting algorithm, Int J Numer Meth Fluids, 65, 1365-1375 (2011) · Zbl 1453.76100
[40] Maire, P.-H., Contribution à la modélisation numérique de la Fusion par Confinement Inertiel (2011), Université de Bordeaux, Habilitation à diriger des recherches
[41] Maire, P. H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered lagrangian scheme for 2d compressible flow problems, SIAM J Sci Comp, 29 (2007)
[42] Maire, P., A high-order cell-centered lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry, J Comput Phys, 228(18), 6882-6915 (2009) · Zbl 1261.76021
[43] Maire, P., A high-order cell-centered lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J Comput Phys, 228(7), 2391-2425 (2009) · Zbl 1156.76434
[44] Mazeran, C., Sur la structure mathématique et l’approximation numérique de l’hydrodynamique lagrangienne bidimensionnelle (2007), Université de Bordeaux I
[45] Moguen, Y.; Delmas, S.; Perrier, V.; Bruel, P.; Dick, E., Godunov-type schemes with an inertia term for unsteady full mach number range flow calculations, J Comput Phys, 281, 556-590 (2015) · Zbl 1351.76069
[46] Neumann, J.v.; Richtmyer, R., A method for the calculation of hydrodynamics shocks, J Appl Phys, 21, 232-237 (1950) · Zbl 0037.12002
[47] Noh, W., Errors for calculations of strong shocks using artificial viscosity and an artificial heat flux, J Comput Phys, 72, 78-120 (1987) · Zbl 0619.76091
[48] Richardson, L., The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam, Philos Trans Royal SocLondon A, 210, 459-470, 307-357 (1911) · JFM 42.0873.02
[49] Richtmyer, R., Taylor instability in shock acceleration of compressible fluids, Comm Pure Appl Math, 13, 297 (1960)
[50] Rieper, F., A low-mach number fix for roe’s approximate riemann solver, J Comput Phys, 230, 13, 5263-5287 (2011) · Zbl 1419.76461
[51] Rieper, F.; Bader, G., The influence of cell geometry on the accuracy of upwind schemes in the low mach number regime, J Comput Phys, 228, 8, 2918-2933 (2009) · Zbl 1159.76027
[52] Taylor, G., The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, Proc Roy Soc (London) A, 201, 192 (1950) · Zbl 0038.12201
[53] Thornber, B.; Mosedale, A.; Drikakis, D.; Youngs, D.; Williams, R., An improved reconstruction method for compressible flows with low mach number features, J Comput Phys, 227, 4873-4894 (2008) · Zbl 1388.76188
[54] van Leer, B., Towards the ultimate conservative difference scheme. v-a second order sequel to Godunov’s method, J Comp Phys, 32, 101-136 (1979) · Zbl 1364.65223
[55] Vandenboomgaerde, M.; Mügler, C.; Gauthier, S., Impulsive model for the richtmyer-Meshkov instability, Phys Rev E, 58, 1874-1882 (1998)
[56] Yang, Y.; Zhang, Q.; Sharp, D., Small amplitude theory of richtmyer-Meshkov instability, Phys Fluids, 6, 5, 1856-1873 (1994) · Zbl 0831.76040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.